1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
|
Require Import AllFloat.
Require Import Veltkamp.
Section AFZ.
Variable b : Fbound.
Variable radix : Z.
Variable precision : nat.
Coercion Local FtoRradix := FtoR radix.
Hypothesis radixMoreThanOne : (1 < radix)%Z.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum b) = Zpower_nat radix precision.
Definition AFZClosest (r : R) (p : float) :=
Closest b radix r p /\
((Rabs r <= Rabs p)%R \/ (forall q : float, Closest b radix r q -> q = p :>R)).
Theorem AFZClosestTotal : TotalP AFZClosest.
red in |- *; intros r.
case MinEx with (r := r) (3 := pGivesBound); auto with arith.
intros min H'.
case MaxEx with (r := r) (3 := pGivesBound); auto with arith.
intros max H'0.
cut (min <= r)%R; [ intros Rl1 | apply isMin_inv1 with (1 := H'); auto ].
cut (r <= max)%R; [ intros Rl2 | apply isMax_inv1 with (1 := H'0) ].
case (Rle_or_lt (r - min) (max - r)); intros H'1.
case H'1; intros H'2; auto.
exists min; split.
apply ClosestMin with (max := max); auto.
replace (2%nat * r)%R with (r + r)%R; [ idtac | simpl in |- *; ring ].
apply Rminus_le; auto.
fold FtoRradix; replace (r + r - (min + max))%R with (r - min - (max - r))%R;
[ idtac | simpl in |- *; ring ].
apply Rle_minus; auto.
right; intros q H'3.
apply ClosestMinEq with (r := r) (max := max) (b:=b) ; auto.
fold FtoRradix; replace (2%nat * r)%R with (r + r)%R; [ idtac | simpl in |- *; ring ].
apply Rminus_lt; auto.
replace (r + r - (min + max))%R with (r - min - (max - r))%R;
[ idtac | simpl in |- *; ring ].
apply Rlt_minus; auto.
case (Rle_or_lt (Rabs r) (Rabs min)); intros G.
exists min; split; auto.
apply ClosestMin with (max := max); auto.
fold FtoRradix; replace (2%nat * r)%R with (r + r)%R; [ idtac | simpl in |- *; ring ].
apply Rminus_le; auto.
replace (r + r - (min + max))%R with (r - min - (max - r))%R;
[ idtac | simpl in |- *; ring ].
apply Rle_minus; auto.
exists max; split; auto.
apply ClosestMax with (min := min); auto.
fold FtoRradix; replace (2%nat * r)%R with (r + r)%R; [ idtac | simpl in |- *; ring ].
apply Rminus_le; auto.
replace (min + max - (r + r))%R with (max - r - (r - min))%R;
[ idtac | simpl in |- *; ring ].
apply Rle_minus; auto.
rewrite H'2; auto with real.
case (Rle_or_lt 0 r); intros M.
left; repeat rewrite Rabs_right; try apply Rle_ge; auto with real.
apply Rle_trans with (1:=M); auto.
absurd ((Rabs min < Rabs r)%R); auto.
apply Rle_not_lt.
repeat rewrite Rabs_left1; auto with real.
apply Rle_trans with (1:=Rl1); auto with real.
exists max; split; auto.
apply ClosestMax with (min := min); auto.
replace (2%nat * r)%R with (r + r)%R; [ idtac | simpl in |- *; ring ].
apply Rminus_le; auto.
fold FtoRradix; replace (min + max - (r + r))%R with (max - r - (r - min))%R;
[ idtac | simpl in |- *; ring ].
apply Rle_minus; auto with real.
right; intros q H'2.
apply ClosestMaxEq with (r := r) (min := min) (b:=b); auto.
replace (2%nat * r)%R with (r + r)%R; [ idtac | simpl in |- *; ring ].
apply Rminus_lt; auto.
fold FtoRradix; replace (min + max - (r + r))%R with (max - r - (r - min))%R;
[ idtac | simpl in |- *; ring ].
apply Rlt_minus; auto.
Qed.
Theorem AFZClosestCompatible : CompatibleP b radix AFZClosest.
red in |- *; simpl in |- *.
intros r1 r2 p q H' H'0 H'1 H'2; red in |- *.
inversion H'.
split.
apply (ClosestCompatible b radix r1 r2 p q); auto.
case H0; intros H1.
left.
rewrite <- H'0; fold FtoRradix in H'1; rewrite <- H'1; auto.
right; intros q0 H'3.
unfold FtoRradix in |- *; rewrite <- H'1; auto.
apply H1; auto.
apply (ClosestCompatible b radix r2 r1 q0 q0); auto.
case H'3; auto.
Qed.
Theorem AFZClosestMinOrMax : MinOrMaxP b radix AFZClosest.
red in |- *; intros r p H'; case (ClosestMinOrMax b radix r p); auto.
case H'; auto.
Qed.
Theorem AFZClosestMonotone : MonotoneP radix AFZClosest.
red in |- *; simpl in |- *; intros p q p' q' H' H'0 H'1.
apply (ClosestMonotone b radix p q); auto; case H'0; case H'1; auto.
Qed.
Theorem AFZClosestRoundedModeP : RoundedModeP b radix AFZClosest.
red in |- *; split.
exact AFZClosestTotal.
split.
exact AFZClosestCompatible.
split.
exact AFZClosestMinOrMax.
exact AFZClosestMonotone.
Qed.
Theorem AFZClosestUniqueP : UniqueP radix AFZClosest.
red in |- *; simpl in |- *.
intros r p q H' H'0.
inversion H'; inversion H'0; case H0; case H2; auto.
intros H'1 H'2; case (AFZClosestMinOrMax r p);
case (AFZClosestMinOrMax r q); auto.
intros H'3 H'4; apply (MinUniqueP b radix r); auto.
intros H'3 H'4; case (Req_dec p q); auto; intros H'5.
Contradict H'1; auto.
apply Rlt_not_le.
cut (p <= r)%R; [ intros Rl1 | apply isMin_inv1 with (1 := H'4); auto ].
cut (r <= q)%R; [ intros Rl2 | apply isMax_inv1 with (1 := H'3) ].
assert (FtoRradix p=r -> False).
intros; Contradict H'5.
apply
(RoundedProjector b radix _
(MaxRoundedModeP _ _ _ radixMoreThanOne precisionGreaterThanOne
pGivesBound)); auto.
case H'4; auto.
fold FtoRradix; rewrite H3; auto.
case (Rle_or_lt 0 r); intros G.
absurd ( (Rabs r <= Rabs p)%R); auto.
apply Rlt_not_le; repeat rewrite Rabs_right; try apply Rle_ge; auto with real.
case Rl1; auto.
intros; absurd False; auto; apply H3; auto.
apply RleMinR0 with b precision r; auto with real zarith.
repeat rewrite Rabs_left1; auto with real.
case Rl2; auto with real.
intros; Contradict H'5; apply sym_eq.
apply
(RoundedProjector b radix _
(MinRoundedModeP _ _ _ radixMoreThanOne precisionGreaterThanOne
pGivesBound)); auto.
case H'3; auto.
fold FtoRradix; rewrite <- H4; auto.
apply RleMaxR0 with b precision r; auto with real zarith.
intros H'3 H'4; case (Req_dec p q); auto; intros H'5.
Contradict H'1; auto.
apply Rlt_not_le.
cut (q <= r)%R; [ intros Rl1 | apply isMin_inv1 with (1 := H'3); auto ].
cut (r <= p)%R; [ intros Rl2 | apply isMax_inv1 with (1 := H'4) ].
case (Rle_or_lt 0 r); intros G.
repeat rewrite Rabs_right; try apply Rle_ge; auto with real.
case Rl1; auto with real.
intros; Contradict H'5; apply sym_eq.
apply
(RoundedProjector b radix _
(MaxRoundedModeP _ _ _ radixMoreThanOne precisionGreaterThanOne
pGivesBound)); auto.
case H'3; auto.
fold FtoRradix; rewrite H3; auto.
apply RleMinR0 with b precision r; auto with real zarith.
absurd ( (Rabs r <= Rabs p)%R); auto.
apply Rlt_not_le; repeat rewrite Rabs_left1; auto with real.
case Rl2; auto with real.
intros; Contradict H'5.
apply
(RoundedProjector b radix _
(MinRoundedModeP _ _ _ radixMoreThanOne precisionGreaterThanOne
pGivesBound)); auto.
case H'4; auto.
fold FtoRradix; rewrite <- H3; auto.
apply RleMaxR0 with b precision r; auto with real zarith.
intros H'3 H'4; apply (MaxUniqueP b radix r); auto.
intros H'1 H'2; apply sym_eq; auto.
Qed.
Theorem AFZClosestSymmetric : SymmetricP AFZClosest.
red in |- *; intros r p H'; case H'; clear H'.
intros H' H'0; case H'0; clear H'0; intros H'0.
split; auto.
apply (ClosestSymmetric b radix r p); auto.
left.
unfold FtoRradix; rewrite Fopp_correct; auto with zarith.
repeat rewrite Rabs_Ropp; auto with real.
split; auto.
apply (ClosestSymmetric b radix r p); auto.
right.
intros q H'1.
cut (Fopp q = p :>R).
intros H'2; unfold FtoRradix in |- *; rewrite Fopp_correct.
unfold FtoRradix in H'2; rewrite <- H'2.
rewrite Fopp_correct; ring.
apply H'0; auto.
replace r with (- - r)%R; [ idtac | ring ].
apply (ClosestSymmetric b radix (- r)%R q); auto.
Qed.
End AFZ.
Section Closest2.
Variable b : Fbound.
Variable prec : nat.
Variable radix:Z.
Let FtoRradix := FtoR radix.
Coercion FtoRradix : float >-> R.
Hypothesis radixMoreThanOne : (1 < radix)%Z.
Hypothesis precisionGreaterThan : 1 < prec.
Hypothesis pGivesBound : Zpos (vNum b) = Zpower_nat radix prec.
Lemma ClosestClosestPredSucc: forall (f g:float) (r:R),
(Closest b radix r f) -> (Closest b radix r g) ->
(FtoRradix f=g)
\/ (FtoRradix f=FNPred b radix prec g)
\/ (FtoRradix f=FNSucc b radix prec g).
intros.
elim H; intros Bf T; elim H0; intros Bg T'; clear T T'.
case (ClosestMinOrMax b radix r f); auto; intros T1;
case (ClosestMinOrMax b radix r g); auto; intros T2.
left; unfold FtoRradix; apply (MinUniqueP b radix r); auto.
assert (f <= g)%R.
elim T1; elim T2; intros; apply Rle_trans with r; intuition.
case H1; auto; intros.
right; left; unfold FtoRradix.
rewrite <- FnormalizeCorrect with radix b prec f; auto with zarith.
rewrite <- FPredSuc with b radix prec (Fnormalize radix b prec f); auto with zarith.
2: apply FnormalizeCanonic; auto with zarith.
unfold FNPred.
replace (FSucc b radix prec (Fnormalize radix b prec f)) with (Fnormalize radix b prec g); auto.
apply FcanonicUnique with radix b prec; auto with zarith float.
unfold FtoRradix; apply (MaxUniqueP b radix r); auto.
apply (MaxCompatible b radix r r g); auto with real zarith float.
rewrite FnormalizeCorrect; auto with zarith real.
apply MinMax; auto with zarith.
fold FtoRradix; Contradict H2.
replace (FtoRradix f) with (FtoRradix g); auto with real.
apply sym_eq; apply RoundedModeProjectorIdemEq with b prec (Closest b radix); auto with zarith.
eapply ClosestRoundedModeP; eauto.
fold FtoRradix; rewrite <- H2; auto.
assert (g <= f)%R.
elim T1; elim T2; intros; apply Rle_trans with r; intuition.
case H1; auto; intros.
right; right; unfold FtoRradix.
unfold FtoRradix; apply (MaxUniqueP b radix r); auto.
apply MinMax; auto with zarith.
fold FtoRradix; Contradict H2.
replace (FtoRradix f) with (FtoRradix g); auto with real.
apply RoundedModeProjectorIdemEq with b prec (Closest b radix); auto with zarith.
eapply ClosestRoundedModeP; eauto.
fold FtoRradix; rewrite <- H2; auto.
left; unfold FtoRradix; apply (MaxUniqueP b radix r); auto.
Qed.
Lemma ClosestStrictMonotone2l: forall (r1 r2 : R) (f1 f2 : float),
Closest b radix r1 f1 -> (Fcanonic radix b f2) ->
(Rabs (r2 - f2) < Rabs (r2 - FSucc b radix prec f2))%R ->
(Rabs (r2 - f2) < Rabs (r2 - FPred b radix prec f2))%R ->
(r2 <= r1)%R ->
(FtoRradix f2 <= FtoRradix f1)%R.
intros.
assert (Closest b radix r2 f2).
apply ClosestSuccPred with prec; auto with real.
eapply FcanonicBound; eauto.
case H3; intros.
generalize ClosestMonotone; unfold MonotoneP; intros T.
unfold FtoRradix; apply T with b r2 r1; auto.
case (ClosestClosestPredSucc f1 f2 r1); auto with real.
rewrite <- H5; auto.
intros K; case K; intros.
absurd ( (Rabs (r2 - f2) < Rabs (r2 - f1)))%R.
apply Rle_not_lt.
rewrite <- Rabs_Ropp with (r2-f1)%R; rewrite <- Rabs_Ropp with (r2-f2)%R.
replace (-(r2-f1))%R with (f1-r2)%R by ring.
replace (-(r2-f2))%R with (f2-r2)%R by ring.
rewrite H5.
elim H; intros T1 T2; apply T2; auto.
elim H4; auto.
rewrite H6; unfold FNPred.
rewrite FcanonicFnormalizeEq; auto with zarith real.
rewrite H6; left; apply FNSuccLt; auto with zarith.
Qed.
