1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
|
(****************************************************************************
IEEE754 : ClosestPlus
Laurent Thery, Sylvie Boldo
******************************************************************************)
Require Export FroundPlus.
Require Export ClosestProp.
Section ClosestP.
Variable b : Fbound.
Variable radix : Z.
Variable precision : nat.
Coercion Local FtoRradix := FtoR radix.
Hypothesis radixMoreThanOne : (1 < radix)%Z.
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ radixMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum b) = Zpower_nat radix precision.
Theorem errorBoundedPlusLe :
forall p q pq : float,
Fbounded b p ->
Fbounded b q ->
(Fexp p <= Fexp q)%Z ->
Closest b radix (p + q) pq ->
exists error : float,
error = Rabs (p + q - pq) :>R /\
Fbounded b error /\ Fexp error = Zmin (Fexp p) (Fexp q).
intros p q pq H' H'0 H'1 H'2.
cut (ex (fun m : Z => pq = Float m (Fexp (Fplus radix p q)) :>R)).
2: unfold FtoRradix in |- *;
apply
RoundedModeRep
with (b := b) (precision := precision) (P := Closest b radix);
auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
2: rewrite (Fplus_correct radix); auto with arith.
intros H'3; elim H'3; intros m E; clear H'3.
exists
(Fabs (Fminus radix q (Fminus radix (Float m (Fexp (Fplus radix p q))) p))).
cut (forall A B : Prop, A -> (A -> B) -> A /\ B);
[ intros tmp; apply tmp; clear tmp | auto ].
unfold FtoRradix in |- *; rewrite Fabs_correct; auto with arith.
cut (forall p q : R, p = q -> Rabs p = Rabs q);
[ intros tmp; apply tmp; clear tmp | intros p' q' H; rewrite H; auto ].
unfold FtoRradix in |- *; repeat rewrite Fminus_correct; auto with arith.
unfold FtoRradix in E; rewrite E; auto.
ring.
intros H'4.
cut (Rabs (pq - (p + q)) <= Rabs (q - (p + q)))%R.
2: elim H'2; auto.
replace (q - (p + q))%R with (- FtoRradix p)%R.
2: ring.
rewrite Rabs_Ropp.
unfold FtoRradix in |- *; rewrite <- Fabs_correct; auto with arith.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr.
unfold FtoRradix in H'4; rewrite <- H'4.
simpl in |- *.
rewrite Zmin_le1; auto.
generalize H'1 H'; case p; case q; unfold Fabs, Fminus, Fopp, Fplus in |- *;
simpl in |- *; clear H'1 H'.
intros Fnum1 Fexp1 Fnum2 Fexp2 H'5 H'6.
repeat rewrite Zmin_n_n; auto.
repeat rewrite (Zmin_le2 _ _ H'5); auto with zarith.
replace (Zabs_nat (Fexp2 - Fexp2)) with 0.
rewrite Zpower_nat_O.
cut (forall z : Z, (z * 1%nat)%Z = z);
[ intros tmp; repeat rewrite tmp; clear tmp | auto with zarith ].
unfold FtoRradix, FtoR in |- *; simpl in |- *.
intros H'.
repeat split; simpl in |- *.
rewrite (fun x => Zabs_eq (Zabs x)); auto with zarith.
apply Zle_lt_trans with (Zabs Fnum2); auto.
apply le_IZR.
apply (Rle_monotony_contra_exp radix) with (z := Fexp2); auto.
case H'6; auto.
case H'6; auto.
intros; simpl in |- *; ring.
replace (Fexp2 - Fexp2)%Z with 0%Z; simpl in |- *; auto with zarith.
Qed.
Theorem errorBoundedPlusAbs :
forall p q pq : float,
Fbounded b p ->
Fbounded b q ->
Closest b radix (p + q) pq ->
exists error : float,
error = Rabs (p + q - pq) :>R /\
Fbounded b error /\ Fexp error = Zmin (Fexp p) (Fexp q).
intros p q pq H' H'0 H'1.
case (Zle_or_lt (Fexp p) (Fexp q)); intros H'2.
apply errorBoundedPlusLe; auto.
replace (p + q)%R with (q + p)%R; [ idtac | ring ].
replace (Zmin (Fexp p) (Fexp q)) with (Zmin (Fexp q) (Fexp p));
[ idtac | apply Zmin_sym ].
apply errorBoundedPlusLe; auto.
auto with zarith.
apply (ClosestCompatible b radix (p + q)%R (q + p)%R pq); auto.
ring.
case H'1; auto.
