1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
|
(****************************************************************************
IEEE754 : ClosestProp
Laurent Thery, Sylvie Boldo
******************************************************************************)
Require Export FroundProp.
Require Export Closest.
Section Fclosestp2.
Variable b : Fbound.
Variable radix : Z.
Variable precision : nat.
Let FtoRradix := FtoR radix.
Coercion FtoRradix : float >-> R.
Hypothesis radixMoreThanOne : (1 < radix)%Z.
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ radixMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum b) = Zpower_nat radix precision.
Theorem ClosestOpp :
forall (p : float) (r : R),
Closest b radix r p -> Closest b radix (- r) (Fopp p).
intros p r H'; split.
apply oppBounded; auto.
case H'; auto.
intros f H'0.
rewrite Fopp_correct.
replace (- FtoR radix p - - r)%R with (- (FtoR radix p - r))%R;
[ idtac | ring ].
replace (FtoR radix f - - r)%R with (- (- FtoR radix f - r))%R;
[ idtac | ring ].
rewrite <- Fopp_correct.
repeat rewrite Rabs_Ropp.
case H'; auto with float.
Qed.
Theorem ClosestFabs :
forall (p : float) (r : R),
Closest b radix r p -> Closest b radix (Rabs r) (Fabs p).
intros p r H'; case (Rle_or_lt 0 r); intros Rl0.
rewrite Rabs_right; auto with real.
replace (Fabs p) with p; auto.
unfold Fabs in |- *; apply floatEq; simpl in |- *; auto.
cut (0 <= Fnum p)%Z.
case (Fnum p); simpl in |- *; auto; intros p' H0.
absurd ((0 <= Zneg p')%Z); trivial.
apply Zlt_not_le; red in |- *; simpl in |- *; auto with zarith.
apply LeR0Fnum with (radix := radix); auto.
apply
RleRoundedR0
with (b := b) (precision := precision) (P := Closest b radix) (r := r);
auto.
apply ClosestRoundedModeP with (precision := precision); auto with real.
rewrite Faux.Rabsolu_left1; auto.
replace (Fabs p) with (Fopp p).
apply ClosestOpp; auto.
unfold Fabs in |- *; apply floatEq; simpl in |- *; auto.
cut (Fnum p <= 0)%Z.
case (Fnum p); simpl in |- *; auto; intros p' H0.
absurd (Zpos p' <= 0)%Z; trivial.
apply Zlt_not_le; red in |- *; simpl in |- *; auto with zarith.
apply R0LeFnum with (radix := radix); auto.
apply
RleRoundedLessR0
with (b := b) (precision := precision) (P := Closest b radix) (r := r);
auto.
apply ClosestRoundedModeP with (precision := precision); auto.
apply Rlt_le; auto.
apply Rlt_le; auto.
Qed.
Theorem ClosestUlp :
forall (p : R) (q : float),
Closest b radix p q -> (2%nat * Rabs (p - q) <= Fulp b radix precision q)%R.
intros p q H'.
case (Req_dec p q); intros Eqpq.
rewrite Eqpq.
replace (Rabs (q - q)) with 0%R;
[ rewrite Rmult_0_r
| replace (q - q)%R with 0%R; try ring; rewrite Rabs_right; auto with real ].
unfold Fulp in |- *; apply Rlt_le; auto with real arith.
replace (2%nat * Rabs (p - q))%R with (Rabs (p - q) + Rabs (p - q))%R;
[ idtac | simpl in |- *; ring ].
case ClosestMinOrMax with (1 := H'); intros H'1.
apply Rle_trans with (Rabs (p - q) + Rabs (FNSucc b radix precision q - p))%R.
apply Rplus_le_compat_l.
rewrite <- (Rabs_Ropp (p - q)).
rewrite Ropp_minus_distr.
elim H'; auto.
intros H'0 H'2; apply H'2; auto.
apply FcanonicBound with (radix := radix); auto with float arith.
rewrite Rabs_right.
rewrite Rabs_right.
replace (p - q + (FNSucc b radix precision q - p))%R with
(FNSucc b radix precision q - q)%R; [ idtac | ring ].
unfold FtoRradix in |- *; apply FulpSuc; auto.
case H'1; auto.
apply Rge_minus; apply Rle_ge; auto with real float.
case MinMax with (3 := pGivesBound) (r := p) (p := q); auto with arith.
intros H'0 H'2; elim H'2; intros H'3 H'4; apply H'3; clear H'2; auto.
apply Rge_minus; apply Rle_ge; auto with real float.
apply isMin_inv1 with (1 := H'1).