Lemma ClosestStrictMonotone2r: forall (r1 r2 : R) (f1 f2 : float),
Closest b radix r1 f1 -> (Fcanonic radix b f2) ->
(Rabs (r2 - f2) < Rabs (r2 - FSucc b radix prec f2))%R ->
(Rabs (r2 - f2) < Rabs (r2 - FPred b radix prec f2))%R ->
(r1 <= r2)%R ->
(FtoRradix f1 <= FtoRradix f2)%R.
intros.
assert (Closest b radix r2 f2).
apply ClosestSuccPred with prec; auto with real.
eapply FcanonicBound; eauto.
case H3; intros.
generalize ClosestMonotone; unfold MonotoneP; intros T.
unfold FtoRradix; apply T with b r1 r2; auto.
case (ClosestClosestPredSucc f1 f2 r1); auto with real.
rewrite H5; auto.
intros K; case K; intros.
rewrite H6; left; apply FNPredLt; auto with zarith.
absurd ( (Rabs (r2 - f2) < Rabs (r2 - f1)))%R.
apply Rle_not_lt.
rewrite <- Rabs_Ropp with (r2-f1)%R; rewrite <- Rabs_Ropp with (r2-f2)%R.
replace (-(r2-f1))%R with (f1-r2)%R by ring.
replace (-(r2-f2))%R with (f2-r2)%R by ring.
rewrite <- H5.
elim H; intros T1 T2; apply T2; auto.
elim H4; auto.
rewrite H6; unfold FNSucc.
rewrite FcanonicFnormalizeEq; auto with zarith real.
Qed.
Lemma ClosestStrictEq: forall (r : R) (f1 f2 : float),
Closest b radix r f1 -> (Fcanonic radix b f2) ->
(Rabs (r - f2) < Rabs (r - FSucc b radix prec f2))%R ->
(Rabs (r - f2) < Rabs (r - FPred b radix prec f2))%R ->
(FtoRradix f1 = FtoRradix f2)%R.
intros.
assert (FtoRradix f1 <= f2)%R.
apply ClosestStrictMonotone2r with r r; auto with real.
assert (FtoRradix f2 <= f1)%R; auto with real.
apply ClosestStrictMonotone2l with r r; auto with real.
Qed.
End Closest2.
Section PredComput.
Variable b : Fbound.
Variable prec : nat.
Variable radix radixH : Z.
Let FtoRradix := FtoR radix.
Coercion FtoRradix : float >-> R.
Hypothesis radixMoreThanOne : (1 < radix)%Z.
Hypothesis precisionGreaterThan : 3 <= prec.
Hypothesis pGivesBound : Zpos (vNum b) = Zpower_nat radix prec.
Hypotheses ReasonnableFormat: (2*prec-1 <= dExp b)%Z.
Hypotheses radixEven: (radix=2*radixH)%Z.
Lemma radixHPos: (0 < radixH)%Z.
apply Zmult_lt_reg_r with 2%Z; auto with zarith.
Qed.
Hint Resolve radixHPos.
Lemma RoundedToZero_aux: forall (c:float) (r:R),
(Fcanonic radix b c) ->
(0 <= r)%R ->
(r < /2 * powerRZ radix (-dExp b))%R ->
(Closest b radix r c) ->
(FtoRradix c=0)%R.
intros.
assert (0 <= c)%R.
unfold FtoRradix; apply RleRoundedR0 with b prec (Closest b radix) r; auto with real zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
case H3; auto; clear H3; intros H3.
elim H2; intros.
absurd (Rabs (c-r) <= Rabs r)%R.
apply Rlt_not_le.
apply Rlt_le_trans with (Rabs c -Rabs r)%R;[idtac|apply Rabs_triang_inv].
repeat rewrite Rabs_right; try apply Rle_ge; auto with real.
apply Rplus_lt_reg_r with r.
replace (r+r)%R with (2*r)%R;[idtac| ring].
apply Rlt_le_trans with (2*(/ 2 * powerRZ radix (- dExp b)))%R.
apply Rmult_lt_compat_l; auto with real.
apply Rle_trans with (powerRZ radix (- dExp b)).
right; simpl; field; auto with real.
apply Rle_trans with c;[idtac|right; ring].
apply Rle_trans with (FSucc b radix prec (Float 0 (-(dExp b)))).
right; rewrite FSuccSimpl4; auto with zarith.
unfold FtoRradix, FtoR, Zsucc; simpl; ring.
simpl; assert (0 < pPred (vNum b))%Z; auto with zarith.
apply pPredMoreThanOne with radix prec; auto with zarith.
simpl; assert (0 < nNormMin radix prec)%Z; auto with zarith.
unfold nNormMin; auto with zarith.
unfold FtoRradix; apply FSuccProp; auto with zarith.
right; split; split; simpl; auto with zarith.
replace (radix*0)%Z with 0%Z; simpl; auto with zarith.
apply Rle_lt_trans with 0%R; auto with real zarith.
unfold FtoR; simpl; right; ring.
rewrite <- (Rabs_Ropp r).
replace (-r)%R with (FtoRradix (Float 0 (-(dExp b)))-r)%R.
apply H5.
split; simpl; auto with zarith.
unfold FtoRradix, FtoR; simpl; ring.
Qed.
Lemma RoundedToZero_aux2: forall (c:float) (r:R),
(Fcanonic radix b c) ->
(Rabs r < /2 * powerRZ radix (-dExp b))%R ->
(Closest b radix r c) ->
(FtoRradix c=0)%R.
intros.
case (Rle_or_lt 0 r); intros.
apply RoundedToZero_aux with r; auto.
rewrite <- (Rabs_right r); try apply Rle_ge; auto.
apply Rmult_eq_reg_l with (-1)%R; auto with real.
apply trans_eq with 0%R;[idtac|ring].
apply trans_eq with (FtoRradix (Fopp c)).
unfold FtoRradix; rewrite Fopp_correct; ring.
apply RoundedToZero_aux with (-r)%R; auto with real.
apply FcanonicFopp; auto.
rewrite <- (Rabs_left r); auto with real.
apply ClosestOpp; auto.
Qed.
Lemma RoundedToZero: forall (c:float) (r:R),
(Rabs r < /2 * powerRZ radix (-dExp b))%R ->
(Closest b radix r c) ->
(FtoRradix c=0)%R.
intros.
unfold FtoRradix; rewrite <- FnormalizeCorrect with radix b prec c; auto with zarith.
fold FtoRradix; apply RoundedToZero_aux2 with r; auto.
apply FnormalizeCanonic; auto with zarith.
elim H0; auto.
generalize ClosestCompatible; unfold CompatibleP.
intros T; apply T with r c; auto with zarith float.
rewrite FnormalizeCorrect; auto with zarith real.
apply FnormalizeBounded; auto with zarith.
elim H0; auto.
Qed.
Definition u:= powerRZ radix (-prec).
Definition phi:=(u*(radixH+radix*u))%R.
Definition eta:= powerRZ radix (-(dExp b)).
Lemma phi_Pos: (0 < phi)%R.
unfold phi,u.
apply Rle_lt_trans with (powerRZ radix (- prec)*0)%R; auto with real.
apply Rmult_lt_compat_l; auto with real zarith.
apply Rle_lt_trans with (0+radix*0)%R; [right; ring|idtac].
apply Rplus_lt_compat; auto with real zarith.
Qed.
Lemma phi_bounded_aux:
(Zabs (radixH*nNormMin radix prec + 1) < Zpos (vNum b))%Z.
assert (0 < nNormMin radix prec+1)%Z.
apply Zlt_le_trans with (0+1)%Z; unfold nNormMin; auto with zarith.
rewrite Zabs_eq; auto with zarith.
rewrite pGivesBound; unfold nNormMin.
apply Zlt_le_trans with (radixH*Zpower_nat radix (pred prec)+radixH*Zpower_nat radix (pred prec))%Z; auto with zarith.
apply Zplus_lt_compat_l.
apply Zle_lt_trans with (radixH*1)%Z; auto with zarith.
apply Zle_lt_trans with (radixH*Zpower_nat radix 0)%Z; auto with zarith.
apply Zmult_lt_compat_l; auto with zarith.
apply Zle_trans with ((2*radixH)*Zpower_nat radix (pred prec))%Z.
apply Zeq_le; ring.
replace (2*radixH)%Z with (Zpower_nat radix 1).
rewrite <- Zpower_nat_is_exp; auto with zarith.
rewrite <- radixEven;unfold Zpower_nat;simpl; auto with zarith.
Qed.
Lemma phi_bounded: (exists f:float,
Fbounded b f /\ (FtoRradix f=phi)).
exists (Float (radixH*nNormMin radix prec+1) (-(2*prec-1))); split.
split.
apply Zle_lt_trans with (Zabs (radixH*nNormMin radix prec+1))%Z; auto with zarith.
apply phi_bounded_aux.
apply Zle_trans with (-(2*prec-1))%Z; auto with zarith.
unfold FtoRradix, FtoR, pPred, phi, u.
replace (IZR (Fnum (Float (radixH*nNormMin radix prec + 1) (- (2 * prec - 1))))) with
(radixH*powerRZ radix (prec-1) +1)%R.
replace (Fexp (Float (radixH*nNormMin radix prec + 1) (- (2 * prec - 1)))) with (-(2*prec-1))%Z; auto with zarith.
apply trans_eq with (radixH*((powerRZ radix (prec-1)*powerRZ radix (- (2 * prec-1))))
+ powerRZ radix (- (2 * prec-1)))%R;[ring|idtac].
apply trans_eq with (radixH*powerRZ radix (- prec)
+ radix * (powerRZ radix (- prec) * powerRZ radix (- prec)))%R;[idtac|ring].
repeat rewrite <- powerRZ_add; auto with real zarith.
replace (prec -1+ - (2 * prec-1))%Z with (-prec)%Z; auto with zarith.
pattern (IZR radix) at 4; replace (IZR radix) with (powerRZ radix 1); auto with zarith.
rewrite <- powerRZ_add; auto with real zarith.
replace (1+(- prec + - prec))%Z with (-(2*prec-1))%Z; auto with zarith real.
simpl; auto with real.
apply trans_eq with (IZR (radixH*nNormMin radix prec+1)); auto with zarith real.
rewrite plus_IZR; rewrite mult_IZR; unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite inj_pred; auto with zarith.
Qed.
Lemma GepetaGeExp: forall (c:float),
Fcanonic radix b c ->
(powerRZ radix (prec-dExp b) <= c)%R ->
(-dExp b < Fexp c)%Z.
intros.
assert (-(dExp b)+1 <= Fexp c)%Z; auto with zarith.
apply Zle_trans with (Fexp (Float (nNormMin radix prec) (-(dExp b)+1))); auto with zarith.
apply Fcanonic_Rle_Zle with radix b prec; auto with zarith.
left; split; try split; simpl; auto with zarith.
rewrite Zabs_eq.
apply ZltNormMinVnum; auto with zarith.
apply Zlt_le_weak; apply nNormPos; auto with zarith.
rewrite PosNormMin with radix b prec; auto with zarith.
apply Rle_trans with (powerRZ radix (prec - dExp b)).
rewrite <- Fabs_correct; auto with zarith.
unfold FtoR, Fabs; simpl.
unfold nNormMin; rewrite Zabs_eq; auto with zarith.
rewrite Zpower_nat_Z_powerRZ.
rewrite <- powerRZ_add; auto with real zarith.
replace (pred prec + (- dExp b + 1))%Z with (prec - dExp b)%Z; auto with real.
rewrite inj_pred; unfold Zpred; auto with zarith.
fold FtoRradix; rewrite Rabs_right; auto.
apply Rle_ge; apply Rle_trans with (2:=H0); auto with real zarith.
Qed.
Lemma GepetaIsNormal: forall (c:float),
Fcanonic radix b c ->
(powerRZ radix (prec-dExp b) <= c)%R ->
Fnormal radix b c.
intros.
case H; intros; auto.
absurd (-dExp b < Fexp c)%Z.
elim H1; intros H2 (H3,H4); rewrite H3; auto with zarith.
apply GepetaGeExp; auto.
Qed.
Lemma predSmallOnes: forall (c:float),
Fcanonic radix b c ->
(Rabs c < powerRZ radix (prec-dExp b))%R
-> (FtoRradix (FPred b radix prec c) = c-eta)%R.
intros.
assert (Fexp c = (-dExp b))%Z.
case (Zle_lt_or_eq (-(dExp b)) (Fexp c)); auto with zarith.
assert (Fbounded b c); auto with zarith float.
apply FcanonicBound with radix; auto with zarith.
intros; absurd (Rabs c < Rabs c)%R; auto with real.
apply Rlt_le_trans with (1:=H0).
replace (prec-dExp b)%Z with ((prec-1)+(-dExp b+1))%Z;[idtac|ring].
rewrite powerRZ_add; auto with real zarith.
unfold FtoRradix; rewrite <- Fabs_correct; auto with zarith.
unfold FtoR, Fabs; simpl.
apply Rmult_le_compat; auto with real zarith.
apply Rle_trans with (IZR (nNormMin radix prec)).
unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
apply Rle_powerRZ; auto with real zarith.
rewrite inj_pred; auto with zarith.
apply Rle_IZR.
apply pNormal_absolu_min with b; auto with zarith.
case H; auto; intros H2; elim H2; intros H3 (H4,H5).
absurd (-dExp b <Fexp c)%Z; auto with zarith.
apply Rle_powerRZ; auto with real zarith.
case (Z_eq_dec (Fnum c) (- pPred (vNum b))%Z); intros H2.
rewrite FPredSimpl1; auto with zarith.
unfold FtoRradix, FtoR, eta; simpl; rewrite H1; rewrite H2.
repeat rewrite Ropp_Ropp_IZR.
unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite Ropp_mult_distr_l_reverse.
rewrite <- powerRZ_add; auto with real zarith.
unfold pPred, Zpred; rewrite plus_IZR.
rewrite pGivesBound; rewrite Zpower_nat_Z_powerRZ.
apply trans_eq with (-(powerRZ radix prec *powerRZ radix (- dExp b)))%R;
[idtac|simpl; ring].
rewrite <- powerRZ_add; auto with real zarith.
replace (pred prec + Zsucc (- dExp b))%Z with (prec + - dExp b)%Z; auto with real.
rewrite inj_pred; unfold Zpred, Zsucc; auto with zarith.
case (Z_eq_dec (Fnum c) (nNormMin radix prec)); intros H3.
replace c with (Float (nNormMin radix prec) (- dExp b)).
rewrite FPredSimpl3; auto with zarith.
unfold FtoRradix, FtoR, Zpred, eta; simpl.
rewrite plus_IZR; simpl; ring.
apply sym_eq; apply floatEq; auto.
rewrite FPredSimpl4; auto.
unfold FtoRradix, FtoR, eta; simpl.
rewrite H1; unfold Zpred.
rewrite plus_IZR; simpl; ring.