Qed.
Theorem errorBoundedPlus :
forall p q pq : float,
(Fbounded b p) ->
(Fbounded b q) ->
(Closest b radix (p + q) pq) ->
exists error : float,
error = (p + q - pq)%R :>R /\
(Fbounded b error) /\ (Fexp error) = (Zmin (Fexp p) (Fexp q)).
intros p q pq H' H'0 H'1.
case (errorBoundedPlusAbs p q pq); auto.
intros x H'2; elim H'2; intros H'3 H'4; elim H'4; intros H'5 H'6;
clear H'4 H'2.
generalize H'3; clear H'3.
unfold Rabs in |- *; case (Rcase_abs (p + q - pq)).
intros H'2 H'3; exists (Fopp x); split; auto.
unfold FtoRradix in |- *; rewrite Fopp_correct; auto.
unfold FtoRradix in H'3; rewrite H'3; ring.
split.
apply oppBounded; auto.
rewrite <- H'6; auto.
intros H'2 H'3; exists x; split; auto.
Qed.
Theorem plusExact1 :
forall p q r : float,
Fbounded b p ->
Fbounded b q ->
Closest b radix (p + q) r ->
(Fexp r <= Zmin (Fexp p) (Fexp q))%Z -> r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2.
cut
(2%nat * Rabs (FtoR radix (Fplus radix p q) - FtoR radix r) <=
Float 1%nat (Fexp r))%R;
[ rewrite Fplus_correct; auto with zarith; intros Rl1 | idtac ].
case errorBoundedPlus with (p := p) (q := q) (pq := r); auto.
intros x H'3; elim H'3; intros H'4 H'5; elim H'5; intros H'6 H'7;
clear H'5 H'3.
unfold FtoRradix in H'4; rewrite <- H'4 in Rl1.
2: apply Rle_trans with (Fulp b radix precision r); auto.
2: apply (ClosestUlp b radix precision); auto.
2: rewrite Fplus_correct; auto with zarith.
2: unfold FtoRradix in |- *; apply FulpLe; auto.
2: apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
cut (x = 0%R :>R); [ unfold FtoRradix in |- *; intros Eq1 | idtac ].
replace (FtoR radix r) with (FtoR radix r + 0)%R; [ idtac | ring ].
rewrite <- Eq1.
rewrite H'4; ring.
apply (is_Fzero_rep1 radix).
case (Z_zerop (Fnum x)); simpl in |- *; auto.
intros H'3; Contradict Rl1.
apply Rgt_not_le.
red in |- *; apply Rle_lt_trans with (Rabs (FtoR radix x)).
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
rewrite Rabs_mult.
apply Rmult_le_compat; auto with real arith.
generalize H'3; case (Fnum x); simpl in |- *; auto with real zarith.
intros H'5; case H'5; auto.
intros p0 H'5; rewrite Rabs_right; auto with real arith.
replace 1%R with (INR 1); auto with real arith.
intros p0 H'5; rewrite Faux.Rabsolu_left1; auto.
rewrite Ropp_involutive.
replace 1%R with (INR 1); auto with real arith.
replace 0%R with (- 0%nat)%R; auto with real; apply Ropp_le_ge_contravar;
auto with real arith.
rewrite Rabs_right; auto with real arith.
apply Rle_powerRZ; auto with real arith.
auto with zarith.
apply Rle_ge; cut (1 < radix)%Z; auto with float real zarith.
cut (forall r : R, (2%nat * r)%R = (r + r)%R);
[ intros tmp; rewrite tmp; clear tmp | intros f; simpl in |- *; ring ].
pattern (Rabs (FtoR radix x)) at 1 in |- *;
replace (Rabs (FtoR radix x)) with (Rabs (FtoR radix x) + 0)%R;
[ idtac | ring ].
apply Rplus_lt_compat_l; auto.
case (Rabs_pos (FtoR radix x)); auto.
rewrite <- Fabs_correct; auto with arith.
intros H'5; Contradict H'3.
cut (Fnum (Fabs x) = 0%Z).
unfold Fabs in |- *; simpl in |- *; case (Fnum x); simpl in |- *; auto;
intros; discriminate.
change (is_Fzero (Fabs x)) in |- *.
apply (is_Fzero_rep2 radix); auto with arith.
Qed.