apply Rle_trans with (Rabs (p - q) + Rabs (p - FNPred b radix precision q))%R.
apply Rplus_le_compat_l.
rewrite <- (Rabs_Ropp (p - q));
rewrite <- (Rabs_Ropp (p - FNPred b radix precision q)).
repeat rewrite Ropp_minus_distr.
elim H'; auto.
intros H'0 H'2; apply H'2; auto.
apply FcanonicBound with (radix := radix); auto with float arith.
rewrite <- (Rabs_Ropp (p - q)); rewrite Ropp_minus_distr.
rewrite Rabs_right.
rewrite Rabs_right.
replace (q - p + (p - FNPred b radix precision q))%R with
(q - FNPred b radix precision q)%R; [ idtac | ring ].
unfold FtoRradix in |- *; apply FulpPred; auto.
case H'1; auto.
apply Rge_minus; apply Rle_ge; auto with real float.
case MaxMin with (3 := pGivesBound) (r := p) (p := q); auto with arith.
intros H'0 H'2; elim H'2; intros H'3 H'4; apply H'3; clear H'2; auto.
apply Rge_minus; apply Rle_ge; auto with real float.
apply isMax_inv1 with (1 := H'1).
Qed.
Theorem ClosestExp :
forall (p : R) (q : float),
Closest b radix p q -> (2%nat * Rabs (p - q) <= powerRZ radix (Fexp q))%R.
intros p q H'.
apply Rle_trans with (Fulp b radix precision q).
apply (ClosestUlp p q); auto.
replace (powerRZ radix (Fexp q)) with (FtoRradix (Float 1%nat (Fexp q))).
apply (FulpLe b radix); auto.
apply
RoundedModeBounded with (radix := radix) (P := Closest b radix) (r := p);
auto.
apply ClosestRoundedModeP with (precision := precision); auto.
unfold FtoRradix, FtoR in |- *; simpl in |- *.
ring.
Qed.
Theorem ClosestErrorExpStrict :
forall (p q : float) (x : R),
Fbounded b p ->
Fbounded b q ->
Closest b radix x p ->
q = (x - p)%R :>R -> q <> 0%R :>R -> (Fexp q < Fexp p)%Z.
intros.
case (Zle_or_lt (Fexp p) (Fexp q)); auto; intros Z1.
absurd (powerRZ radix (Fexp p) <= powerRZ radix (Fexp q))%R.
2: apply Rle_powerRZ; auto with real arith.
apply Rgt_not_le.
red in |- *; apply Rlt_le_trans with (2%nat * powerRZ radix (Fexp q))%R.
apply Rltdouble; auto with real arith.
apply Rle_trans with (2%nat * Fabs q)%R.
apply Rmult_le_compat_l; auto with real arith.
replace 0%R with (INR 0); auto with real arith.
replace (powerRZ radix (Fexp q)) with (FtoRradix (Float 1%nat (Fexp q)));
auto.
apply (Fop.RleFexpFabs radix); auto with real zarith.
unfold FtoRradix, FtoR in |- *; simpl in |- *; ring.
rewrite (Fabs_correct radix); auto with arith.
replace (FtoR radix q) with (x - p)%R; auto.
apply ClosestExp; auto.
Qed.
Theorem ClosestIdem :
forall p q : float, Fbounded b p -> Closest b radix p q -> p = q :>R.
intros p q H' H'0.
case (Rabs_pos (q - p)); intros H1.
Contradict H1; apply Rle_not_lt.
replace 0%R with (Rabs (p - p)); [ case H'0; auto | idtac ].
replace (p - p)%R with 0%R; [ apply Rabs_R0; auto | ring ].
apply Rplus_eq_reg_l with (r := (- p)%R).
apply trans_eq with 0%R; [ ring | idtac ].
apply trans_eq with (q - p)%R; [ idtac | ring ].
generalize H1; unfold Rabs in |- *; case (Rcase_abs (q - p)); auto.
intros r H0; replace 0%R with (-0)%R; [ rewrite H0 | idtac ]; ring.
Qed.
Theorem ClosestM1 :
forall (r1 r2 : R) (min max p q : float),
isMin b radix r1 min ->
isMax b radix r1 max ->
(min + max < 2%nat * r2)%R ->
Closest b radix r1 p -> Closest b radix r2 q -> (p <= q)%R.
intros r1 r2 min max p q H' H'0 H'1 H'2 H'3.
case (Rle_or_lt r2 max); intros H'4.
2: apply (ClosestMonotone b radix) with (p := r1) (q := r2); auto.