Qed.
Lemma predNormal1: forall (c:float),
Fcanonic radix b c ->
(powerRZ radix (prec-dExp b) <= c)%R ->
(Fnum c=nNormMin radix prec) ->
(FtoRradix (FPred b radix prec c) = c-powerRZ radix (Fexp c-1))%R.
intros c Cc; intros.
rewrite FPredSimpl2; auto with zarith.
unfold FtoRradix, FtoR; simpl; rewrite H0; simpl.
unfold pPred, Zpred; rewrite plus_IZR.
rewrite Rmult_plus_distr_r; unfold Rminus.
replace (Zpos (vNum b) * powerRZ radix (Fexp c + -1))%R with
(nNormMin radix prec * powerRZ radix (Fexp c))%R.
replace ((-1)%Z * powerRZ radix (Fexp c + -1))%R with
(- powerRZ radix (Fexp c - 1))%R; auto with real.
unfold Zminus; simpl; ring.
unfold nNormMin; rewrite pGivesBound.
repeat rewrite Zpower_nat_Z_powerRZ.
repeat rewrite <- powerRZ_add; auto with real zarith.
replace (pred prec + Fexp c)%Z with (prec + (Fexp c + -1))%Z; auto.
rewrite inj_pred; unfold Zpred; auto with zarith.
assert (-dExp b < Fexp c)%Z; auto with zarith.
apply GepetaGeExp; auto.
Qed.
Lemma predNormal2: forall (c:float),
Fcanonic radix b c ->
(powerRZ radix (prec-dExp b) <= c)%R ->
(Fnum c <> nNormMin radix prec) ->
(FtoRradix (FPred b radix prec c) = c-powerRZ radix (Fexp c))%R.
intros.
rewrite FPredSimpl4; auto with zarith.
unfold FtoRradix, FtoR, Zpred; simpl.
rewrite plus_IZR; simpl; ring.
assert (-pPred (vNum b) < Fnum c)%Z; auto with zarith float.
apply Zlt_le_trans with 0%Z.
assert (0 < pPred (vNum b))%Z; auto with zarith float.
apply pPredMoreThanOne with radix prec; auto with zarith.
apply LeR0Fnum with radix ; auto with real zarith.
fold FtoRradix; apply Rle_trans with (2:=H0); auto with real zarith.
Qed.
Lemma succNormal: forall (c:float),
Fcanonic radix b c ->
(0 <= c)%R ->
(FtoRradix (FSucc b radix prec c) = c+powerRZ radix (Fexp c))%R.
intros.
apply Rplus_eq_reg_l with (-c)%R.
apply trans_eq with (FtoRradix (Fminus radix (FSucc b radix prec c) c)).
unfold FtoRradix; rewrite Fminus_correct; auto with real zarith; ring.
unfold FtoRradix; rewrite FSuccDiff1; auto with zarith.
unfold FtoR; simpl; ring.
unfold nNormMin.
assert (-(Zpower_nat radix (pred prec)) < Fnum c)%Z; auto with zarith.
apply Zlt_le_trans with (-0)%Z; auto with zarith.
simpl; apply LeR0Fnum with radix; auto with real zarith.
Qed.
Lemma eGe: forall (c c' e:float),
Fcanonic radix b c ->
(0 <= c)%R ->
Closest b radix (phi*c) c' ->
Closest b radix (c'+eta) e ->
(powerRZ radix (Fexp c)/2 < e)%R.
intros.
case (Zle_or_lt (-dExp b) (Fexp c -prec)); intros.
assert (powerRZ radix (prec - dExp b) <= c)%R.
unfold FtoRradix, FtoR; simpl.
apply Rle_trans with (1*powerRZ radix (prec - dExp b))%R; auto with real.
apply Rmult_le_compat; auto with real zarith.
apply Rle_trans with (IZR 1); auto with real zarith.
apply Rle_IZR.
apply Zle_trans with (nNormMin radix prec); auto with zarith float.
assert (0 < nNormMin radix prec)%Z; auto with zarith.
apply nNormPos; auto with zarith.
rewrite <- (Zabs_eq (Fnum c)).
apply pNormal_absolu_min with b; auto with zarith real.
case H; auto; intros M.
elim M; intros M1 (M2,M3).
absurd (- dExp b <= Fexp c - prec)%Z; auto.
rewrite M2; auto with zarith.
apply LeR0Fnum with radix; auto with real zarith.
apply Rle_powerRZ; auto with real zarith.
apply Rlt_le_trans with c'.
apply Rlt_le_trans with (Float (radixH*nNormMin radix prec + 1)
(Fexp c -prec)).
unfold FtoRradix, FtoR; simpl.
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
apply Rlt_le_trans with (powerRZ radix (Fexp c) *
((radixH*nNormMin radix prec + 1)%Z* powerRZ radix (- prec)))%R;[idtac|right; ring].
unfold Rdiv; apply Rmult_lt_compat_l; auto with real zarith.
rewrite plus_IZR; rewrite mult_IZR; unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite Rmult_plus_distr_r.
replace (radixH*powerRZ radix (pred prec) * powerRZ radix (- prec))%R with (/2)%R.
apply Rle_lt_trans with (/2+0)%R; auto with real zarith.
apply Rplus_lt_compat_l; simpl.
apply Rlt_le_trans with (powerRZ radix (- prec)); auto with real zarith.
rewrite Rmult_assoc; rewrite <- powerRZ_add; auto with real zarith.
replace (pred prec + - prec)%Z with (-1)%Z.
simpl; rewrite radixEven; rewrite mult_IZR; simpl; field; auto with real zarith.
rewrite inj_pred; unfold Zpred; auto with zarith.
unfold FtoRradix; apply RleBoundRoundl with b prec (Closest b radix) (phi*c)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith.
apply phi_bounded_aux.
unfold FtoRradix, FtoR; simpl.
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
apply Rle_trans with (powerRZ radix (- prec)*
((radixH*nNormMin radix prec + 1)%Z*powerRZ radix (Fexp c)))%R;[right; ring|idtac].
unfold phi.
apply Rle_trans with (powerRZ radix (-prec)*
(((radixH + radix * u)*Fnum c)*powerRZ radix (Fexp c)))%R;[idtac|unfold phi,u; simpl; right;ring].
apply Rmult_le_compat_l; auto with real zarith.
apply Rmult_le_compat_r; auto with real zarith.
apply Rle_trans with ((radixH + radix * u) * nNormMin radix prec)%R.
rewrite plus_IZR; rewrite mult_IZR; rewrite Rmult_plus_distr_r.
apply Rplus_le_compat; auto with real.
unfold u; simpl; unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
pattern (IZR radix) at 1; replace (IZR radix) with (powerRZ radix 1).
repeat rewrite <- powerRZ_add; auto with real zarith.
replace (1 + - prec + pred prec)%Z with 0%Z.
simpl; auto with real.
rewrite inj_pred; unfold Zpred; auto with zarith.
simpl; auto with real.
apply Rmult_le_compat_l.
unfold u; apply Rle_trans with (0+0)%R; auto with real; apply Rplus_le_compat; auto with real zarith.
apply Rmult_le_pos; auto with real zarith.
rewrite <- (Zabs_eq (Fnum c)).
apply Rle_IZR; apply pNormal_absolu_min with b; auto with zarith real.
apply GepetaIsNormal; auto.
apply LeR0Fnum with radix; auto with real zarith.
unfold FtoRradix; apply RleBoundRoundl with b prec (Closest b radix) (c'+eta)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
elim H1; auto.
fold FtoRradix; apply Rle_trans with (c'+0)%R; auto with real zarith.
unfold eta; apply Rplus_le_compat_l; auto with real zarith.
assert (powerRZ radix (Fexp c) / 2 = (Float radixH (Fexp c -1)))%R.
unfold FtoRradix, FtoR; simpl.
unfold Zminus; rewrite powerRZ_add; auto with real zarith; simpl.
rewrite radixEven; rewrite mult_IZR; simpl.
field; auto with real zarith.
case (Zle_lt_or_eq (-dExp b) (Fexp c)).
assert (Fbounded b c); auto with zarith float.
apply FcanonicBound with radix; auto with zarith.
intros.
assert (powerRZ radix (Fexp c) / 2 <= c')%R.
rewrite H4.
unfold FtoRradix; apply RleBoundRoundl with b prec (Closest b radix) (phi*c)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith.
rewrite Zabs_eq; auto with zarith.
rewrite pGivesBound.
apply Zlt_le_trans with (Zpower_nat radix 1); auto with zarith.
unfold Zpower_nat; simpl; rewrite radixEven; auto with zarith.
unfold phi.
apply Rle_trans with (u*radixH*c)%R.
unfold FtoRradix, FtoR,u; simpl.
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
apply Rle_trans with (radixH*(powerRZ radix (Fexp c) *
(powerRZ radix (- prec) *Fnum c)))%R;[idtac|right; ring].
repeat apply Rmult_le_compat_l; auto with real zarith.
apply Rle_trans with (powerRZ radix (- prec) * nNormMin radix prec)%R.
unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite <- powerRZ_add; auto with real zarith; apply Rle_powerRZ; auto with real zarith.
rewrite inj_pred; unfold Zpred; auto with zarith.
apply Rmult_le_compat_l; auto with real zarith.
rewrite <- (Zabs_eq (Fnum c)).
apply Rle_IZR; apply pNormal_absolu_min with b; auto with zarith real.
case H; auto; intros M.
elim M; intros M1 (M2,M3).
Contradict M2; auto with zarith.
apply LeR0Fnum with radix; auto with real zarith.
apply Rle_trans with (u*(radixH+0*0)*c)%R;[right; ring|idtac].
apply Rmult_le_compat_r; auto.
apply Rmult_le_compat_l; unfold u; auto with real zarith.
apply Rle_lt_trans with (1:=H6).
replace (FtoRradix e) with (c'+eta)%R.
unfold eta; apply Rle_lt_trans with (c'+0)%R; auto with real zarith.
replace eta with (FtoRradix (Float 1 (-dExp b))).
2: unfold eta, FtoRradix, FtoR; simpl; ring.
unfold FtoRradix; rewrite <- Fplus_correct; auto with zarith.
apply RoundedModeProjectorIdemEq with b prec (Closest b radix); auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
2: rewrite Fplus_correct; auto with zarith real.
2: replace (FtoR radix (Float 1 (-dExp b))) with eta; auto with real.
2: unfold eta, FtoRradix, FtoR; simpl; ring.
unfold Fplus.
simpl (Fexp (Float 1 (- dExp b))); simpl (Fnum (Float 1 (- dExp b))).
rewrite Zmin_le2.
replace (1 * Zpower_nat radix (Zabs_nat (- dExp b - - dExp b)))%Z with 1%Z.
split; simpl; auto with zarith.
apply Zlt_Rlt.
rewrite <- Rabs_Zabs; rewrite pGivesBound; rewrite Zpower_nat_Z_powerRZ.
rewrite plus_IZR.
apply Rle_lt_trans with (Rabs ((Fnum c' * Zpower_nat radix (Zabs_nat (Fexp c' - - dExp b)))%Z) + Rabs 1%Z)%R.
apply Rabs_triang.
rewrite mult_IZR; rewrite Zpower_nat_Z_powerRZ.
replace (Rabs (IZR 1)) with 1%R.
apply Rplus_lt_reg_r with (-1)%R.
apply Rle_lt_trans with (Rabs (Fnum c' * powerRZ radix (Zabs_nat (Fexp c' - - dExp b))));[right; ring|idtac].
apply Rmult_lt_reg_l with (powerRZ radix (-dExp b)); auto with real zarith.
apply Rle_lt_trans with (Rabs c').
unfold FtoRradix, FtoR; simpl; repeat rewrite Rabs_mult.
rewrite (Rabs_right (powerRZ radix (Zabs_nat (Fexp c' - - dExp b)))).
rewrite (Rabs_right (powerRZ radix (Fexp c'))).
right;apply trans_eq with (Rabs (Fnum c') * (
powerRZ radix (- dExp b) *powerRZ radix (Zabs_nat (Fexp c' - - dExp b))))%R;[ring|idtac].
rewrite <- powerRZ_add; auto with real zarith.
replace (- dExp b + Zabs_nat (Fexp c' - - dExp b))%Z with (Fexp c')%Z; auto.
rewrite <- Zabs_absolu; rewrite Zabs_eq; auto with zarith.
assert (-dExp b <= Fexp c')%Z; auto with zarith float.
elim H1; auto with zarith float.
apply Rle_ge; auto with real zarith.
apply Rle_ge; auto with real zarith.
assert (FtoRradix (Float (radixH*nNormMin radix prec+1) (-dExp b)) =
radixH*powerRZ radix (prec-1-dExp b) + powerRZ radix (-dExp b))%R.
unfold FtoRradix, FtoR; simpl.
rewrite plus_IZR; rewrite mult_IZR; unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite inj_pred; auto with zarith.
apply trans_eq with (radixH*(powerRZ radix (Zpred prec)*powerRZ radix (- dExp b)) + powerRZ radix (- dExp b))%R.
simpl; ring.
rewrite <- powerRZ_add; auto with zarith real.
apply Rle_lt_trans with (Float (radixH*nNormMin radix prec+1) (-dExp b)).
unfold FtoRradix; apply RoundAbsMonotoner with b prec (Closest b radix) (phi*c)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith.
apply phi_bounded_aux.
fold FtoRradix; rewrite H7.
rewrite Rabs_mult; repeat rewrite Rabs_right; try apply Rle_ge; auto with real.