Theorem plusExact1bis :
forall p q r : float,
Fbounded b p ->
Fbounded b q ->
Closest b radix (p + q) r ->
r <> (p + q)%R :>R -> (Zmin (Fexp p) (Fexp q) < Fexp r)%Z.
intros p0 q0 r0 H' H'0 H'1 H'2;
case (Zle_or_lt (Fexp r0) (Zmin (Fexp p0) (Fexp q0)));
auto.
intros H'3; Contradict H'2.
apply plusExact1; auto.
Qed.
Theorem plusExact2Aux :
forall p q r : float,
(0 <= p)%R ->
Fcanonic radix b p ->
Fbounded b q ->
Closest b radix (p + q) r ->
(Fexp r < Zpred (Fexp p))%Z -> r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2 H'3.
apply plusExact1; auto.
apply FcanonicBound with (1 := H'0); auto.
case (Zle_or_lt (Fexp p) (Fexp q)); intros Zl1.
rewrite Zmin_le1; auto with zarith.
apply Zle_trans with (Zpred (Fexp p)); auto with zarith.
unfold Zpred in |- *; auto with zarith.
rewrite Zmin_le2; auto with zarith.
case (Zlt_next _ _ Zl1); intros Zl2.
rewrite Zl2 in H'3.
replace (Fexp q) with (Zpred (Zsucc (Fexp q))); auto with zarith;
unfold Zpred, Zsucc in |- *; ring.
case H'0; clear H'0; intros H'0.
absurd (r < Float (nNormMin radix precision) (Zpred (Fexp p)))%R.
apply Rle_not_lt; auto.
unfold FtoRradix in |- *;
apply
(ClosestMonotone b radix
(Float (nNormMin radix precision) (Zpred (Fexp p))) (
p + q)%R); auto; auto.
cut (Float (nNormMin radix precision) (Fexp p) <= p)%R;
[ intros Eq1 | idtac ].
case (Rle_or_lt 0 q); intros Rl1.
apply Rlt_le_trans with (FtoRradix p).
apply
Rlt_le_trans with (FtoRradix (Float (nNormMin radix precision) (Fexp p)));
auto.
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
apply Rmult_lt_compat_l; auto with real arith.
replace 0%R with (IZR 0%nat); auto with real; auto with real float arith.
apply Rlt_IZR; apply nNormPos; auto with zarith.
unfold Zpred in |- *; auto with real float zarith arith.
pattern (FtoRradix p) at 1 in |- *; replace (FtoRradix p) with (p + 0)%R;
auto with real.
apply Rplus_lt_reg_r with (r := (- q)%R); auto.
replace (- q + (p + q))%R with (FtoRradix p); [ idtac | ring ].
apply
Rlt_le_trans with (FtoRradix (Float (nNormMin radix precision) (Fexp p)));
auto.
apply
Rlt_le_trans
with (2%nat * Float (nNormMin radix precision) (Zpred (Fexp p)))%R;
auto.
cut (forall r : R, (2%nat * r)%R = (r + r)%R);
[ intros tmp; rewrite tmp; clear tmp | intros; simpl in |- *; ring ].
rewrite (Rplus_comm (- q)).
apply Rplus_lt_compat_l.
rewrite <- Faux.Rabsolu_left1; auto.
rewrite <- (Fabs_correct radix); auto with arith.
unfold FtoRradix in |- *; apply maxMaxBis with (b := b); auto with zarith.
apply Zsucc_lt_reg; auto with zarith.
replace (Zsucc (Zpred (Fexp p))) with (Fexp p); auto with zarith.
apply Rlt_le; auto.
apply
Rle_trans with (radix * Float (nNormMin radix precision) (Zpred (Fexp p)))%R.
apply Rmult_le_compat_r; auto.
apply (LeFnumZERO radix); simpl in |- *; auto with arith.
apply Zlt_le_weak; apply nNormPos; auto with zarith.
rewrite INR_IZR_INZ; apply Rle_IZR; simpl in |- *; cut (1 < radix)%Z;
auto with real zarith.
pattern (Fexp p) at 2 in |- *; replace (Fexp p) with (Zsucc (Zpred (Fexp p)));
[ idtac | unfold Zsucc, Zpred in |- *; ring ].
unfold FtoRradix, FtoR in |- *; simpl in |- *.
rewrite powerRZ_Zs; auto with real zarith.
repeat rewrite <- Rmult_assoc.
rewrite (Rmult_comm radix); auto with real.
