1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
Require Import Setoid.
Require Import RelationClasses.
Require Import Morphisms.
Set Implicit Arguments.
Set Strict Implicit.
(** The purpose of this tactic is to try to automatically derive morphisms
for functions
**)
Theorem Proper_red : forall T U (rT : relation T) (rU : relation U) (f : T -> U),
(forall x x', rT x x' -> rU (f x) (f x')) ->
Proper (rT ==> rU) f.
intuition.
Qed.
Theorem respectful_red : forall T U (rT : relation T) (rU : relation U) (f g : T -> U),
(forall x x', rT x x' -> rU (f x) (g x')) ->
respectful rT rU f g.
intuition.
Qed.
Theorem respectful_if_bool T : forall (x x' : bool) (t t' f f' : T) eqT,
x = x' ->
eqT t t' -> eqT f f' ->
eqT (if x then t else f) (if x' then t' else f') .
intros; subst; auto; destruct x'; auto.
Qed.
Ltac derive_morph :=
repeat
first [ lazymatch goal with
| |- Proper _ _ => red; intros
| |- (_ ==> _)%signature _ _ => red; intros
end
| apply respectful_red; intros
| apply respectful_if_bool; intros
| match goal with
| [ H : (_ ==> ?EQ)%signature ?F ?F' |- ?EQ (?F _) (?F' _) ] =>
apply H
| [ |- ?EQ (?F _) (?F _) ] =>
let inst := constr:(_ : Proper (_ ==> EQ) F) in
apply inst
| [ H : (_ ==> _ ==> ?EQ)%signature ?F ?F' |- ?EQ (?F _ _) (?F' _ _) ] =>
apply H
| [ |- ?EQ (?F _ _) (?F' _ _) ] =>
let inst := constr:(_ : Proper (_ ==> _ ==> EQ) F) in
apply inst
| [ |- ?EQ (?F _ _ _) (?F _ _ _) ] =>
let inst := constr:(_ : Proper (_ ==> _ ==> _ ==> EQ) F) in
apply inst
| [ |- ?EQ (?F _) (?F _) ] => unfold F
| [ |- ?EQ (?F _ _) (?F _ _) ] => unfold F
| [ |- ?EQ (?F _ _ _) (?F _ _ _) ] => unfold F
end ].
Global Instance Proper_andb : Proper (@eq bool ==> @eq bool ==> @eq bool) andb.
derive_morph; auto.
Qed.
Section K.
Variable F : bool -> bool -> bool.
Hypothesis Fproper : Proper (@eq bool ==> @eq bool ==> @eq bool) F.
Existing Instance Fproper.
Definition food (x y z : bool) : bool :=
F x (F y z).
Global Instance Proper_food : Proper (@eq bool ==> @eq bool ==> @eq bool ==> @eq bool) food.
Proof.
derive_morph; auto.
Qed.
Global Instance Proper_S : Proper (@eq nat ==> @eq nat) S.
Proof.
derive_morph; auto.
Qed.
End K.
Require Import List.
Section Map.
Variable T : Type.
Variable eqT : relation T.
Inductive listEq {T} (eqT : relation T) : relation (list T) :=
| listEq_nil : listEq eqT nil nil
| listEq_cons : forall x x' y y', eqT x x' -> listEq eqT y y' ->listEq eqT (x :: y) (x' :: y').
Theorem listEq_match V U (eqV : relation V) (eqU : relation U) : forall x x' : list V,
forall X X' Y Y',
eqU X X' ->
(eqV ==> listEq eqV ==> eqU)%signature Y Y' ->
listEq eqV x x' ->
eqU (match x with
| nil => X
| x :: xs => Y x xs
end)
(match x' with
| nil => X'
| x :: xs => Y' x xs
end).
Proof.
intros. induction H1; auto. derive_morph; auto.
Qed.
Variable U : Type.
Variable eqU : relation U.
Variable f : T -> U.
Variable fproper : Proper (eqT ==> eqU) f.
Definition hd (l : list T) : option T :=
match l with
| nil => None
| l :: _ => Some l
end.
(*
Global Instance Proper_hd : Proper (listEq eqT ==> optionEq eqT) hd.
Proof.
foo. (** This has binders in the match... **)
Abort.
*)
Fixpoint map' (l : list T) : list U :=
match l with
| nil => nil
| l :: ls => f l :: map' ls
end.
Global Instance Proper_map' : Proper (listEq eqT ==> listEq eqU) map'.
Proof.
derive_morph. induction H; econstructor; derive_morph; auto.
Qed.
End Map.
|