2: apply Rle_lt_trans with (FtoRradix max); auto.
2: apply isMax_inv1 with (1 := H'0).
case H'4; clear H'4; intros H'4.
2: replace (FtoRradix q) with (FtoRradix max).
2: case ClosestMinOrMax with (1 := H'2); intros H'5.
2: replace (FtoRradix p) with (FtoRradix min).
2: apply Rle_trans with r1.
2: apply isMin_inv1 with (1 := H').
2: apply isMax_inv1 with (1 := H'0).
2: apply MinEq with (1 := H'); auto.
2: replace (FtoRradix p) with (FtoRradix max); auto with real.
2: apply MaxEq with (1 := H'0); auto.
2: apply ClosestIdem; auto.
2: case H'0; auto.
2: rewrite <- H'4; auto.
cut (min < r2)%R.
2: apply Rmult_lt_reg_l with (r := INR 2); auto with real.
2: replace (2%nat * min)%R with (min + min)%R;
[ idtac | simpl in |- *; ring ].
2: apply Rle_lt_trans with (2 := H'1).
2: apply Rplus_le_compat_l; auto with real.
2: apply Rle_trans with r1.
2: apply isMin_inv1 with (1 := H').
2: apply isMax_inv1 with (1 := H'0).
intros H'5.
replace (FtoRradix q) with (FtoRradix max).
case ClosestMinOrMax with (1 := H'2); intros H'6.
replace (FtoRradix p) with (FtoRradix min).
apply Rle_trans with r1.
apply isMin_inv1 with (1 := H').
apply isMax_inv1 with (1 := H'0).
apply MinEq with (1 := H'); auto.
replace (FtoRradix p) with (FtoRradix max); auto with real.
apply MaxEq with (1 := H'0); auto.
apply sym_eq.
apply (ClosestMaxEq b radix) with (r := r2) (min := min); auto.
apply isMinComp with (2 := H'0); auto.
apply isMaxComp with (1 := H'); auto.
Qed.
Theorem FmultRadixInv :
forall (x z : float) (y : R),
Fbounded b x ->
Closest b radix y z -> (/ 2%nat * x < y)%R -> (/ 2%nat * x <= z)%R.
intros x z y H' H'0 H'1.
case MinEx with (r := (/ 2%nat * x)%R) (3 := pGivesBound); auto with arith.
intros min isMin.
case MaxEx with (r := (/ 2%nat * x)%R) (3 := pGivesBound); auto with arith.
intros max isMax.
case (Rle_or_lt y max); intros Rl1.
case Rl1; clear Rl1; intros Rl1.
replace (FtoRradix z) with (FtoRradix max).
apply isMax_inv1 with (1 := isMax).
apply sym_eq.
unfold FtoRradix in |- *;
apply ClosestMaxEq with (b := b) (r := y) (min := min);
auto.
apply isMinComp with (r1 := (/ 2%nat * x)%R) (max := max); auto.
apply Rle_lt_trans with (2 := H'1); auto.
apply isMin_inv1 with (1 := isMin).
apply isMaxComp with (r1 := (/ 2%nat * x)%R) (min := min); auto.
apply Rle_lt_trans with (2 := H'1); auto.
apply isMin_inv1 with (1 := isMin).
replace (FtoR radix min + FtoR radix max)%R with (FtoRradix x).
apply Rmult_lt_reg_l with (r := (/ 2%nat)%R); auto with real.
rewrite <- Rmult_assoc; rewrite Rinv_l; try rewrite Rmult_1_l; auto with real.
unfold FtoRradix in |- *; apply (div2IsBetween b radix precision); auto.
cut (Closest b radix max z); [ intros C0 | idtac ].
replace (FtoRradix z) with (FtoRradix max); auto.
rewrite <- Rl1; auto.
apply Rlt_le; auto.
apply ClosestIdem; auto.
case isMax; auto.
apply (ClosestCompatible b radix y max z z); auto.
case H'0; auto.
apply Rle_trans with (FtoRradix max); auto.
apply isMax_inv1 with (1 := isMax).
apply (ClosestMonotone b radix (FtoRradix max) y); auto.
apply (RoundedModeProjectorIdem b radix (Closest b radix)); auto.
apply ClosestRoundedModeP with (precision := precision); auto.
case isMax; auto.
Qed.