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
apply Rmult_le_compat_r; auto with real zarith.
apply Rle_IZR.
rewrite <- (Zabs_eq (Fnum p)); auto with zarith.
apply pNormal_absolu_min with (b := b); auto with arith.
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
apply (LeR0Fnum radix); auto with arith.
apply (RoundedModeProjectorIdem b radix (Closest b radix)); auto.
apply ClosestRoundedModeP with (precision := precision); auto.
repeat split; simpl in |- *.
rewrite Zabs_eq; auto with zarith.
apply ZltNormMinVnum; auto with arith.
apply Zlt_le_weak; apply nNormPos; auto with zarith.
apply Zle_trans with (Fexp q); auto with float zarith.
case (Rle_or_lt 0 r); intros Rl1.
rewrite <- (Rabs_right r); auto with real.
rewrite <- (Fabs_correct radix); auto with arith.
unfold FtoRradix in |- *; apply maxMaxBis with (b := b); auto with zarith.
apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
apply ClosestRoundedModeP with (precision := precision); auto with real.
apply Rlt_le_trans with 0%R; auto.
apply (LeFnumZERO radix); simpl in |- *; auto with arith.
apply Zlt_le_weak; apply nNormPos; auto with zarith.
absurd (- dExp b <= Fexp q)%Z; auto with float.
apply Zlt_not_le.
case H'0; intros Z1 (Z2, Z3); rewrite <- Z2; auto with zarith.
Qed.
Theorem plusExact2 :
forall p q r : float,
Fcanonic radix b p ->
Fbounded b q ->
Closest b radix (p + q) r ->
(Fexp r < Zpred (Fexp p))%Z -> r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2.
case (Rle_or_lt 0 p); intros Rl1.
apply plusExact2Aux; auto.
replace (p + q)%R with (- (Fopp p + Fopp q))%R.
rewrite <- (plusExact2Aux (Fopp p) (Fopp q) (Fopp r)); auto.
unfold FtoRradix in |- *; rewrite Fopp_correct; ring.
unfold FtoRradix in |- *; rewrite Fopp_correct.
apply Rlt_le; replace 0%R with (-0)%R; auto with real.
apply FcanonicFopp; auto with arith.
apply oppBounded; auto.
replace (Fopp p + Fopp q)%R with (- (p + q))%R.
apply ClosestOpp; auto.
unfold FtoRradix in |- *; repeat rewrite Fopp_correct; ring.
unfold FtoRradix in |- *; repeat rewrite Fopp_correct; ring.
Qed.
Theorem plusExactR0 :
forall p q r : float,
Fbounded b p ->
Fbounded b q ->
Closest b radix (p + q) r -> r = 0%R :>R -> r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2.
cut (r = FtoRradix (Fzero (- dExp b)) :>R);
[ intros Eq1; rewrite Eq1
| rewrite H'2; apply sym_eq; unfold FtoRradix in |- *; apply FzeroisZero ].
apply plusExact1; auto.
apply (ClosestCompatible b radix (p + q)%R (p + q)%R r); auto.
apply FboundedFzero; auto.
simpl in |- *; auto.
unfold Zmin in |- *; case (Fexp p ?= Fexp q)%Z; auto with float.
Qed.
Theorem plusErrorBound1 :
forall p q r : float,
Fbounded b p ->
Fbounded b q ->
Closest b radix (p + q) r ->
~ is_Fzero r ->
(Rabs (r - (p + q)) < Rabs r * / 2%nat * (radix * / pPred (vNum b)))%R.
intros p q r H' H'0 H'1 H'2.
cut (Fcanonic radix b (Fnormalize radix b precision r));
[ intros tmp; Casec tmp; intros Fs | idtac ].
3: apply FnormalizeCanonic; auto with arith.
3: apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
3: apply ClosestRoundedModeP with (precision := precision); auto.
2: rewrite <- (plusExact1 p q (Fnormalize radix b precision r)); auto.
2: unfold FtoRradix in |- *; rewrite FnormalizeCorrect; auto with arith.
2: replace (FtoR radix r - FtoR radix r)%R with 0%R; [ idtac | ring ].
2: rewrite Rabs_R0.
2: replace 0%R with (0 * (radix * / pPred (vNum b)))%R;
[ apply Rmult_lt_compat_r | ring ].
2: replace 0%R with (0 * / pPred (vNum b))%R;
[ apply Rmult_lt_compat_r | ring ].
2: apply Rinv_0_lt_compat; replace 0%R with (IZR 0); auto with real zarith.