2: left; apply phi_Pos.
unfold phi.
apply Rle_trans with ((radixH+radix*u)*powerRZ radix (Fexp c))%R.
apply Rle_trans with ((radixH + radix * u) *(u*c))%R;[right; ring|idtac].
apply Rmult_le_compat_l.
apply Rle_trans with (0+0*0)%R; [right; ring|apply Rplus_le_compat; auto with real zarith].
apply Rmult_le_compat; unfold u; auto with real zarith.
unfold FtoRradix, FtoR, u; simpl.
apply Rle_trans with (powerRZ radix (- prec) * (powerRZ radix prec * powerRZ radix (Fexp c)))%R.
apply Rmult_le_compat_l; auto with real zarith.
apply Rmult_le_compat_r; auto with real zarith.
rewrite <- Zpower_nat_Z_powerRZ; rewrite <- pGivesBound.
apply Rle_IZR.
apply Zle_trans with (Zabs (Fnum c)); auto with zarith float.
assert (Fbounded b c); [apply FcanonicBound with radix|idtac]; auto with zarith float.
repeat rewrite <- powerRZ_add; auto with real zarith.
replace ((- prec + (prec + Fexp c)))%Z with (Fexp c); auto with real; ring.
apply Rle_trans with ((radixH + radix * u) * powerRZ radix (prec-1-dExp b))%R.
apply Rmult_le_compat_l.
apply Rle_trans with (0+0*0)%R; [right; ring|unfold u; apply Rplus_le_compat; auto with real zarith].
apply Rle_powerRZ; auto with real zarith.
rewrite Rmult_plus_distr_r.
apply Rplus_le_compat; auto with real.
pattern (IZR radix) at 1; replace (IZR radix) with (powerRZ radix 1);[idtac|simpl; auto with real].
unfold u; repeat rewrite <- powerRZ_add; auto with real zarith.
apply Rle_powerRZ; auto with real zarith.
rewrite H7.
apply Rle_lt_trans with (powerRZ radix (- dExp b) *(powerRZ radix prec / 2+1))%R.
rewrite Rmult_plus_distr_l; apply Rplus_le_compat; auto with real.
unfold Zminus; repeat rewrite powerRZ_add; auto with real zarith; simpl.
replace (IZR radixH) with (radix/2)%R.
right; field; auto with real zarith.
rewrite radixEven; rewrite mult_IZR; simpl; field; auto with real.
apply Rmult_lt_compat_l; auto with real zarith.
apply Rplus_lt_reg_r with (1-powerRZ radix prec / 2)%R.
apply Rmult_lt_reg_l with 2%R; auto with real.
apply Rle_lt_trans with (IZR 2*IZR 2)%R;[simpl; right; ring|idtac].
apply Rlt_le_trans with (powerRZ radix prec)%R;[idtac|right; field; auto with real].
apply Rle_lt_trans with (powerRZ radix 2); auto with real zarith.
apply Rle_trans with (radix*radix)%R;[idtac|simpl; right; ring].
apply Rmult_le_compat; auto with real zarith.
rewrite Rabs_right; try apply Rle_ge; auto with real.
replace (- dExp b - - dExp b)%Z with 0%Z; auto with zarith.
elim H1; auto with zarith float.
intros.
apply Rlt_le_trans with (Float 1 (-(dExp b))).
unfold FtoRradix, FtoR; simpl.
unfold Rdiv; rewrite Rmult_comm; rewrite H5.
apply Rmult_lt_compat_r; auto with real zarith.
apply Rlt_le_trans with (/1)%R; auto with real.
unfold FtoRradix; apply RleBoundRoundl with b prec (Closest b radix) (c'+eta)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith float.
apply vNumbMoreThanOne with radix prec; auto with zarith.
apply Rle_trans with (0+eta)%R.
right; unfold eta, FtoR; simpl; ring.
apply Rplus_le_compat_r.
unfold FtoRradix; apply RleRoundedR0 with b prec (Closest b radix) (phi*c)%R; auto with zarith real float.
apply ClosestRoundedModeP with prec; auto with zarith.
apply Rmult_le_pos; auto.
left; apply phi_Pos.
Qed.
Lemma Algo1_correct_aux_aux:forall (c cinf:float) (r:R),
Fcanonic radix b c -> (0 <= c)%R ->
(powerRZ radix (Fexp c)/2 < r)%R ->
Closest b radix (c-r) cinf ->
(FtoRradix cinf <= FPred b radix prec c)%R.
intros.
assert (N:Fbounded b c).
apply FcanonicBound with radix; auto.
generalize ClosestMonotone; unfold MonotoneP; intros.
cut (exists f:float, Fbounded b f /\ (FtoRradix f <= FPred b radix prec c)%R /\
Closest b radix (c-powerRZ radix (Fexp c) / 2)%R f).
intros (f,(L1,(L2,L3))).
apply Rle_trans with (2:=L2).
unfold FtoRradix; apply H3 with b (c-r)%R (c-powerRZ radix (Fexp c) / 2)%R; auto; clear H3.
unfold Rminus; apply Rplus_lt_compat_l; auto with real.
case (Rle_or_lt (powerRZ radix (prec - dExp b)) c); intros.
case (Z_eq_dec (Fnum c) (nNormMin radix prec)); intros.
cut (exists f:float, Fbounded b f /\
(FtoRradix f = (c-powerRZ radix (Fexp c) / 2))%R).
intros (f,(L1,L2)).
exists f; split; auto; split.
rewrite L2; rewrite predNormal1; auto with real zarith.
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
unfold Rminus, Rdiv; apply Rplus_le_compat_l.
apply Ropp_le_contravar.
apply Rmult_le_compat_l; auto with real zarith.
simpl; apply Rle_Rinv; auto with real zarith.
replace (radix*1)%R with (IZR radix); auto with real; replace 2%R with (IZR 2); auto with real zarith.
rewrite <- L2; unfold FtoRradix.
apply RoundedModeProjectorIdem with b; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
exists (Float (Zpos (vNum b) -radixH) (Fexp c-1)).
split; try split.
apply Zle_lt_trans with (Zabs (Zpos (vNum b) - radixH)); auto with zarith.
rewrite Zabs_eq; auto with zarith.
apply Zplus_le_reg_l with (radixH).
ring_simplify.
rewrite pGivesBound; apply Zle_trans with (Zpower_nat radix 1); auto with zarith.
unfold Zpower_nat;simpl.
ring_simplify; rewrite radixEven; auto with zarith.
simpl.
assert (- dExp b < Fexp c)%Z; auto with zarith.
apply GepetaGeExp; auto.
unfold FtoRradix, FtoR.
replace (Fnum (Float (Zpos (vNum b) - radixH) (Fexp c - 1)))
with (Zpos (vNum b) - radixH)%Z; auto.
simpl (Fexp (Float (Zpos (vNum b) - radixH) (Fexp c - 1))).
unfold Zminus; rewrite plus_IZR.
rewrite Ropp_Ropp_IZR.
rewrite pGivesBound; rewrite e; unfold nNormMin; repeat rewrite Zpower_nat_Z_powerRZ.
rewrite inj_pred; auto with zarith; unfold Zpred.
repeat rewrite powerRZ_add; auto with real zarith; simpl.
replace (radix*1)%R with (2*radixH)%R.
field; auto with real zarith.
rewrite radixEven; rewrite mult_IZR; simpl; ring.
exists (FPred b radix prec c); split.
apply FBoundedPred; auto with zarith.
split; auto with real.
apply ClosestSuccPred with prec; auto with zarith.
apply FBoundedPred; auto with zarith.
apply FPredCanonic; auto with zarith.
rewrite FSucPred; fold FtoRradix; auto with zarith.
replace (c - powerRZ radix (Fexp c) / 2 - c)%R with (-(powerRZ radix (Fexp c)/2))%R;[idtac|ring].
rewrite Rabs_Ropp; rewrite (Rabs_right (powerRZ radix (Fexp c) / 2)).
2: apply Rle_ge; unfold Rdiv; apply Rmult_le_pos; auto with real zarith.
rewrite predNormal2; auto.
replace (c - powerRZ radix (Fexp c) / 2 - (c - powerRZ radix (Fexp c)))%R with
(powerRZ radix (Fexp c) / 2)%R.
rewrite Rabs_right; auto with real.
apply Rle_ge; unfold Rdiv; apply Rmult_le_pos; auto with real zarith.
field; auto with real.
rewrite predNormal2; auto with zarith real.
replace (c - powerRZ radix (Fexp c) / 2 - (c - powerRZ radix (Fexp c)))%R with
(powerRZ radix (Fexp c) / 2)%R.
rewrite Rabs_right; auto with real.
2: apply Rle_ge; unfold Rdiv; apply Rmult_le_pos; auto with real zarith.
2: field; auto with real.
case (Zle_lt_or_eq (nNormMin radix prec +1) (Fnum c)).
assert (nNormMin radix prec <= Fnum c)%Z; auto with zarith.
rewrite <- (Zabs_eq (Fnum c)).
apply pNormal_absolu_min with b; auto with zarith real.
apply GepetaIsNormal; auto.
apply LeR0Fnum with radix; auto with real zarith.
intros.
rewrite predNormal2; auto with zarith real.
rewrite FPredSimpl4; auto with zarith.
simpl; unfold FtoRradix, FtoR, Zpred; simpl.
rewrite plus_IZR.
replace (Fnum c * powerRZ radix (Fexp c) - powerRZ radix (Fexp c) / 2 -
((Fnum c + (-1)%Z) * powerRZ radix (Fexp c) - powerRZ radix (Fexp c)))%R with
((3*powerRZ radix (Fexp c)/2))%R.
rewrite Rabs_right.
apply Rle_trans with (1*powerRZ radix (Fexp c) / 2)%R;auto with real.
right; unfold Rdiv; ring.
unfold Rdiv; apply Rmult_le_compat_r; auto with real.
apply Rmult_le_compat_r; auto with real zarith.
apply Rle_trans with 2%R; auto with real.
unfold Rdiv; apply Rle_ge; repeat apply Rmult_le_pos; auto with real zarith.
apply Rle_trans with (IZR 3); auto with real zarith.
right; simpl; ring.
simpl; field.
assert (- pPred (vNum b) < Fnum c)%Z; auto with zarith.
apply Zle_lt_trans with (2:=H5).
apply Zle_trans with 0%Z; auto with zarith.
assert (0 < pPred (vNum b))%Z; auto with zarith.
apply pPredMoreThanOne with radix prec; auto with zarith.
unfold nNormMin; auto with zarith.
apply FPredCanonic; auto with zarith float.
case H4; intros.
assert (FtoRradix (Float 1 (prec-dExp b))=powerRZ radix (prec - dExp b))%R.
unfold FtoRradix, FtoR; simpl; ring.
rewrite <- H7.
unfold FtoRradix; rewrite <- FnormalizeCorrect with radix b prec (Float 1 (prec-dExp b)); auto.
apply FPredProp; auto with zarith.
apply FnormalizeCanonic; auto with zarith.
split; simpl; auto with zarith float.
apply vNumbMoreThanOne with radix prec; auto with zarith.
rewrite FnormalizeCorrect; auto with zarith.
fold FtoRradix; rewrite H7; auto.
assert (c=Float (nNormMin radix prec) (-dExp b+1)).
apply FcanonicUnique with radix b prec; auto with zarith real.
left; split; try split; simpl; auto with zarith float.
rewrite Zabs_eq.
apply ZltNormMinVnum; auto with zarith.
unfold nNormMin; auto with zarith.
rewrite <- PosNormMin with radix b prec; auto with zarith.
fold FtoRradix; rewrite <- H6; unfold FtoRradix, FtoR; simpl.
unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite <- powerRZ_add; auto with real zarith.
replace (pred prec + (- dExp b + 1))%Z with (prec-dExp b)%Z; auto.
rewrite inj_pred; auto with zarith.
absurd (Fnum c = nNormMin radix prec)%Z; auto with zarith.
rewrite H7; simpl; auto.
assert ((nNormMin radix prec < Fnum (FPred b radix prec c)))%Z; auto with zarith.
rewrite FPredSimpl4; auto with zarith.
simpl; unfold Zpred; auto with zarith.
assert (0 < pPred (vNum b))%Z.
apply pPredMoreThanOne with radix prec; auto with zarith.
assert (0 < Fnum c)%Z; auto with zarith.
apply Zle_lt_trans with (2:=H5).
unfold nNormMin; auto with zarith.
intros.
rewrite FPredSimpl4 with (x:=c); auto with zarith.
rewrite FPredSimpl2; auto with zarith.
simpl.
replace (c - powerRZ radix (Fexp c) / 2 -
FtoR radix (Float (pPred (vNum b)) (Zpred (Fexp c))))%R with
(powerRZ radix (Fexp c)* (/2 +/radix))%R.
rewrite Rabs_right; unfold Rdiv.
apply Rmult_le_compat_l; auto with real zarith.
apply Rle_trans with (/2+0)%R; auto with real zarith.
apply Rle_ge; apply Rmult_le_pos; auto with real zarith.
apply Rle_trans with (0+0)%R; auto with real zarith.
apply Rplus_le_compat; auto with real zarith.
unfold FtoRradix, FtoR; simpl.
rewrite <- H5; unfold pPred, Zpred; repeat rewrite plus_IZR; rewrite pGivesBound; simpl.
unfold nNormMin; repeat rewrite Zpower_nat_Z_powerRZ.
rewrite inj_pred; auto with zarith; unfold Zpred.
repeat rewrite powerRZ_add; auto with real zarith; simpl.
field; auto with real zarith.
rewrite <- H5; simpl; unfold Zpred; auto with zarith.
assert (-dExp b < Fexp c)%Z; auto with zarith.
apply GepetaGeExp; auto.
assert (0 < pPred (vNum b))%Z.
apply pPredMoreThanOne with radix prec; auto with zarith.
assert (0 < Fnum c)%Z; auto with zarith.
rewrite <- H5; unfold nNormMin; auto with zarith.
apply Zlt_le_trans with (0+1)%Z; auto with zarith.
case (Zle_lt_or_eq (-dExp b) (Fexp c)); auto.
assert (Fbounded b c); auto with zarith float.
intros; absurd (c < powerRZ radix (prec - dExp b))%R; auto.
apply Rle_not_lt.
unfold FtoRradix, FtoR; simpl.
replace (prec-dExp b)%Z with ((prec-1)+(-dExp b+1))%Z;[idtac| ring].
rewrite powerRZ_add; auto with real zarith.
apply Rmult_le_compat; auto with real zarith.
apply Rle_trans with (nNormMin radix prec).
unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
apply Rle_powerRZ; auto with real zarith.
rewrite inj_pred; auto with zarith.
rewrite <- (Zabs_eq (Fnum c)).
apply Rle_IZR; apply pNormal_absolu_min with b; auto with zarith real.
case H; auto.
intros L; elim L; intros L1 (L2,L3).