Theorem ClosestErrorBound :
forall (p q : float) (x : R),
Fbounded b p ->
Closest b radix x p ->
q = (x - p)%R :>R -> (Rabs q <= Float 1%nat (Fexp p) * / 2%nat)%R.
intros p q x H H0 H1.
apply Rle_trans with (Fulp b radix precision p * / 2%nat)%R.
rewrite H1.
replace (Rabs (x - p)) with (2%nat * Rabs (x - p) * / 2%nat)%R;
[ idtac | field; auto with real ].
apply Rmult_le_compat_r; auto with real.
apply ClosestUlp; auto.
apply Rmult_le_compat_r.
apply Rlt_le.
apply Rinv_0_lt_compat; auto with real.
unfold FtoRradix in |- *; apply FulpLe; auto.
Qed.
Theorem ClosestErrorExp :
forall (p q : float) (x : R),
Fbounded b p ->
Fbounded b q ->
Closest b radix x p ->
q = (x - p)%R :>R ->
exists error : float,
Fbounded b error /\
error = q :>R /\ (Fexp error <= Zmax (Fexp p - precision) (- dExp b))%Z.
intros p q x H H0 H1 H2; exists (Fnormalize radix b precision q).
cut (Fcanonic radix b (Fnormalize radix b precision q));
[ intros C1 | apply FnormalizeCanonic; auto with arith ].
split.
apply FcanonicBound with (radix := radix); auto.
split.
apply (FnormalizeCorrect radix); auto.
case C1; intros C2.
apply Zle_trans with (Fexp p - precision)%Z; auto with zarith.
apply Zplus_le_reg_l with (Z_of_nat precision).
replace (precision + (Fexp p - precision))%Z with (Fexp p); [ idtac | ring ].
replace (precision + Fexp (Fnormalize radix b precision q))%Z with
(Zsucc (Zpred precision + Fexp (Fnormalize radix b precision q)));
[ idtac | unfold Zpred, Zsucc in |- *; ring ].
apply Zlt_le_succ.
apply Zlt_powerRZ with (IZR radix); auto with real zarith.
rewrite powerRZ_add; auto with real zarith.
apply
Rle_lt_trans
with
(Zabs (Fnum (Fnormalize radix b precision q)) *
powerRZ radix (Fexp (Fnormalize radix b precision q)))%R.
apply Rmult_le_compat_r; auto with real zarith.
replace (Zpred precision) with
(Z_of_nat (pred (digit radix (Fnum (Fnormalize radix b precision q))))).
rewrite <- Zpower_nat_Z_powerRZ.
apply Rle_IZR; apply digitLess; auto with real zarith.
change (~ is_Fzero (Fnormalize radix b precision q)) in |- *;
apply (FnormalNotZero radix b); auto with float.
change
(Z_of_nat (pred (Fdigit radix (Fnormalize radix b precision q))) =
Zpred precision) in |- *.
rewrite FnormalPrecision with (precision := precision) (4 := C2);
auto with zarith arith.
apply inj_pred; auto with arith.
change (Fabs (Fnormalize radix b precision q) < powerRZ radix (Fexp p))%R
in |- *.
rewrite (Fabs_correct radix); auto; rewrite (FnormalizeCorrect radix); auto.
apply Rle_lt_trans with (Float 1%nat (Fexp p) * / 2%nat)%R.
apply ClosestErrorBound with (x := x); auto.
unfold FtoRradix in |- *; unfold FtoR in |- *; simpl in |- *.
pattern (powerRZ radix (Fexp p)) at 2 in |- *;
replace (powerRZ radix (Fexp p)) with (powerRZ radix (Fexp p) * 1)%R;
[ idtac | ring ].
replace (1 * powerRZ radix (Fexp p))%R with (powerRZ radix (Fexp p));
[ apply Rmult_lt_compat_l | ring ].
apply powerRZ_lt; auto with arith real.
pattern 1%R at 3 in |- *; replace 1%R with (/ 1)%R.
apply Rinv_1_lt_contravar; auto with real.
replace 2%R with (INR 2); auto with real arith.
apply Zle_trans with (- dExp b)%Z; auto with float zarith.
case C2.
intros H3 (H4, H5); rewrite H4; auto with zarith.
Qed.