2: apply Rlt_IZR; unfold pPred in |- *; apply Zlt_succ_pred; simpl in |- *.
2: apply vNumbMoreThanOne with (radix := radix) (precision := precision);
auto with real zarith.
2: cut (1 < radix)%Z; auto with real zarith.
2: replace 0%R with (0 * / 2%nat)%R; [ apply Rmult_lt_compat_r | ring ];
auto with real.
2: case (Rabs_pos (FtoR radix r)); auto.
2: intros H'3; Contradict H'2.
2: apply is_Fzero_rep2 with (radix := radix); auto with real arith.
2: generalize H'3; fold FtoRradix in |- *; unfold Rabs in |- *;
case (Rcase_abs r); auto.
2: intros r0 H'2; replace 0%R with (-0)%R; [ rewrite H'2 | idtac ]; ring.
2: apply (ClosestCompatible b radix (p + q)%R (p + q)%R r); auto.
2: apply sym_eq; apply FnormalizeCorrect; auto.
2: apply FnormalizeBounded; auto with arith.
2: apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
2: replace (Fexp (Fnormalize radix b precision r)) with (- dExp b)%Z.
2: unfold Zmin in |- *; case (Fexp p ?= Fexp q)%Z; auto with float.
2: apply sym_equal; case Fs; intros H1 H2; case H2; auto.
apply Rle_lt_trans with (/ 2%nat * Fulp b radix precision r)%R.
apply Rmult_le_reg_l with (r := INR 2); auto with real.
rewrite <- Rmult_assoc; rewrite Rinv_r; auto with real; rewrite Rmult_1_l.
unfold FtoRradix in |- *; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr;
rewrite <- (Fplus_correct radix); auto with zarith.
apply ClosestUlp; auto.
rewrite Fplus_correct; auto with arith.
replace (Rabs r * / 2%nat * (radix * / pPred (vNum b)))%R with
(/ 2%nat * (Rabs r * (radix * / pPred (vNum b))))%R;
[ apply Rmult_lt_compat_l; auto with real | ring ].
replace (Fulp b radix precision r) with
(Float (pPred (vNum b)) (Zpred (Fexp (Fnormalize radix b precision r))) *
(radix * / pPred (vNum b)))%R.
apply Rmult_lt_compat_r.
replace 0%R with (radix * 0)%R; [ apply Rmult_lt_compat_l | ring ];
auto with real arith.
apply Rinv_0_lt_compat; replace 0%R with (IZR 0%nat); auto with real arith;
apply Rlt_IZR.
unfold pPred in |- *; apply Zlt_succ_pred;
apply (vNumbMoreThanOne radix) with (precision := precision);
auto with zarith.
unfold FtoRradix in |- *;
rewrite <- (FnormalizeCorrect _ radixMoreThanOne b precision r).
rewrite <- (Fabs_correct radix); auto with arith.
apply FnormalBoundAbs; auto with zarith.
unfold Fulp, FtoRradix, FtoR in |- *; simpl in |- *.
apply
trans_eq
with
(pPred (vNum b) * / pPred (vNum b) *
(radix * powerRZ radix (Zpred (Fexp (Fnormalize radix b precision r)))))%R;
[ ring | idtac ]; auto.
rewrite Rinv_r; auto with real arith.
rewrite <- powerRZ_Zs; auto with real.
cut (forall r : Z, Zsucc (Zpred r) = r);
[ intros Er; rewrite Er | intros r'; unfold Zsucc, Zpred in |- * ];
ring.
apply Rlt_dichotomy_converse; right; red in |- *.
replace 0%R with (IZR 0); cut (1 < radix)%Z; auto with real zarith.
apply Rlt_dichotomy_converse; right; red in |- *.
replace 0%R with (IZR 0); auto with real zarith.
unfold pPred in |- *; apply Rlt_IZR; apply Zlt_succ_pred; simpl in |- *.
apply vNumbMoreThanOne with (radix := radix) (precision := precision);
auto with real arith.
Qed.
Theorem plusErrorBound1bis :
forall p q r : float,
Fbounded b p ->
Fbounded b q ->
Closest b radix (p + q) r ->
~ is_Fzero r ->
(Rabs (r - (p + q)) <= Rabs r * / 2%nat * (radix * / Zpos (vNum b)))%R.
intros p q r H' H'0 H'1 H'2.
cut (Fcanonic radix b (Fnormalize radix b precision r));
[ intros tmp; Casec tmp; intros Fs | idtac ].