Contradict L2; auto with zarith.
apply LeR0Fnum with radix; auto with real zarith.
apply Rle_powerRZ; auto with zarith real.
intros.
exists (FPred b radix prec c); split.
apply FBoundedPred; auto with zarith.
split; auto with real.
apply ClosestSuccPred with prec; auto with zarith.
apply FBoundedPred; auto with zarith.
apply FPredCanonic; auto with zarith.
rewrite FSucPred; fold FtoRradix; auto with zarith.
replace (c - powerRZ radix (Fexp c) / 2 - c)%R with (-(powerRZ radix (Fexp c)/2))%R;[idtac|ring].
rewrite Rabs_Ropp; rewrite (Rabs_right (powerRZ radix (Fexp c) / 2)).
2: apply Rle_ge; unfold Rdiv; apply Rmult_le_pos; auto with real zarith.
rewrite predSmallOnes; auto.
unfold eta; replace (-dExp b)%Z with (Fexp c).
replace (c - powerRZ radix (Fexp c) / 2 - (c - powerRZ radix (Fexp c)))%R with
(powerRZ radix (Fexp c) / 2)%R.
rewrite Rabs_right; auto with real.
apply Rle_ge; unfold Rdiv; apply Rmult_le_pos; auto with real zarith.
field; auto with real.
rewrite Rabs_right; try apply Rle_ge; auto with real.
repeat rewrite predSmallOnes; auto.
unfold eta; rewrite H5.
replace (c - powerRZ radix (Fexp c) / 2 - (c - powerRZ radix (Fexp c)))%R
with (powerRZ radix (Fexp c) */ 2)%R;[idtac|field].
replace (c - powerRZ radix (Fexp c) / 2 -
(c - powerRZ radix (Fexp c) - powerRZ radix (Fexp c)))%R with
((3*powerRZ radix (Fexp c) */ 2))%R;[idtac|field].
repeat rewrite Rabs_right; try apply Rle_ge.
apply Rmult_le_compat_r; auto with real zarith.
apply Rle_trans with (1*powerRZ radix (Fexp c))%R; auto with real.
apply Rmult_le_compat_r; auto with real zarith.
apply Rle_trans with (IZR 3); auto with real zarith.
simpl; right; ring.
repeat apply Rmult_le_pos; auto with real zarith.
apply Rle_trans with (IZR 3); auto with real zarith.
simpl; right; ring.
apply Rmult_le_pos; auto with real zarith.
rewrite Rabs_right; try apply Rle_ge; auto with real.
apply FPredCanonic; auto with zarith.
case (Rle_or_lt 0 (c-eta)); intros.
rewrite Rabs_right;[idtac|apply Rle_ge; auto with real].
apply Rle_lt_trans with (FtoRradix c); auto with real.
apply Rle_trans with (c-0)%R; auto with real.
unfold Rminus, eta; auto with real zarith.
rewrite Rabs_left; auto.
apply Rle_lt_trans with eta.
apply Rle_trans with (eta-c)%R;[right; ring|idtac].
apply Rle_trans with (eta-0)%R;[auto with real|right; ring].
unfold Rminus; apply Rplus_le_compat_l; auto with real.
unfold eta; apply Rlt_powerRZ; auto with zarith real.
rewrite Rabs_right; try apply Rle_ge; auto with real.
rewrite Rabs_right; try apply Rle_ge; auto with real.
Qed.
Lemma Algo1_correct_aux_aux2:forall (c csup:float) (r:R),
Fcanonic radix b c -> (0 <= c)%R ->
(powerRZ radix (Fexp c)/2 < r)%R ->
Closest b radix (c+r) csup ->
(FtoRradix (FSucc b radix prec c) <= csup)%R.
intros.
assert (N:Fbounded b c).
apply FcanonicBound with radix; auto.
generalize ClosestMonotone; unfold MonotoneP; intros.
cut (exists f:float, Fbounded b f /\ (FtoRradix (FSucc b radix prec c) <= f)%R /\
Closest b radix (c+powerRZ radix (Fexp c) / 2)%R f).
intros (f,(L1,(L2,L3))).
apply Rle_trans with (1:=L2).
unfold FtoRradix; apply H3 with b (c+powerRZ radix (Fexp c) / 2)%R (c+r)%R; auto; clear H3.
unfold Rminus; apply Rplus_lt_compat_l; auto with real.
exists (FSucc b radix prec c); split.
apply FBoundedSuc; auto with zarith.
split; auto with real.
apply ClosestSuccPred with prec; auto with zarith.
apply FBoundedSuc; auto with zarith.
apply FSuccCanonic; auto with zarith.
rewrite succNormal; auto with zarith.
replace (c + powerRZ radix (Fexp c) / 2 -
(c + powerRZ radix (Fexp c)))%R with
(-(powerRZ radix (Fexp c)/2))%R.
2: field.
rewrite Rabs_Ropp; rewrite Rabs_right.
2: apply Rle_ge; unfold Rdiv; apply Rmult_le_pos; auto with real zarith.
rewrite succNormal; auto with zarith.
rewrite succNormal; auto with zarith.
replace (c + powerRZ radix (Fexp c) / 2 -
(c + powerRZ radix (Fexp c) +
powerRZ radix (Fexp (FSucc b radix prec c))))%R with
(-(powerRZ radix (Fexp c)/2+powerRZ radix
(Fexp (FSucc b radix prec c))))%R.
2: field.
rewrite Rabs_Ropp; rewrite Rabs_right.
apply Rle_trans with (powerRZ radix (Fexp c) / 2+0)%R; auto with real zarith.
apply Rle_ge; apply Rle_trans with (0+0)%R; auto with real.
apply Rplus_le_compat; auto with real zarith.
unfold Rdiv; apply Rmult_le_pos; auto with real zarith.
apply FSuccCanonic; auto with zarith.
apply Rle_trans with (1:=H0).
left; unfold FtoRradix; apply FSuccLt; auto with zarith.
rewrite FPredSuc; fold FtoRradix; auto with zarith.
replace (c + powerRZ radix (Fexp c) / 2 - c)%R with ((powerRZ radix (Fexp c)/2))%R;[idtac|ring].
rewrite (Rabs_right (powerRZ radix (Fexp c) / 2)).
2: apply Rle_ge; unfold Rdiv; apply Rmult_le_pos; auto with real zarith.
rewrite succNormal; auto.
replace (c + powerRZ radix (Fexp c) / 2 - (c + powerRZ radix (Fexp c)))%R with
(-(powerRZ radix (Fexp c) / 2))%R.
rewrite Rabs_Ropp; rewrite Rabs_right; auto with real.
apply Rle_ge; unfold Rdiv; apply Rmult_le_pos; auto with real zarith.
field; auto with real.
Qed.
Lemma Algo1_correct_aux: forall (c c' e cinf csup:float),
Fcanonic radix b c ->
(0 <= c)%R ->
Closest b radix (phi*c) c' ->
Closest b radix (c'+eta) e ->
Closest b radix (c-e) cinf ->
Closest b radix (c+e) csup ->
(FtoRradix cinf <= FPred b radix prec c)%R
/\ (FtoRradix (FSucc b radix prec c) <= csup)%R .
intros c c' e cinf csup Cc Cpos Hc' He Hcinf Hcsup.
assert (powerRZ radix (Fexp c)/2 < e)%R.
apply eGe with c'; auto.
split.
apply Algo1_correct_aux_aux with e; auto.
apply Algo1_correct_aux_aux2 with e; auto.
Qed.
Lemma PredSucc_Algo1_correct: forall (c c' e cinf csup:float),
Fcanonic radix b c ->
Closest b radix (phi*(Rabs c)) c' ->
Closest b radix (c'+eta) e ->
Closest b radix (c-e) cinf ->
Closest b radix (c+e) csup ->
(FtoRradix cinf <= FPred b radix prec c)%R
/\ (FtoRradix (FSucc b radix prec c) <= csup)%R .
intros c c' e cinf csup Cc Hc' He Hcinf Hcsup.
case (Rle_or_lt 0 c); intros.
apply Algo1_correct_aux with c' e; auto.
rewrite <- (Rabs_right c); auto.
apply Rle_ge; auto.
assert ((Fopp csup <= FPred b radix prec (Fopp c))%R
/\ (FSucc b radix prec (Fopp c) <= (Fopp cinf))%R).
apply Algo1_correct_aux with c' e; auto.
apply FcanonicFopp; auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
replace (FtoRradix (Fopp c)) with (Rabs c); auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
rewrite Rabs_left; auto with real.
replace (Fopp c -e)%R with (-(c+e))%R.
apply ClosestOpp; auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith; ring.
replace (Fopp c +e)%R with (-(c-e))%R.
apply ClosestOpp; auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith; ring.
elim H0; intros L1 L2; clear H0; split; apply Ropp_le_cancel.
rewrite FPredFopFSucc; auto with zarith.
apply Rle_trans with (FSucc b radix prec (Fopp c)).
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
apply Rle_trans with (1:=L2).
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
apply Rle_trans with (Fopp csup).
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
apply Rle_trans with (1:=L1).
rewrite FPredFopFSucc; auto with zarith.
rewrite Fopp_Fopp.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
Qed.
Hypothesis precisionGreaterThanbis : 4 <= prec.
Lemma eLe: forall (c c' e:float),
Fcanonic radix b c ->
(0 <= c)%R ->
Closest b radix (phi*c) c' ->
Closest b radix (c'+eta) e ->
(-dExp b <= Fexp c-2)%Z ->
(e <= powerRZ radix (Fexp c)*(radix/2+powerRZ radix (-2)))%R.
intros c c' e H H0 H1 H2 V.
assert (Bc:(Fbounded b c));[apply FcanonicBound with radix; auto|idtac].
assert (powerRZ radix (Fexp c) * radix / 2=Float radixH (Fexp c))%R.
unfold FtoRradix, FtoR; simpl.
pattern radix at 2; rewrite radixEven; rewrite mult_IZR; simpl; field.
assert (Fbounded b (Float radixH (Fexp c))).
split; simpl.
rewrite Zabs_eq; auto with zarith.
rewrite pGivesBound; apply Zle_lt_trans with (Zpower_nat radix 1); auto with zarith.
apply Zle_trans with radix;[rewrite radixEven| unfold Zpower_nat; simpl]; auto with zarith.
elim Bc; auto.
assert (powerRZ radix (Fexp c) * radix / 2=
Float (radixH*nNormMin radix prec) (Fexp c -prec+1))%R.
unfold FtoRradix, FtoR; simpl.
rewrite mult_IZR; unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite Rmult_assoc; rewrite <- powerRZ_add; auto with real zarith.
replace (pred prec + (Fexp c - prec + 1))%Z with (Fexp c).
rewrite radixEven; rewrite mult_IZR; simpl; field.
rewrite inj_pred; auto with zarith.
assert ( (-dExp b <= Fexp c -prec+1)%Z
-> (Fnormal radix b (Float (radixH*nNormMin radix prec)
(Fexp c -prec+1)))).
intros I; split; try split; simpl; auto with zarith.
rewrite Zabs_eq.
unfold nNormMin; rewrite pGivesBound.
apply Zlt_le_trans with (radix*Zpower_nat radix (pred prec))%Z; auto with zarith.
apply Zmult_gt_0_lt_compat_r; auto with zarith.
apply Zlt_gt; auto with zarith.
pattern radix at 1; replace radix with (Zpower_nat radix 1).
rewrite <- Zpower_nat_is_exp; auto with zarith.
unfold Zpower_nat; simpl; auto with zarith.
unfold nNormMin; auto with zarith.
rewrite Zabs_eq.
replace (radix * (radixH * nNormMin radix prec))%Z with
(radixH * (radix * nNormMin radix prec))%Z;[idtac| ring].
rewrite <- (PosNormMin radix b prec); auto with zarith.
apply Zle_trans with (1*Zpos (vNum b) )%Z; auto with zarith.
unfold nNormMin; auto with zarith.
assert (powerRZ radix (Fexp c) * radix / 2 =
(Float (radixH * nNormMin radix prec) (Fexp c - prec + 1)))%R.
unfold FtoRradix, FtoR; simpl.
rewrite mult_IZR; unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite Rmult_assoc; rewrite <- powerRZ_add; auto with real zarith.
replace (IZR radixH) with (radix/2)%R.
replace (pred prec + (Fexp c - prec + 1))%Z with (Fexp c); [unfold Rdiv; ring|idtac].
rewrite inj_pred; auto with zarith; unfold Zpred; ring.
rewrite radixEven; rewrite mult_IZR; simpl; field.
assert (c' <= powerRZ radix (Fexp c) * radix / 2)%R.
rewrite H3.
unfold FtoRradix; rewrite <- FnormalizeCorrect with radix b prec (Float radixH (Fexp c)); auto.
generalize ClosestMonotone; unfold MonotoneP; intros T.
apply T with b (phi*c)%R
(powerRZ radix (Fexp c)*(radixH+powerRZ radix (1-prec) /2))%R; auto; clear T.
apply Rle_lt_trans with (phi*((powerRZ radix prec -1)*powerRZ radix (Fexp c)))%R.
apply Rmult_le_compat_l.
left; apply phi_Pos.
unfold FtoRradix, FtoR; simpl; apply Rmult_le_compat_r; auto with real zarith.
apply Rle_trans with (Zpred (Zpos (vNum b))).
apply Rle_IZR.
assert (Fnum c < (Zpos (vNum b)))%Z; auto with zarith float.
apply Zle_lt_trans with (Zabs (Fnum c)); auto with zarith float.
unfold Zpred; rewrite plus_IZR; rewrite pGivesBound; rewrite Zpower_nat_Z_powerRZ.
simpl; right; ring.
apply Rle_lt_trans with (powerRZ radix (Fexp c)*(phi*(powerRZ radix prec - 1)))%R;[right; ring|idtac].
apply Rmult_lt_compat_l; auto with real zarith.
unfold phi.
apply Rle_lt_trans with ((radixH+radix*u)*(1-powerRZ radix (-prec)))%R.
right; apply trans_eq with ((radixH + radix * u)*
(powerRZ radix prec*u - u))%R;[ring|unfold u].
replace (powerRZ radix prec * powerRZ radix (- prec))%R with 1%R; auto with real.
rewrite <- powerRZ_add; auto with real zarith.
replace (prec+-prec)%Z with 0%Z; simpl; auto with zarith.
apply Rle_lt_trans with (radixH+((radix*u-radixH*powerRZ radix (-prec))-radix*u
*powerRZ radix (-prec)))%R;[right; ring|idtac].
apply Rplus_lt_compat_l.
replace (IZR radixH) with (radix/2)%R.
replace (radix * u - radix/2 * powerRZ radix (- prec))%R with
(powerRZ radix (1 - prec) / 2)%R.
apply Rlt_le_trans with (powerRZ radix (1 - prec) / 2-0)%R;[idtac|right; ring].
unfold Rminus; apply Rplus_lt_compat_l; apply Ropp_lt_contravar.
apply Rle_lt_trans with (radix*u*0)%R;[right; ring|idtac].
unfold u; apply Rmult_lt_compat_l; auto with real zarith.
apply Rle_lt_trans with (radix*0)%R;[right; ring|idtac].
apply Rmult_lt_compat_l; auto with real zarith.
unfold u, Zminus; rewrite powerRZ_add; auto with real zarith.
simpl; field.
rewrite radixEven; rewrite mult_IZR; simpl; field; auto with real.
apply ClosestSuccPred with prec; auto with zarith real float.
rewrite FnormalizeCorrect; auto with zarith.
fold FtoRradix; rewrite <- H3.
replace (powerRZ radix (Fexp c) * (radixH + powerRZ radix (1 - prec) / 2) -
powerRZ radix (Fexp c) * radix / 2)%R with
(powerRZ radix (Fexp c)*powerRZ radix (1 - prec) / 2)%R.