Theorem ClosestErrorBoundNormal_aux :
forall (x : R) (p : float),
Closest b radix x p ->
Fnormal radix b (Fnormalize radix b precision p) ->
(Rabs (x - p) <= Rabs p * (/ 2%nat * (radix * / Zpos (vNum b))))%R.
intros x p H H'.
apply Rle_trans with (/ 2%nat * Fulp b radix precision p)%R.
replace (Rabs (x - FtoRradix p)) with
(/ 2%nat * (2%nat * Rabs (x - FtoRradix p)))%R.
apply Rmult_le_compat_l; auto with real.
apply ClosestUlp; auto.
rewrite <- Rmult_assoc; rewrite Rinv_l; simpl in |- *; auto with real.
apply
Rle_trans with (/ 2%nat * (Rabs p * (radix * / Zpos (vNum b))))%R;
[ apply Rmult_le_compat_l | right; ring; ring ].
apply Rlt_le; apply Rinv_0_lt_compat; auto with real arith.
unfold Fulp in |- *.
replace (Fexp (Fnormalize radix b precision p)) with
(Fexp (Fnormalize radix b precision p) + precision + - precision)%Z;
[ idtac | ring ].
rewrite powerRZ_add; auto with real zarith.
apply Rle_trans with (Rabs p * radix * powerRZ radix (- precision))%R;
[ apply Rmult_le_compat_r | right ]; auto with real zarith.
2: rewrite pGivesBound; simpl in |- *.
2: rewrite powerRZ_Zopp; auto with real zarith; rewrite Zpower_nat_Z_powerRZ;
auto with real zarith; ring.
replace (FtoRradix p) with (FtoRradix (Fnormalize radix b precision p));
[ idtac | apply (FnormalizeCorrect radix) ]; auto.
rewrite <- (Fabs_correct radix); unfold FtoR in |- *; simpl in |- *;
auto with arith.
rewrite powerRZ_add; auto with real zarith.
replace
(Zabs (Fnum (Fnormalize radix b precision p)) *
powerRZ radix (Fexp (Fnormalize radix b precision p)) * radix)%R with
(powerRZ radix (Fexp (Fnormalize radix b precision p)) *
(Zabs (Fnum (Fnormalize radix b precision p)) * radix))%R;
[ idtac | ring ].
apply Rmult_le_compat_l; auto with arith real.
rewrite <- Zpower_nat_Z_powerRZ; auto with real zarith.
rewrite <- Rmult_IZR; apply Rle_IZR.
rewrite <- pGivesBound; pattern radix at 2 in |- *;
rewrite <- (Zabs_eq radix); auto with zarith.
rewrite <- Zabs_Zmult.
rewrite Zmult_comm; elim H'; auto.
Qed.
Theorem ClosestErrorBound2 :
forall (x : R) (p : float),
Closest b radix x p ->
(Rabs (x - p) <=
Rmax (Rabs p * (/ 2%nat * (radix * / Zpos (vNum b))))
(/ 2%nat * powerRZ radix (- dExp b)))%R.
intros x p H.
cut (Fcanonic radix b (Fnormalize radix b precision p));
[ intros tmp; Casec tmp; intros Fs | idtac ].
3: apply FnormalizeCanonic; auto with arith.
3: apply
RoundedModeBounded with (radix := radix) (P := Closest b radix) (r := x);
auto.
3: apply ClosestRoundedModeP with (precision := precision); auto.
apply
Rle_trans with (Rabs p * (/ 2%nat * (radix * / Zpos (vNum b))))%R;
[ idtac | apply RmaxLess1 ].
apply ClosestErrorBoundNormal_aux; auto.
apply Rle_trans with (/ 2%nat * Fulp b radix precision p)%R.
replace (Rabs (x - FtoRradix p)) with
(/ 2%nat * (2%nat * Rabs (x - FtoRradix p)))%R.
apply Rmult_le_compat_l; auto with real.
apply ClosestUlp; auto.
rewrite <- Rmult_assoc; rewrite Rinv_l; simpl in |- *; auto with real.
elim Fs; intros H1 H2; elim H2; intros; clear H2.
unfold Fulp in |- *; rewrite H0; apply RmaxLess2.
Qed.
Theorem ClosestErrorBoundNormal :
forall (x : R) (p : float),
Closest b radix x p ->
Fnormal radix b (Fnormalize radix b precision p) ->
(Rabs (x - p) <= Rabs p * (/ 2%nat * powerRZ radix (Zsucc (- precision))))%R.
intros x p H H1.
apply
Rle_trans
with (Rabs (FtoRradix p) * (/ 2%nat * (radix * / Zpos (vNum b))))%R;
[ apply ClosestErrorBoundNormal_aux; auto | right ].
replace (powerRZ radix (Zsucc (- precision))) with
(radix * / Zpos (vNum b))%R; auto with real.
rewrite pGivesBound; rewrite Zpower_nat_Z_powerRZ.
rewrite Rinv_powerRZ; auto with real zarith.
rewrite powerRZ_Zs; auto with real zarith.
Qed.