3: apply FnormalizeCanonic; auto with arith.
3: apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
3: apply ClosestRoundedModeP with (precision := precision); auto.
2: rewrite <- (plusExact1 p q (Fnormalize radix b precision r)); auto.
2: unfold FtoRradix in |- *; rewrite FnormalizeCorrect; auto.
2: replace (FtoR radix r - FtoR radix r)%R with 0%R; [ idtac | ring ].
2: rewrite Rabs_R0.
2: replace 0%R with (0 * (radix * / Zpos (vNum b)))%R;
[ apply Rmult_le_compat_r | ring ]; auto with real zarith.
2: replace 0%R with (0 * / Zpos (vNum b))%R;
[ apply Rmult_le_compat_r | ring ]; auto with real zarith.
2: replace 0%R with (0 * / 2%nat)%R; [ apply Rmult_le_compat_r | ring ];
auto with real zarith.
2: apply (ClosestCompatible b radix (p + q)%R (p + q)%R r); auto.
2: apply sym_eq; apply FnormalizeCorrect; auto.
2: apply FnormalizeBounded; auto with arith.
2: apply
RoundedModeBounded
with (radix := radix) (P := Closest b radix) (r := (p + q)%R);
auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
2: replace (Fexp (Fnormalize radix b precision r)) with (- dExp b)%Z.
2: unfold Zmin in |- *; case (Fexp p ?= Fexp q)%Z; intuition.
2: case Fs; intros H1 (H2, H3); auto.
apply Rle_trans with (/ 2%nat * Fulp b radix precision r)%R.
replace (Rabs (FtoRradix r - (FtoRradix p + FtoRradix q))) with
(/ 2%nat * (2%nat * Rabs (FtoRradix r - (FtoRradix p + FtoRradix q))))%R;
[ idtac | rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real ].
apply Rmult_le_compat_l; auto with real.
replace (FtoRradix r - (FtoRradix p + FtoRradix q))%R with
(- (FtoRradix p + FtoRradix q - FtoRradix r))%R;
[ rewrite Rabs_Ropp | ring ].
apply (ClosestUlp b radix); auto.
replace (Rabs r * / 2%nat * (radix * / Zpos (vNum b)))%R with
(/ 2%nat * (Rabs r * (radix * / Zpos (vNum b))))%R;
[ apply Rmult_le_compat_l; auto with real | ring ].
replace (Fulp b radix precision r) with
(Zpos (vNum b) *
FtoR radix (Float 1%nat (Zpred (Fexp (Fnormalize radix b precision r)))) *
(radix * / Zpos (vNum b)))%R.
apply Rmult_le_compat_r.
replace 0%R with (radix * 0)%R; [ apply Rmult_le_compat_l | ring ];
apply Rlt_le; auto with real arith.
apply Rinv_0_lt_compat; replace 0%R with (INR 0); auto with float real arith.
rewrite INR_IZR_INZ; apply Rlt_IZR; simpl in |- *; apply Zlt_1_O;
apply Zlt_le_weak;
apply (vNumbMoreThanOne radix) with (precision := precision);
auto with zarith.
unfold FtoRradix in |- *;
rewrite <- (FnormalizeCorrect _ radixMoreThanOne b precision r).
rewrite <- (Fabs_correct radix); auto with arith.
apply FnormalBoundAbs2 with precision; auto with arith.
unfold Fulp, FtoRradix, FtoR in |- *; simpl in |- *.
apply
trans_eq
with
(nat_of_P (vNum b) * / nat_of_P (vNum b) *
(radix * powerRZ radix (Zpred (Fexp (Fnormalize radix b precision r)))))%R;
[ ring | idtac ]; auto.
rewrite Rinv_r; auto with real arith.
rewrite <- powerRZ_Zs; auto with real zarith.
rewrite <- Zsucc_pred; ring.
Qed.