2: replace (IZR radixH) with (radix/2)%R;[field|idtac].
2:rewrite radixEven; rewrite mult_IZR; simpl; field.
rewrite Rabs_right.
2: apply Rle_ge; unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
rewrite succNormal; auto with zarith float.
unfold FtoRradix; rewrite FnormalizeCorrect; auto with zarith.
fold FtoRradix; rewrite <- H3.
replace (powerRZ radix (Fexp c) * (radixH + powerRZ radix (1 - prec) / 2) -
(powerRZ radix (Fexp c) * radix / 2 +
powerRZ radix (Fexp (Fnormalize radix b prec (Float radixH (Fexp c))))))%R
with (powerRZ radix (Fexp c)*powerRZ radix (1 - prec) / 2
- powerRZ radix (Fexp (Fnormalize radix b prec (Float radixH (Fexp c)))))%R.
case (Zle_or_lt (- dExp b) (Fexp c - prec + 1)); intros I.
replace (Fnormalize radix b prec (Float radixH (Fexp c))) with
(Float (radixH * nNormMin radix prec) (Fexp c - prec + 1)).
simpl ((Fexp (Float (radixH * nNormMin radix prec) (Fexp c - prec + 1)))).
replace (powerRZ radix (Fexp c) * powerRZ radix (1 - prec) / 2 -
powerRZ radix (Fexp c - prec + 1))%R with
(-(powerRZ radix (Fexp c) * powerRZ radix (1 - prec) / 2))%R.
rewrite Rabs_Ropp.
rewrite Rabs_right; auto with real.
apply Rle_ge; unfold Rdiv;repeat apply Rmult_le_pos; auto with real zarith.
replace (Fexp c - prec + 1)%Z with (Fexp c+(1-prec))%Z;[idtac| ring].
rewrite powerRZ_add; auto with real zarith; field.
apply FcanonicUnique with radix b prec; auto with zarith float.
left; apply H6; auto.
rewrite FnormalizeCorrect; auto with zarith float; fold FtoRradix; rewrite <- H5;auto.
rewrite Rabs_left1.
apply Rplus_le_reg_l with
(powerRZ radix (Fexp c) * powerRZ radix (1 - prec) / 2)%R.
apply Rle_trans with (powerRZ radix (Fexp c) * powerRZ radix (1 - prec))%R.
right; field.
apply Rle_trans with
(powerRZ radix (Fexp (Fnormalize radix b prec (Float radixH (Fexp c)))))%R;[idtac|right; ring].
rewrite <- powerRZ_add; auto with real zarith.
apply Rle_powerRZ; auto with real zarith.
apply Zle_trans with (-dExp b)%Z; auto with zarith.
assert (Fbounded b (Fnormalize radix b prec (Float radixH (Fexp c)))); auto with zarith float.
apply Rplus_le_reg_l with
(powerRZ radix (Fexp (Fnormalize radix b prec (Float radixH (Fexp c))))).
ring_simplify.
apply Rle_trans with (powerRZ radix (Fexp c) * powerRZ radix (1 - prec))%R.
unfold Rdiv; apply Rle_trans with (powerRZ radix (Fexp c) * powerRZ radix (1 - prec) *1)%R;[idtac|right; ring].
apply Rmult_le_compat_l; [apply Rmult_le_pos; auto with real zarith|idtac].
apply Rle_trans with (/1)%R; auto with real.
rewrite <- powerRZ_add; auto with real zarith.
apply Rle_powerRZ; auto with real zarith.
apply Zle_trans with (-dExp b)%Z; auto with zarith.
assert (Fbounded b (Fnormalize radix b prec (Float radixH (Fexp c)))); auto with zarith float.
replace (IZR radixH) with (radix/2)%R;[field|idtac].
rewrite radixEven; rewrite mult_IZR; simpl; field.
unfold FtoRradix; rewrite FnormalizeCorrect; auto with zarith.
fold FtoRradix; rewrite <- H3.
unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
rewrite FnormalizeCorrect; auto with zarith.
fold FtoRradix; rewrite <- H3.
replace (powerRZ radix (Fexp c) * (radixH + powerRZ radix (1 - prec) / 2) -
powerRZ radix (Fexp c) * radix / 2)%R with
(powerRZ radix (Fexp c)*powerRZ radix (1 - prec) / 2)%R.
2: replace (IZR radixH) with (radix/2)%R;[field|idtac].
2:rewrite radixEven; rewrite mult_IZR; simpl; field.
rewrite Rabs_right.
2: apply Rle_ge; unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
case (Zle_or_lt (- dExp b) (Fexp c - prec + 1)); intros I.
replace (Fnormalize radix b prec (Float radixH (Fexp c)))
with (Float (radixH * nNormMin radix prec) (Fexp c - prec + 1)).
2: apply FcanonicUnique with radix b prec; auto with zarith float.
2: left; apply H6; auto.
2: rewrite FnormalizeCorrect; auto with zarith float; fold FtoRradix; rewrite <- H5;auto.
case (Rle_or_lt (powerRZ radix (prec - dExp b))
(powerRZ radix (Fexp c) * radix / 2)); intros M.
case (Z_eq_dec (radixH * nNormMin radix prec) (nNormMin radix prec)); intros N.
rewrite predNormal1; auto.
rewrite <- H7.
simpl ((Fexp (Float (radixH * nNormMin radix prec) (Fexp c - prec + 1)))).
replace (powerRZ radix (Fexp c) * (radixH + powerRZ radix (1 - prec) / 2) -
(powerRZ radix (Fexp c) * radix / 2 -
powerRZ radix (Fexp c - prec + 1 - 1)))%R with
((powerRZ radix (Fexp c) *powerRZ radix (1 - prec)) *(/ 2+/radix))%R.
rewrite Rabs_right.
unfold Rdiv; apply Rmult_le_compat_l.
apply Rmult_le_pos; auto with real zarith.
apply Rle_trans with (/2+0)%R; auto with real zarith.
apply Rle_ge; repeat apply Rmult_le_pos; auto with real zarith.
apply Rle_trans with (0+0)%R; try apply Rplus_le_compat; auto with real zarith.
replace (Fexp c - prec + 1-1)%Z with (Fexp c+(1-prec)+(-1))%Z;[idtac|ring].
repeat rewrite powerRZ_add; auto with real zarith.
simpl (powerRZ radix (-1)).
replace (IZR radixH) with (radix/2)%R;[field; auto with real zarith|idtac].
rewrite radixEven; rewrite mult_IZR; simpl; field.
left; auto.
rewrite <- H7; auto.
rewrite predNormal2; auto.
rewrite <- H7.
simpl ((Fexp (Float (radixH * nNormMin radix prec) (Fexp c - prec + 1)))).
replace (powerRZ radix (Fexp c) * (radixH + powerRZ radix (1 - prec) / 2) -
(powerRZ radix (Fexp c) * radix / 2 - powerRZ radix (Fexp c - prec + 1)))%R
with ((3*(powerRZ radix (Fexp c) * powerRZ radix (1 - prec)/ 2)))%R.
rewrite Rabs_right; auto with real.
apply Rle_trans with (1*(powerRZ radix (Fexp c) * powerRZ radix (1 - prec) / 2))%R;
[right; ring|apply Rmult_le_compat_r].
unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
apply Rle_trans with (IZR 3); auto with real zarith; simpl; right; ring.
unfold Rdiv; apply Rle_ge; repeat apply Rmult_le_pos; auto with real zarith.
apply Rle_trans with (IZR 3); auto with real zarith; simpl; right; ring.
replace (Fexp c - prec + 1)%Z with (Fexp c+(1-prec))%Z;[idtac| ring].
rewrite powerRZ_add; auto with real zarith.
replace (IZR radixH) with (radix/2)%R;[field|idtac].
rewrite radixEven; rewrite mult_IZR; simpl; field.
left; auto.
rewrite <- H7; auto.
rewrite predSmallOnes.
rewrite <- H7.
replace (powerRZ radix (Fexp c) * (radixH + powerRZ radix (1 - prec) / 2) -
(powerRZ radix (Fexp c) * radix / 2 - eta))%R with
(powerRZ radix (Fexp c) * powerRZ radix (1 - prec) / 2 +eta)%R.
rewrite Rabs_right.
apply Rle_trans with (powerRZ radix (Fexp c) * powerRZ radix (1 - prec) / 2+0)%R; auto with real.
apply Rplus_le_compat_l.
unfold eta; auto with real zarith.
apply Rle_ge; apply Rle_trans with (0+0)%R; auto with real.
apply Rplus_le_compat; try unfold eta; auto with real zarith.
unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
replace (IZR radixH) with (radix/2)%R;[field|idtac].
rewrite radixEven; rewrite mult_IZR; simpl; field.
left; auto.
rewrite <- H7; auto.
rewrite Rabs_right; auto.
apply Rle_ge; unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
rewrite predSmallOnes.
unfold FtoRradix; rewrite FnormalizeCorrect; auto with zarith.
fold FtoRradix; rewrite <- H3.
replace (powerRZ radix (Fexp c) * (radixH + powerRZ radix (1 - prec) / 2) -
(powerRZ radix (Fexp c) * radix / 2 - eta))%R with
(powerRZ radix (Fexp c) * powerRZ radix (1 - prec) / 2 +eta)%R.
rewrite Rabs_right.
apply Rle_trans with (powerRZ radix (Fexp c) * powerRZ radix (1 - prec) / 2+0)%R; auto with real.
apply Rplus_le_compat_l.
unfold eta; auto with real zarith.
apply Rle_ge; apply Rle_trans with (0+0)%R; auto with real.
apply Rplus_le_compat; try unfold eta; auto with real zarith.
unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
replace (IZR radixH) with (radix/2)%R;[field|idtac].
rewrite radixEven; rewrite mult_IZR; simpl; field.
apply FnormalizeCanonic; auto with zarith.
unfold FtoRradix; rewrite FnormalizeCorrect; auto with zarith.
fold FtoRradix; rewrite <- H3.
rewrite Rabs_right.
apply Rlt_le_trans with (powerRZ radix (Fexp c+1)).
rewrite powerRZ_add; auto with real zarith.
unfold Rdiv; rewrite Rmult_assoc; apply Rmult_lt_compat_l; auto with real zarith.
simpl; apply Rmult_lt_compat_l; auto with real zarith.
apply Rlt_le_trans with (/1)%R; auto with real.
apply Rle_powerRZ; auto with real zarith.
apply Rle_ge; unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
assert (powerRZ radix (Fexp c-1) <= c')%R.
apply Rle_trans with (Float 1 (Fexp c -1)).
right; unfold FtoRradix, FtoR; simpl; ring.
unfold FtoRradix; apply RleBoundRoundl with b prec (Closest b radix) (phi*c)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith float.
apply vNumbMoreThanOne with radix prec; auto with zarith.
unfold FtoRradix, FtoR, Zminus; simpl; rewrite powerRZ_add; auto with real zarith.
apply Rle_trans with (/radix*powerRZ radix (Fexp c))%R.
simpl; right; field; auto with real zarith.
rewrite <- Rmult_assoc; apply Rmult_le_compat_r; auto with real zarith.
apply Rle_trans with (phi*nNormMin radix prec)%R.
unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
unfold phi, u.
apply Rle_trans with (radixH*(powerRZ radix (-prec)
*powerRZ radix (pred prec))+radix*(powerRZ radix (-prec)
*powerRZ radix (pred prec)*powerRZ radix (-prec)))%R;
[idtac|right; ring].
repeat rewrite <- powerRZ_add; auto with real zarith.
apply Rle_trans with (/radix+0)%R; auto with real; apply Rplus_le_compat.
apply Rle_trans with (1*/radix)%R; auto with real.
apply Rmult_le_compat; auto with real zarith.
rewrite inj_pred; auto with zarith; unfold Zpred.
replace (-prec+(prec+-1))%Z with (-1)%Z;[idtac|ring].
simpl; right; field; auto with real zarith.
apply Rmult_le_pos; auto with real zarith.
apply Rmult_le_compat_l.
left; apply phi_Pos.
rewrite <- (Zabs_eq (Fnum c)).
apply Rle_IZR.
apply pNormal_absolu_min with b; auto with zarith.
case H; auto; intros H2'; elim H2'; intros H3' (H4',H5').
absurd (-dExp b <Fexp c)%Z; auto with zarith.
apply LeR0Fnum with radix; auto with zarith.
assert (powerRZ radix (Fexp c) * (radix / 2 + powerRZ radix (- 2))
= Float (radixH * radix*radix + 1) (Fexp c-2))%R.
unfold FtoRradix, FtoR.
apply trans_eq with ((radixH *radix*radix + 1) %Z*
powerRZ radix (Fexp c - 2))%R; auto with real.