Theorem ClosestPropHigham25 :
forall (x : R) (p : float),
Closest b radix x p ->
exists delta : R,
(exists nu : R,
(x / (1 + delta) + nu)%R = FtoRradix p /\
(Rabs delta <= / 2%nat * powerRZ radix (Zsucc (- precision)))%R /\
(Rabs nu <= / 2%nat * powerRZ radix (- dExp b))%R /\
(delta * nu)%R = 0%R /\
(Fnormal radix b (Fnormalize radix b precision p) -> nu = 0%R) /\
(Fsubnormal radix b (Fnormalize radix b precision p) -> delta = 0%R)).
intros x p H.
cut (Fcanonic radix b (Fnormalize radix b precision p));
[ intros tmp; Casec tmp; intros Fs | idtac ].
3: apply FnormalizeCanonic; auto with arith.
3: apply
RoundedModeBounded with (radix := radix) (P := Closest b radix) (r := x);
auto.
3: apply ClosestRoundedModeP with (precision := precision); auto.
cut (~ is_Fzero (Fnormalize radix b precision p));
[ unfold is_Fzero in |- *; intros tmp
| apply FnormalNotZero with radix b; auto ].
cut (FtoRradix p <> 0%R); [ intros H1; clear tmp | unfold FtoRradix in |- * ].
2: rewrite <- FnormalizeCorrect with radix b precision p; auto;
unfold FtoR in |- *; simpl in |- *.
2: apply Rmult_integral_contrapositive; split; auto with real zarith.
exists ((x - p) / p)%R; exists 0%R.
split; [ case (Req_dec x 0); intros H2 | idtac ].
repeat rewrite H2; unfold Rdiv in |- *.
ring_simplify.
rewrite <- FzeroisZero with radix b; unfold FtoRradix in |- *.
cut (ProjectorP b radix (Closest b radix));
[ unfold ProjectorP in |- *; intros H3
| apply RoundedProjector; auto with float ].
apply H3; auto with float zarith.
replace (FtoR radix (Fzero (- dExp b))) with x; auto with real.
rewrite H2; unfold Fzero, FtoR in |- *; simpl in |- *; ring.
apply ClosestRoundedModeP with precision; auto with zarith.
apply sym_eq; apply trans_eq with (x / (1 + (x - p) / p))%R; [ idtac | ring ].
replace (1 + (x - FtoRradix p) / FtoRradix p)%R with (x / p)%R;
unfold Rdiv in |- *.
rewrite Rinv_mult_distr; auto with real; rewrite Rinv_involutive; auto;
rewrite <- Rmult_assoc; rewrite Rinv_r; auto with real.
ring_simplify; rewrite Rinv_l; auto with real; ring.
split.
apply Rmult_le_reg_l with (Rabs p); [ apply Rabs_pos_lt; auto | idtac ].
apply Rle_trans with (Rabs (x - FtoRradix p));
[ right | apply ClosestErrorBoundNormal; auto ].
unfold Rdiv in |- *; rewrite Rabs_mult; rewrite Rabs_Rinv; auto.
rewrite Rmult_comm; rewrite Rmult_assoc; rewrite Rinv_l; auto with real.
apply Rabs_no_R0; exact H1.
split; [ rewrite Rabs_R0; apply Rmult_le_pos; auto with real zarith | idtac ].
split; [ ring | idtac ].
split; [ auto with real | intros H2 ].
absurd
(Fnormal radix b (Fnormalize radix b precision p) /\
Fsubnormal radix b (Fnormalize radix b precision p)).
apply NormalNotSubNormal; auto.
split; auto.
exists 0%R; exists (p - x)%R.
split; [ unfold Rdiv in |- *; ring_simplify (1 + 0)%R; rewrite Rinv_1; ring | idtac ].
split; [ rewrite Rabs_R0; apply Rmult_le_pos; auto with real zarith | idtac ].
split.
apply Rle_trans with (/ 2%nat * Fulp b radix precision p)%R.
rewrite <- Rabs_Ropp;
replace (- (FtoRradix p - x))%R with (x - FtoRradix p)%R;
[ idtac | ring ].
replace (Rabs (x - FtoRradix p)) with
(/ 2%nat * (2%nat * Rabs (x - FtoRradix p)))%R.
apply Rmult_le_compat_l; auto with real; apply ClosestUlp; auto.
rewrite <- Rmult_assoc; rewrite Rinv_l; simpl in |- *; auto with real.
elim Fs; intros H1 H2; elim H2; intros; clear H2.
unfold Fulp in |- *; rewrite H0; auto with real.
split; [ ring | idtac ].
split; [ intros H2 | auto with real ].
absurd
(Fnormal radix b (Fnormalize radix b precision p) /\
Fsubnormal radix b (Fnormalize radix b precision p)).
apply NormalNotSubNormal; auto.
split; auto.