Theorem plusErrorBound1withZero :
forall p q r : float,
Fbounded b p ->
Fbounded b q ->
Closest b radix (p + q) r ->
(Rabs (r - (p + q)) <= Rabs r * / 2%nat * (radix * / pPred (vNum b)))%R.
intros p q r H H0 H1.
case (Req_dec r 0); intros Hr.
replace (Rabs (r - (p + q))) with (Rabs r * / 2%nat * 0)%R.
apply Rmult_le_compat_l.
replace 0%R with (Rabs r * 0)%R; [ apply Rmult_le_compat_l | ring ];
auto with real arith.
replace 0%R with (radix * 0)%R; [ apply Rmult_le_compat_l | ring ];
auto with real arith.
apply Rlt_le; apply Rinv_0_lt_compat; auto with real arith.
replace 0%R with (IZR 0%nat); auto with real zarith; apply Rlt_IZR.
apply Zle_lt_trans with (nNormMin radix precision).
apply Zlt_le_weak; apply nNormPos; auto with real zarith.
apply nNormMimLtvNum; auto with real zarith.
rewrite <- plusExactR0 with (3 := H1); auto with real zarith.
rewrite Hr; repeat rewrite Rabs_R0 || (rewrite Rminus_diag_eq; auto); ring.
apply Rlt_le; apply plusErrorBound1; auto.
Contradict Hr; unfold FtoRradix in |- *; apply is_Fzero_rep1; auto.
Qed.
Theorem pPredMoreThanOne : (0 < pPred (vNum b))%Z.
unfold pPred in |- *; apply Zlt_succ_pred; simpl in |- *.
apply (vNumbMoreThanOne radix) with (precision := precision);
auto with zarith.
Qed.
Theorem pPredMoreThanRadix : (radix < pPred (vNum b))%Z.
apply Zle_lt_trans with (nNormMin radix precision).
pattern radix at 1 in |- *; rewrite <- (Zpower_nat_1 radix);
unfold nNormMin in |- *; auto with zarith.
apply nNormMimLtvNum; auto with zarith.
Qed.
Theorem RoundBound :
forall x y p : float,
Fbounded b x ->
Fbounded b y ->
Fbounded b p ->
Closest b radix (x + y) p ->
(radix < 2%nat * pPred (vNum b))%Z ->
(Rabs p <=
Rabs (x + y) *
(2%nat * pPred (vNum b) * / (2%nat * pPred (vNum b) - radix)))%R.
intros x y p H H0 H1 H2 H3.
cut (0 < 2%nat * pPred (vNum b))%Z;
[ intros NZ1 | apply Zlt_trans with radix; auto with zarith ].
cut (0 < 2%nat * pPred (vNum b))%R;
[ intros NZ1'
| rewrite INR_IZR_INZ; rewrite <- Rmult_IZR; auto with real zarith ].
cut (radix < 2%nat * pPred (vNum b))%R;
[ intros NZ2
| rewrite INR_IZR_INZ; rewrite <- Rmult_IZR; auto with real zarith ].
replace (Rabs p) with
(Rabs p * ((2%nat * pPred (vNum b) - radix) * / (2%nat * pPred (vNum b))) *
(2%nat * pPred (vNum b) * / (2%nat * pPred (vNum b) - radix)))%R.
2: replace
(Rabs p * ((2%nat * pPred (vNum b) - radix) * / (2%nat * pPred (vNum b))) *
(2%nat * pPred (vNum b) * / (2%nat * pPred (vNum b) - radix)))%R with
(Rabs p *
((2%nat * pPred (vNum b) - radix) * / (2%nat * pPred (vNum b) - radix)) *
(2%nat * pPred (vNum b) * / (2%nat * pPred (vNum b))))%R;
[ idtac | ring ].
2: repeat rewrite Rinv_r; auto with real zarith; try ring.
apply Rmult_le_compat_r.
replace 0%R with (2%nat * pPred (vNum b) * 0)%R;
[ apply Rmult_le_compat_l | ring ]; auto with real zarith.
replace ((2%nat * pPred (vNum b) - radix) * / (2%nat * pPred (vNum b)))%R
with (1 - radix * / (2%nat * pPred (vNum b)))%R.
2: unfold Rminus in |- *; rewrite Rmult_plus_distr_r; rewrite Rinv_r;
auto with real.
replace (Rabs p * (1 - radix * / (2%nat * pPred (vNum b))))%R with
(Rabs p - Rabs p * (radix * / (2%nat * pPred (vNum b))))%R;
[ idtac | ring; ring ].
apply Rplus_le_reg_l with (Rabs p * (radix * / (2%nat * pPred (vNum b))))%R.
replace
(Rabs (FtoRradix p) * (radix * / (2%nat * pPred (vNum b))) +
(Rabs (FtoRradix p) -
Rabs (FtoRradix p) * (radix * / (2%nat * pPred (vNum b)))))%R with
(Rabs p); [ idtac | ring ].
apply Rle_trans with (Rabs (p - (x + y)) + Rabs (x + y))%R.