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
rewrite plus_IZR; rewrite mult_IZR; rewrite mult_IZR.
replace (IZR radixH) with (radix/2)%R.
simpl; field; auto with real zarith.
rewrite radixEven; rewrite mult_IZR; simpl; field.
assert (Fbounded b
(Float (radixH * radix*radix+ 1) (Fexp c - 2))).
split; simpl; auto with zarith.
rewrite Zabs_eq; auto with zarith.
rewrite pGivesBound; apply Zlt_le_trans with (Zpower_nat radix 3); auto with zarith.
replace (Zpower_nat radix 3) with ((radixH * radix * radix+radixH * radix * radix))%Z.
apply Zplus_lt_compat_l; auto with zarith.
apply Zlt_le_trans with (1*2*2)%Z; auto with zarith.
repeat apply Zmult_le_compat; auto with zarith.
unfold Zpower_nat; simpl.
repeat rewrite radixEven; ring.
rewrite H10.
apply RleBoundRoundr with b prec (Closest b radix) (c'+eta)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
fold FtoRradix; rewrite <- H10.
apply Rle_trans with (powerRZ radix (Fexp c) * radix / 2+
powerRZ radix (Fexp c)*powerRZ radix (- 2))%R;[idtac|right; unfold Rdiv;ring].
apply Rplus_le_compat; auto.
unfold eta; rewrite <- powerRZ_add; auto with real zarith.
apply Rle_powerRZ; auto with real zarith.
Qed.
Lemma Algo1_correct_r2_aux_aux1:forall (c cinf:float) (r:R),
(radix=2)%Z ->
Fcanonic radix b c -> (0 <= c)%R ->
(Fnum c <> nNormMin radix prec) ->
(Fnum c <> nNormMin radix prec+1)%Z ->
(r <= 5/4*powerRZ radix (Fexp c))%R ->
Closest b radix (c-r) cinf ->
(FtoRradix (FPred b radix prec c) <= cinf)%R.
intros c cinf r K; intros.
assert (Bc:(Fbounded b c));[apply FcanonicBound with radix; auto|idtac].
assert (G1:(0 < 4)%R).
apply Rlt_le_trans with (IZR 4); auto with real zarith; simpl; right; ring.
assert (G2:(0 < 5)%R).
apply Rlt_le_trans with (IZR 5); auto with real zarith; simpl; right; ring.
assert (FtoRradix (FPred b radix prec c) = c -powerRZ radix (Fexp c))%R.
rewrite FPredSimpl4; auto.
unfold FtoRradix, FtoR, Zpred; simpl.
rewrite plus_IZR; simpl; ring.
assert (-pPred (vNum b) < Fnum c)%Z; auto with zarith float.
apply Zlt_le_trans with 0%Z.
assert (0 < pPred (vNum b))%Z; auto with zarith float.
apply pPredMoreThanOne with radix prec; auto with zarith.
apply LeR0Fnum with radix ; auto with real zarith.
assert (c - 5 / 4 * powerRZ radix (Fexp c) - FtoR radix (FPred b radix prec c)
= (-(/4 * powerRZ radix (Fexp c))))%R.
fold FtoRradix; rewrite H5; field.
unfold FtoRradix; apply ClosestStrictMonotone2l with b prec (c-r)%R (c-5 / 4 * powerRZ radix (Fexp c))%R; auto with zarith.
apply FPredCanonic; auto with zarith.
rewrite H6; rewrite Rabs_Ropp.
rewrite Rabs_right;[idtac|apply Rle_ge; apply Rmult_le_pos; auto with real zarith].
rewrite FSucPred; auto with zarith; fold FtoRradix.
replace (c - 5 / 4 * powerRZ radix (Fexp c) - c)%R with (-(5/4*powerRZ radix (Fexp c)))%R by ring.
rewrite Rabs_Ropp; rewrite Rabs_right.
apply Rmult_lt_compat_r; auto with real zarith.
unfold Rdiv; apply Rle_lt_trans with (1*/4)%R; auto with real.
apply Rmult_lt_compat_r; auto with real.
apply Rlt_le_trans with (IZR 5); auto with real zarith; simpl; right; ring.
apply Rle_ge; unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
rewrite H6; rewrite Rabs_Ropp.
rewrite Rabs_right;[idtac|apply Rle_ge; apply Rmult_le_pos; auto with real zarith].
assert ((FtoRradix (FPred b radix prec (FPred b radix prec c)) =
c-2*powerRZ radix (Fexp c)))%R.
assert (FPred b radix prec c = Float (Zpred (Fnum c)) (Fexp c)).
rewrite FPredSimpl4; auto with zarith.
assert (-pPred (vNum b) < Fnum c)%Z; auto with zarith float.
apply Zlt_le_trans with 0%Z.
assert (0 < pPred (vNum b))%Z; auto with zarith float.
apply pPredMoreThanOne with radix prec; auto with zarith.
apply LeR0Fnum with radix ; auto with real zarith.
rewrite H7; rewrite FPredSimpl4; auto with zarith.
unfold FtoRradix, FtoR; simpl.
unfold Zpred; repeat rewrite plus_IZR; simpl; ring.
simpl.
assert (-pPred (vNum b) < (Zpred (Fnum c)))%Z; auto with zarith float.
apply Zlt_le_trans with (Zpred 0)%Z; unfold pPred, Zpred.
assert (2 < Zpos (vNum b))%Z; auto with zarith float.
rewrite pGivesBound; apply Zle_lt_trans with (Zpower_nat radix 1); auto with zarith.
unfold Zpower_nat; simpl; auto with zarith.
assert (0 <= Fnum c)%Z; auto with zarith.
apply LeR0Fnum with radix ; auto with real zarith.
simpl; auto with zarith.
fold FtoRradix; rewrite H7.
replace (c - 5 / 4 * powerRZ radix (Fexp c) - (c - 2 * powerRZ radix (Fexp c)))%R
with ( 3/ 4 * powerRZ radix (Fexp c))%R by field.
rewrite Rabs_right; auto with real.
apply Rmult_lt_compat_r; auto with real zarith.
unfold Rdiv; apply Rle_lt_trans with (1*/4)%R; auto with real.
apply Rmult_lt_compat_r; auto with real.
apply Rlt_le_trans with (IZR 3); auto with real zarith; simpl; right; ring.
apply Rle_ge; unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
apply Rle_trans with (IZR 3); auto with real zarith; simpl; right; ring.
unfold Rminus; apply Rplus_le_compat_l; auto with real.
Qed.
Lemma Algo1_correct_r2_aux_aux2:forall (c c' e cinf:float),
(radix=2)%Z ->
Fcanonic radix b c -> (0 <= c)%R ->
(Fnum c = nNormMin radix prec+1)%Z ->
(-dExp b <= Fexp c-2)%Z ->
Closest b radix (phi*c) c' ->
Closest b radix (c'+eta) e ->
Closest b radix (c-e) cinf ->
(FtoRradix (FPred b radix prec c) <= cinf)%R.
intros.
assert (Bc:(Fbounded b c));[apply FcanonicBound with radix; auto|idtac].
assert (G1:(0 < 4)%R).
apply Rlt_le_trans with (IZR 4); auto with real zarith; simpl; right; ring.
assert (G2:(0 < 5)%R).
apply Rlt_le_trans with (IZR 5); auto with real zarith; simpl; right; ring.
generalize ClosestMonotone; unfold MonotoneP; intros T.
unfold FtoRradix; apply T with b (c-5 / 4 * powerRZ radix (Fexp c))%R (c-e)%R; auto.
unfold Rminus; apply Rplus_lt_compat_l; auto with real.
apply Ropp_lt_contravar.
apply Rle_lt_trans with (Float 1 (Fexp c)).
apply RleBoundRoundr with b prec (Closest b radix) (c'+eta)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith float.
apply vNumbMoreThanOne with radix prec; auto with zarith.
apply Rle_trans with (FtoRradix (Float 3 (Fexp c-2))+powerRZ radix (Fexp c -2))%R.
apply Rplus_le_compat.
apply RleBoundRoundr with b prec (Closest b radix) (phi*c)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith float.
rewrite pGivesBound; apply Zlt_le_trans with (Zpower_nat radix 2); auto with zarith.
unfold Zpower_nat; rewrite H; simpl; auto with zarith.
unfold FtoRradix, FtoR; simpl.
rewrite H2; unfold phi, u.
rewrite plus_IZR; unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
replace radixH with 1%Z; auto with zarith.
replace (radix*powerRZ radix (- prec))%R with (powerRZ radix (1-prec)).
apply Rle_trans with
(powerRZ radix (Fexp c) *(powerRZ radix (-prec)*
((powerRZ radix (pred prec) +1 +
powerRZ radix (1 - prec)*powerRZ radix (pred prec) +
powerRZ radix (1 - prec)))))%R;[right; simpl; ring|idtac].
rewrite inj_pred; auto with zarith; unfold Zpred.
replace (powerRZ radix (1 - prec) * powerRZ radix (prec + -1))%R
with 1%R.
apply Rle_trans with (powerRZ radix (Fexp c) *(3/4))%R.
apply Rmult_le_compat_l; auto with real zarith.
apply Rle_trans with (powerRZ radix (- prec) *
powerRZ radix (prec + -1) + (2* powerRZ radix (- prec)
+ powerRZ radix (- prec)*powerRZ radix (1 - prec)))%R;[right; ring|idtac].
repeat rewrite <- powerRZ_add; auto with real zarith.
apply Rle_trans with (/2+/4)%R;[apply Rplus_le_compat|right; field].
replace (- prec + (prec + -1))%Z with (-1)%Z by ring.
simpl; rewrite H; simpl; right; field.
apply Rle_trans with
(2 * powerRZ radix (- 4) + powerRZ radix (- 4))%R.
apply Rplus_le_compat.
apply Rmult_le_compat_l; auto with real zarith.
apply Rle_powerRZ; auto with real zarith.
apply Rle_powerRZ; auto with real zarith.
rewrite H; simpl; apply Rmult_le_reg_l with (IZR 16); auto with real zarith.
apply Rle_trans with (IZR 3);[right; simpl; field|idtac].
apply Rle_trans with (IZR 4);[auto with real zarith|right; simpl; field].
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; right; field.
rewrite <- powerRZ_add; auto with real zarith.
replace (1 - prec + (prec + -1))%Z with 0%Z by ring; simpl; ring.
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
unfold eta; apply Rle_powerRZ; auto with real zarith.
unfold FtoRradix, FtoR; simpl.
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; right; field.
unfold FtoRradix, FtoR; simpl; apply Rmult_lt_compat_r; auto with real zarith.
apply Rle_lt_trans with (4/4)%R; auto with real.
right; field.
unfold Rdiv; apply Rmult_lt_compat_r; auto with real.
replace 5%R with (IZR 5);[idtac|simpl; ring].
replace 4%R with (IZR 4);[auto with real zarith|simpl; ring].
assert (FtoRradix (FPred b radix prec c) = c -powerRZ radix (Fexp c))%R.
rewrite FPredSimpl4; auto.
unfold FtoRradix, FtoR, Zpred; simpl.
rewrite plus_IZR; simpl; ring.
assert (-pPred (vNum b) < Fnum c)%Z; auto with zarith float.
apply Zlt_le_trans with 0%Z.
assert (0 < pPred (vNum b))%Z; auto with zarith float.
apply pPredMoreThanOne with radix prec; auto with zarith.
apply LeR0Fnum with radix ; auto with real zarith.
rewrite H2; auto with zarith.
assert (c - 5 / 4 * powerRZ radix (Fexp c) - FtoR radix (FPred b radix prec c)
= (-(/4 * powerRZ radix (Fexp c))))%R.
fold FtoRradix; rewrite H7; field.
apply ClosestSuccPred with prec; auto with zarith.
apply FBoundedPred; auto with zarith.
apply FPredCanonic; auto with zarith.
rewrite H8; rewrite Rabs_Ropp.
rewrite Rabs_right;[idtac|apply Rle_ge; apply Rmult_le_pos; auto with real zarith].
rewrite FSucPred; auto with zarith; fold FtoRradix.
replace (c - 5 / 4 * powerRZ radix (Fexp c) - c)%R with (-(5/4*powerRZ radix (Fexp c)))%R by ring.
rewrite Rabs_Ropp; rewrite Rabs_right.
apply Rmult_le_compat_r; auto with real zarith.
unfold Rdiv; apply Rle_trans with (1*/4)%R; auto with real.
apply Rmult_le_compat_r; auto with real.
apply Rle_trans with (IZR 5); auto with real zarith; simpl; right; ring.
apply Rle_ge; unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
rewrite H8; rewrite Rabs_Ropp.
rewrite Rabs_right;[idtac|apply Rle_ge; apply Rmult_le_pos; auto with real zarith].
assert (FPred b radix prec c=Float (nNormMin radix prec) (Fexp c)).
rewrite FPredSimpl4; auto with zarith.
replace (Zpred (Fnum c)) with (nNormMin radix prec); auto.
rewrite H2; unfold Zpred; ring.
assert (-pPred (vNum b) < Fnum c)%Z; auto with zarith float.
apply Zlt_le_trans with 0%Z.
assert (0 < pPred (vNum b))%Z; auto with zarith float.
apply pPredMoreThanOne with radix prec; auto with zarith.
apply LeR0Fnum with radix ; auto with real zarith.
assert ((FtoRradix (FPred b radix prec (FPred b radix prec c)) =
c-3/2*powerRZ radix (Fexp c)))%R.
rewrite H9; rewrite FPredSimpl2; auto with zarith.
unfold FtoRradix, FtoR; simpl.
rewrite H2; unfold pPred, Zpred; repeat rewrite plus_IZR; rewrite pGivesBound.
unfold nNormMin; repeat rewrite Zpower_nat_Z_powerRZ; simpl.
rewrite inj_pred; auto with zarith; unfold Zpred.
repeat rewrite powerRZ_add; auto with real zarith.
simpl; rewrite H; simpl; field.
simpl; auto with zarith.
fold FtoRradix; rewrite H10.
replace (c - 5 / 4 * powerRZ radix (Fexp c) - (c - 3/2 * powerRZ radix (Fexp c)))%R
with ( / 4 * powerRZ radix (Fexp c))%R by field.
rewrite Rabs_right; auto with real.
apply Rle_ge; unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
Qed.