Qed.
Theorem FpredUlpPos :
forall x : float,
Fcanonic radix b x ->
(0 < x)%R ->
(FPred b radix precision x +
Fulp b radix precision (FPred b radix precision x))%R = x.
intros x Hx H.
apply sym_eq;
apply Rplus_eq_reg_l with (- FtoRradix (FPred b radix precision x))%R.
apply trans_eq with (Fulp b radix precision (FPred b radix precision x));
[ idtac | ring ].
apply trans_eq with (FtoRradix x - FtoRradix (FPred b radix precision x))%R;
[ ring | idtac ].
unfold FtoRradix in |- *; rewrite <- Fminus_correct; auto with zarith;
fold FtoRradix in |- *.
pattern x at 1 in |- *;
replace x with (FSucc b radix precision (FPred b radix precision x));
[ idtac | apply FSucPred; auto with zarith arith ].
unfold FtoRradix in |- *; apply FSuccUlpPos; auto with zarith arith.
apply FPredCanonic; auto with zarith arith.
apply R0RltRlePred; auto with zarith arith real.
Qed.
Theorem FulpFPredLe :
forall f : float,
Fbounded b f ->
Fcanonic radix b f ->
(Fulp b radix precision f <=
radix * Fulp b radix precision (FPred b radix precision f))%R.
intros f Hf1 Hf2; unfold Fulp in |- *.
replace (Fnormalize radix b precision f) with f;
[ idtac
| apply
FcanonicUnique with (radix := radix) (b := b) (precision := precision);
auto with float arith zarith ].
2: apply sym_eq; apply FnormalizeCorrect; auto with arith zarith.
replace (Fnormalize radix b precision (FPred b radix precision f)) with
(FPred b radix precision f);
[ idtac
| apply
FcanonicUnique with (radix := radix) (b := b) (precision := precision);
auto with float arith zarith ].
2: apply sym_eq; apply FnormalizeCorrect; auto with arith zarith.
pattern (IZR radix) at 2 in |- *; replace (IZR radix) with (powerRZ radix 1);
[ idtac | simpl in |- *; auto with arith zarith real ].
rewrite <- powerRZ_add; auto with zarith real.
apply Rle_powerRZ; auto with zarith real.
replace (1 + Fexp (FPred b radix precision f))%Z with
(Zsucc (Fexp (FPred b radix precision f))); auto with zarith.
unfold FPred in |- *.
generalize (Z_eq_bool_correct (Fnum f) (- pPred (vNum b)));
case (Z_eq_bool (Fnum f) (- pPred (vNum b))); intros H1;
[ simpl in |- *; auto with zarith | idtac ].
generalize (Z_eq_bool_correct (Fnum f) (nNormMin radix precision));
case (Z_eq_bool (Fnum f) (nNormMin radix precision));
intros H2; [ idtac | simpl in |- *; auto with zarith ].
generalize (Z_eq_bool_correct (Fexp f) (- dExp b));
case (Z_eq_bool (Fexp f) (- dExp b)); intros H3; simpl in |- *;
auto with zarith.
Qed.
Theorem ClosestErrorBoundNormal2_aux :
forall (x : R) (p : float),
Closest b radix x p ->
Fnormal radix b p ->
Fnormal radix b (Fnormalize radix b precision (FPred b radix precision p)) ->
(0 < x)%R ->
(x < p)%R ->
(Rabs (x - p) <= Rabs x * (/ 2%nat * powerRZ radix (Zsucc (- precision))))%R.
intros x p H1 H2 H0 H3 H4.
cut (Fcanonic radix b p); [ intros H5 | left; auto ].
cut (Fbounded b p); [ intros H6 | elim H2; auto ].
cut (0 < p)%R; [ intros H7 | apply Rlt_trans with x; auto ].
cut (FPred b radix precision p < x)%R; [ intros H' | idtac ].
apply
Rle_trans
with (/ 2%nat * Fulp b radix precision (FPred b radix precision p))%R.
case
(Rle_or_lt (Rabs (x - FtoRradix p))
(/ 2%nat * Fulp b radix precision (FPred b radix precision p)));
auto; intros H8.
absurd (Rabs (p - x) <= Rabs (FPred b radix precision p - x))%R.
2: generalize H1; unfold Closest in |- *; intros H9; elim H9; intros tmp H10.