pattern (FtoRradix p) at 1 in |- *;
replace (FtoRradix p) with (p - (x + y) + (x + y))%R;
[ apply Rabs_triang | ring ].
rewrite (Rplus_comm (Rabs (p - (x + y))) (Rabs (x + y)));
rewrite
(Rplus_comm (Rabs p * (radix * / (2%nat * pPred (vNum b)))) (Rabs (x + y)))
; apply Rplus_le_compat_l.
replace (Rabs p * (radix * / (2%nat * pPred (vNum b))))%R with
(Rabs p * / 2%nat * (radix * / pPred (vNum b)))%R;
[ apply plusErrorBound1withZero | idtac ]; auto.
rewrite (Rinv_mult_distr 2%nat (pPred (vNum b))); auto with real zarith.
ring.
apply NEq_IZRO; auto with real zarith.
generalize pPredMoreThanOne; auto with zarith.
Qed.
Theorem plusExactExp :
forall p q pq : float,
Fbounded b p ->
Fbounded b q ->
Closest b radix (p + q) pq ->
ex
(fun r : float =>
ex
(fun s : float =>
Fbounded b r /\
Fbounded b s /\
s = pq :>R /\
r = (p + q - s)%R :>R /\
Fexp r = Zmin (Fexp p) (Fexp q) :>Z /\
(Fexp r <= Fexp s)%Z /\ (Fexp s <= Zsucc (Zmax (Fexp p) (Fexp q)))%Z)).
intros p q pq H H0 H1.
case (plusExpBound b radix precision) with (P := Closest b radix) (5 := H1);
auto with zarith.
apply (ClosestRoundedModeP b radix precision); auto with zarith.
intros r (H2, (H3, (H4, H5))); fold FtoRradix in H3.
case (Req_dec (p + q - pq) 0); intros Hr.
cut (Fbounded b (Fzero (Zmin (Fexp p) (Fexp q)))); [ intros Fbs | idtac ].
exists (Fzero (Zmin (Fexp p) (Fexp q))); exists r; repeat (split; auto).
rewrite (FzeroisReallyZero radix); rewrite <- Hr; rewrite <- H3; auto.
case (Zmin_or (Fexp p) (Fexp q)); intros Hz; rewrite Hz;
apply FboundedZeroSameExp; auto.
case (errorBoundedPlus p q pq); auto.
intros error (H6, (H7, H8)).
exists error; exists r; repeat (split; auto).
rewrite H3; auto.
rewrite H8; auto.
Qed.
Theorem plusExactExpCanonic :
forall c d p q : float,
Fbounded b c ->
Fbounded b d ->
Fbounded b p ->
Fbounded b q ->
Closest b radix (c + d) p ->
q = (c + d - p)%R :>R ->
q <> 0%R :>R ->
ex
(fun r : float =>
ex
(fun s : float =>
Fcanonic radix b s /\
Fbounded b r /\
s = p :>R /\
r = (c + d - s)%R :>R /\
Fexp r = Zmin (Fexp c) (Fexp d) :>Z /\
(Fexp r < Fexp s)%Z /\ (Fexp s <= Zsucc (Zmax (Fexp c) (Fexp d)))%Z)).
intros c d p q H H0 H1 H2 H3 H4 H5.
case (plusExactExp c d p); auto.
intros r (s, (H6, (H7, (H8, (H9, (H10, (H11, H12))))))).
exists r; exists (Fnormalize radix b precision s).
repeat (split; auto with float).
apply FnormalizeCanonic; auto with arith.
rewrite <- H8; apply (FnormalizeCorrect radix); auto with zarith.
rewrite (FnormalizeCorrect radix); auto with zarith.
apply
ClosestErrorExpStrict
with (radix := radix) (b := b) (precision := precision) (x := (c + d)%R);
auto with float.
apply FnormalizeBounded; auto with arith.
apply (ClosestCompatible b radix (c + d)%R (c + d)%R p); auto.
rewrite (FnormalizeCorrect radix); auto with zarith.
apply FnormalizeBounded; auto with arith.
rewrite (FnormalizeCorrect radix); auto with zarith.
fold FtoRradix in |- *; rewrite H9; rewrite H8; rewrite <- H4; auto.
apply Zle_trans with (Fexp s); auto.
apply FcanonicLeastExp with radix b precision; auto with arith.
apply sym_eq; apply FnormalizeCorrect; auto with real.
apply FnormalizeCanonic; auto with arith.
Qed.
End ClosestP.
|