2: clear tmp; apply H10; auto with float zarith arith.
apply Rlt_not_le; rewrite Rabs_left; auto with real.
apply Rle_lt_trans with (p - FPred b radix precision p + (x - p))%R;
[ right; ring | idtac ].
pattern (FtoRradix p) at 1 in |- *; rewrite <- FpredUlpPos with p;
auto with real.
apply
Rle_lt_trans
with (Fulp b radix precision (FPred b radix precision p) + (x - p))%R;
[ right; ring | idtac ].
apply
Rle_lt_trans
with
(Fulp b radix precision (FPred b radix precision p) +
- (/ 2%nat * Fulp b radix precision (FPred b radix precision p)))%R;
[ apply Rplus_le_compat_l | idtac ].
apply Ropp_le_cancel; rewrite Ropp_involutive; rewrite <- Rabs_left;
auto with real.
apply
Rle_lt_trans
with (/ 2%nat * Fulp b radix precision (FPred b radix precision p))%R.
right;
apply
trans_eq
with
((1 + - / 2%nat) * Fulp b radix precision (FPred b radix precision p))%R;
[ ring | idtac ].
replace (1 + - / 2%nat)%R with (/ 2%nat)%R;
[ ring | simpl; field; auto with arith real; simpl in |- *; ring ].
rewrite <- Rabs_Ropp; replace (- (FtoRradix p - x))%R with (x - p)%R; auto;
ring.
apply
Rle_trans with (/ 2%nat * (Rabs x * powerRZ radix (Zsucc (- precision))))%R;
[ apply Rmult_le_compat_l; auto with real arith | right; ring ].
apply
Rle_trans
with
(Rabs (FPred b radix precision p) * powerRZ radix (Zsucc (- precision)))%R.
unfold Fulp in |- *;
replace (Fexp (Fnormalize radix b precision (FPred b radix precision p)))
with
(Fexp (Fnormalize radix b precision (FPred b radix precision p)) +
precision + - precision)%Z; [ idtac | ring ].
rewrite powerRZ_add; auto with real zarith.
apply
Rle_trans
with
(Rabs (FPred b radix precision p) * radix * powerRZ radix (- precision))%R;
[ apply Rmult_le_compat_r | right ]; auto with real zarith.
2: rewrite powerRZ_Zs; auto with real zarith; ring.
replace (FtoRradix (FPred b radix precision p)) with
(FtoRradix (Fnormalize radix b precision (FPred b radix precision p)));
[ idtac | apply (FnormalizeCorrect radix) ]; auto.
rewrite <- (Fabs_correct radix); unfold FtoR in |- *; simpl in |- *;
auto with arith.
rewrite powerRZ_add; auto with real zarith.
apply
Rle_trans
with
(powerRZ radix
(Fexp (Fnormalize radix b precision (FPred b radix precision p))) *
(Zabs (Fnum (Fnormalize radix b precision (FPred b radix precision p))) *
radix))%R; [ idtac | right; ring ].
apply Rmult_le_compat_l; auto with arith real.
rewrite <- Zpower_nat_Z_powerRZ; auto with real zarith; rewrite <- Rmult_IZR.
apply Rle_IZR; rewrite <- pGivesBound; pattern radix at 3 in |- *;
rewrite <- (Zabs_eq radix); auto with zarith; rewrite <- Zabs_Zmult;
rewrite Zmult_comm; elim H0; auto.
apply Rmult_le_compat_r; auto with real zarith.
repeat rewrite Rabs_right; auto with real; apply Rle_ge; auto with real.
unfold FtoRradix in |- *; apply R0RltRlePred; auto with real arith.
case (Rle_or_lt 0 (FtoRradix (FPred b radix precision p) - x)); intros H9.
absurd (Rabs (p - x) <= Rabs (FPred b radix precision p - x))%R.
apply Rlt_not_le; repeat rewrite Rabs_right; try apply Rle_ge; auto with real.
unfold Rminus in |- *; apply Rplus_lt_compat_r; auto with real float zarith.
unfold FtoRradix in |- *; apply FPredLt; auto with real float zarith.
generalize H1; unfold Closest in |- *; intros H'; elim H'; intros tmp H10.
clear tmp; apply H10; auto with float zarith arith.
apply Rplus_lt_reg_r with (- x)%R; auto with real.
ring_simplify (- x + x)%R; apply Rle_lt_trans with (2 := H9); right; ring.
Qed.
End Fclosestp2.
Hint Resolve ClosestOpp ClosestFabs ClosestUlp: float.
|