Lemma Algo1_correct_r2_aux_aux3:forall (c c' e cinf:float),
(radix=2)%Z ->
Fcanonic radix b c -> (0 <= c)%R ->
(-dExp b <= Fexp c-3)%Z ->
(Fnum c = nNormMin radix prec) ->
Closest b radix (phi*c) c' ->
Closest b radix (c'+eta) e ->
Closest b radix (c-e) cinf ->
(prec=4 -> EvenClosest b radix prec (phi*c)%R c'
\/ AFZClosest b radix (c-e)%R cinf) ->
(FtoRradix (FPred b radix prec c) <= cinf)%R.
intros c c' e cinf H H0 H1 H2 H3 H4 H5 H6 MM.
assert (FtoRradix (FPred b radix prec c) = (c-/2*powerRZ radix (Fexp c)))%R.
rewrite FPredSimpl2; auto with zarith.
unfold FtoRradix, FtoR, pPred, Zpred.
rewrite pGivesBound; rewrite H3; simpl.
rewrite plus_IZR; unfold nNormMin; repeat rewrite Zpower_nat_Z_powerRZ.
rewrite inj_pred; auto with zarith; unfold Zpred.
repeat rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; field.
case (Zle_or_lt (-dExp b) (Fexp c -prec)); intros I.
assert (c - / 2 * powerRZ radix (Fexp c) - powerRZ radix (Fexp c + 1 - prec) -
FtoR radix (FPred b radix prec c) =
(-powerRZ radix (Fexp c + 1 - prec)))%R.
fold FtoRradix; rewrite H7; ring.
unfold FtoRradix; apply ClosestStrictMonotone2l with b prec (c-e)%R (c-/2*powerRZ radix (Fexp c) - powerRZ radix (Fexp c +1-prec))%R; auto with zarith.
apply FPredCanonic; auto with zarith.
rewrite H8; rewrite Rabs_Ropp; rewrite Rabs_right.
2: apply Rle_ge; auto with real zarith.
rewrite FSucPred; auto with zarith; fold FtoRradix.
replace (c - / 2 * powerRZ radix (Fexp c) - powerRZ radix (Fexp c + 1 - prec) - c)%R with
(-(/ 2 * powerRZ radix (Fexp c) + powerRZ radix (Fexp c + 1 - prec)))%R by ring.
rewrite Rabs_Ropp; rewrite Rabs_right.
apply Rle_lt_trans with (0+powerRZ radix (Fexp c + 1 - prec))%R;[right; ring|idtac].
apply Rplus_lt_compat_r; auto with real zarith.
apply Rle_lt_trans with (/2*0)%R; try apply Rmult_lt_compat_l; auto with real zarith.
apply Rle_ge; apply Rle_trans with (0+0)%R; try apply Rplus_le_compat; auto with real zarith.
apply Rmult_le_pos; auto with real zarith.
rewrite H8; rewrite Rabs_Ropp; rewrite Rabs_right.
2: apply Rle_ge; auto with real zarith.
rewrite FPredSimpl2 with b radix prec c; auto with zarith.
rewrite FPredSimpl4; simpl; auto with zarith.
replace (FtoR radix (Float (Zpred (pPred (vNum b))) (Zpred (Fexp c)))) with
(c-powerRZ radix (Fexp c))%R.
replace (c - / 2 * powerRZ radix (Fexp c) - powerRZ radix (Fexp c + 1 - prec) -
(c - powerRZ radix (Fexp c)))%R with
(/ 2 * powerRZ radix (Fexp c) - powerRZ radix (Fexp c + 1 - prec))%R by field.
rewrite Rabs_right.
apply Rplus_lt_reg_r with (powerRZ radix (Fexp c + 1 - prec)).
apply Rmult_lt_reg_l with 2%R; auto with real.
apply Rle_lt_trans with (4*powerRZ radix (Fexp c + 1 - prec))%R;[right; field|idtac].
apply Rle_lt_trans with (powerRZ radix (Fexp c + 3 - prec)).
right; unfold Zminus; repeat rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; ring.
apply Rlt_le_trans with (powerRZ radix (Fexp c));[idtac|right; field].
apply Rlt_powerRZ; auto with real zarith.
apply Rle_ge; apply Rplus_le_reg_l with (powerRZ radix (Fexp c + 1 - prec)).
ring_simplify.
apply Rle_trans with (powerRZ radix (Fexp c -1)); auto with real zarith.
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; right; field.
unfold FtoRradix, FtoR; simpl.
rewrite H3; unfold pPred; rewrite pGivesBound.
unfold nNormMin, Zpred; repeat rewrite plus_IZR.
repeat rewrite Zpower_nat_Z_powerRZ; simpl.
rewrite inj_pred; auto with zarith; unfold Zpred.
repeat rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; field.
assert (0 < pPred (vNum b))%Z; auto with zarith.
apply pPredMoreThanOne with radix prec; auto with zarith.
assert (nNormMin radix prec < pPred (vNum b))%Z; auto with zarith.
apply nNormMimLtvNum; auto with zarith.
unfold Rminus; rewrite Rplus_assoc; apply Rplus_le_compat_l.
apply Rle_trans with (-(/ 2 * powerRZ radix (Fexp c)
+powerRZ radix (Fexp c + 1 - prec)))%R;[right; ring|idtac].
apply Ropp_le_contravar.
assert (/ 2 * powerRZ radix (Fexp c) + powerRZ radix (Fexp c + 1 - prec)
= Float (nNormMin radix prec +2) (Fexp c -prec))%R.
unfold FtoRradix, FtoR; simpl.
rewrite plus_IZR; unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite inj_pred; auto with zarith; unfold Zpred, Zminus.
repeat rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; rewrite <- Rinv_powerRZ; auto with real zarith.
field; auto with real zarith.
assert (0 < powerRZ 2 prec)%R; auto with real zarith.
rewrite H9; apply RleBoundRoundr with b prec (Closest b radix) (c'+eta)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith.
rewrite Zabs_eq.
rewrite PosNormMin with radix b prec; auto with zarith.
rewrite H; apply Zlt_le_trans with (nNormMin radix prec + nNormMin radix prec)%Z; auto with zarith.
rewrite H; apply Zplus_lt_compat_l.
unfold nNormMin; apply Zle_lt_trans with (Zpower_nat 2 1); auto with zarith.
apply Zeq_le; rewrite H; ring.
unfold nNormMin; auto with zarith.
fold FtoRradix; rewrite <- H9.
apply Rle_trans with ((/ 2 * powerRZ radix (Fexp c)
+ powerRZ radix (Fexp c- prec)) + powerRZ radix (Fexp c- prec))%R.
2: unfold Zminus; repeat rewrite powerRZ_add; auto with real zarith.
2: rewrite H; simpl; right; ring.
apply Rplus_le_compat.
2: unfold eta; apply Rle_powerRZ; auto with real zarith.
assert (/ 2 * powerRZ radix (Fexp c) + powerRZ radix (Fexp c - prec)
= Float (nNormMin radix prec+1) (Fexp c-prec))%R.
unfold FtoRradix, FtoR; simpl; rewrite plus_IZR.
unfold nNormMin; rewrite Zpower_nat_Z_powerRZ; simpl.
rewrite inj_pred; auto with zarith; unfold Zpred, Zminus.
repeat rewrite powerRZ_add; auto with real zarith.
rewrite <- Rinv_powerRZ; auto with real zarith; simpl.
rewrite H; simpl; field.
assert (0 < powerRZ 2 prec)%R; auto with real zarith.
rewrite H10.
apply RleBoundRoundr with b prec (Closest b radix) (phi*c)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith.
replace (nNormMin radix prec) with (radixH*nNormMin radix prec)%Z.
apply phi_bounded_aux.
replace radixH with 1%Z; auto with zarith.
fold FtoRradix; rewrite <- H10.
unfold phi,u, FtoRradix, FtoR; simpl.
rewrite H3; unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite inj_pred; auto with zarith; unfold Zpred.
unfold Zminus; repeat rewrite powerRZ_add; auto with real zarith.
rewrite <- Rinv_powerRZ; auto with real zarith; simpl.
replace (IZR radixH) with 1%R.
rewrite H; simpl; right; field.
assert (0 < powerRZ 2 prec)%R; auto with real zarith.
replace radixH with 1%Z; auto with real zarith.
case (Zle_lt_or_eq (Fexp c) (-dExp b+prec-1)); auto with zarith; intros I'.
assert (G1: (0 < 8)%R).
apply Rlt_le_trans with (IZR 8); [auto with real zarith|simpl; right; ring].
assert (G2: (0 < 5)%R).
apply Rlt_le_trans with (IZR 5); [auto with real zarith|simpl; right; ring].
assert (c - 5/8* powerRZ radix (Fexp c) - FtoR radix (FPred b radix prec c)
= (-(/ 8 * powerRZ radix (Fexp c))))%R.
fold FtoRradix; rewrite H7; field.
unfold FtoRradix; apply ClosestStrictMonotone2l with b prec (c-e)%R (c-5/8*powerRZ radix (Fexp c))%R; auto with zarith.
apply FPredCanonic; auto with zarith.
rewrite H8; rewrite Rabs_Ropp; rewrite Rabs_right.
2: apply Rle_ge; apply Rmult_le_pos; auto with real zarith.
rewrite FSucPred; auto with zarith; fold FtoRradix.
replace (c - 5/8* powerRZ radix (Fexp c) - c)%R with
(- (5/8*powerRZ radix (Fexp c)))%R by ring.
rewrite Rabs_Ropp; rewrite Rabs_right.
2: apply Rle_ge; unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
apply Rmult_lt_compat_r; auto with real zarith.
apply Rle_lt_trans with (1*/8)%R;
[right; ring|unfold Rdiv; apply Rmult_lt_compat_r; auto with real zarith].
apply Rlt_le_trans with (IZR 5)%R; auto with real zarith.
right; simpl; ring.
rewrite H8; rewrite Rabs_Ropp; rewrite Rabs_right.
2: apply Rle_ge; apply Rmult_le_pos; auto with real zarith.
rewrite FPredSimpl2 with b radix prec c; auto with zarith.
rewrite FPredSimpl4; simpl; auto with zarith.
replace (FtoR radix (Float (Zpred (pPred (vNum b))) (Zpred (Fexp c)))) with
(c-powerRZ radix (Fexp c))%R.
replace (c - 5/ 8 * powerRZ radix (Fexp c) -
(c - powerRZ radix (Fexp c)))%R with
(3/ 8 * powerRZ radix (Fexp c))%R by field.
rewrite Rabs_right.
2: apply Rle_ge; unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
2: apply Rle_trans with (IZR 3); auto with real zarith; simpl; right; ring.
apply Rmult_lt_compat_r; auto with real zarith.
apply Rle_lt_trans with (1*/8)%R;
[right; ring|unfold Rdiv; apply Rmult_lt_compat_r; auto with real zarith].
apply Rlt_le_trans with (IZR 3)%R; auto with real zarith.
right; simpl; ring.
unfold FtoRradix, FtoR; simpl.
rewrite H3; unfold pPred; rewrite pGivesBound.
unfold nNormMin, Zpred; repeat rewrite plus_IZR.
repeat rewrite Zpower_nat_Z_powerRZ; simpl.
rewrite inj_pred; auto with zarith; unfold Zpred.
repeat rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; field.
assert (0 < pPred (vNum b))%Z; auto with zarith.
apply pPredMoreThanOne with radix prec; auto with zarith.
assert (nNormMin radix prec < pPred (vNum b))%Z; auto with zarith.
apply nNormMimLtvNum; auto with zarith.
unfold Rminus; apply Rplus_le_compat_l; apply Ropp_le_contravar.
assert (5 / 8 * powerRZ radix (Fexp c)= Float 5 (Fexp c-3))%R.
unfold FtoRradix, FtoR, Zminus; simpl.
rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; field.
rewrite H9; apply RleBoundRoundr with b prec (Closest b radix) (c'+eta)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith.
rewrite pGivesBound; apply Zlt_le_trans with (Zpower_nat radix 3); auto with zarith.
rewrite H; simpl; auto with zarith.
fold FtoRradix; rewrite <- H9.
apply Rle_trans with (powerRZ radix (Fexp c-1)+ powerRZ radix (Fexp c-3))%R.
2: right; unfold Zminus; repeat rewrite powerRZ_add; auto with real zarith.
2: rewrite H; simpl; field.
apply Rplus_le_compat.
2: unfold eta; apply Rle_powerRZ; auto with real zarith.
assert (powerRZ radix (Fexp c - 1) = Float (Zpower_nat radix (Zabs_nat (Fexp c-1+dExp b))) (-dExp b))%R.
unfold FtoRradix, FtoR; simpl; rewrite Zpower_nat_Z_powerRZ.
rewrite <- powerRZ_add; auto with real zarith.
replace (Zabs_nat (Fexp c - 1 + dExp b) + - dExp b)%Z with (Fexp c-1)%Z; auto with zarith.
rewrite <- Zabs_absolu; rewrite Zabs_eq; auto with zarith.
assert (Fsubnormal radix b (Float (Zpower_nat radix (Zabs_nat (Fexp c - 1 + dExp b))) (- dExp b))).
split; try split; simpl; auto with zarith.
rewrite Zabs_eq; auto with zarith.
rewrite pGivesBound; apply Zpower_nat_monotone_lt; auto with zarith.
apply ZleLe.
apply Zle_trans with (Zabs_nat (Fexp c - 1 + dExp b)+1)%nat; auto with zarith.
rewrite inj_plus; rewrite <- Zabs_absolu; rewrite Zabs_eq; auto with zarith.
simpl; auto with zarith.
rewrite Zabs_eq; auto with zarith.
apply Zle_lt_trans with (Zpower_nat radix (1+Zabs_nat (Fexp c - 1 + dExp b))).
apply Zeq_le;rewrite Zpower_nat_is_exp; auto with zarith.
replace (Zpower_nat radix 1) with radix; auto with zarith.
unfold Zpower_nat; simpl; ring.
rewrite pGivesBound; apply Zpower_nat_monotone_lt; auto with zarith.
apply ZleLe.
apply Zle_trans with ((1+Zabs_nat (Fexp c - 1 + dExp b)+1))%nat; auto with zarith.
repeat rewrite inj_plus; rewrite <- Zabs_absolu; rewrite Zabs_eq; auto with zarith.
apply Zle_trans with (Fexp c +dExp b +1)%Z; auto with zarith.
replace (Z_of_nat 1) with 1%Z; auto with zarith.
rewrite H10.
apply ClosestStrictMonotone2r with b prec (phi*c)%R (powerRZ radix (Fexp c -1) + powerRZ radix (Fexp c -prec))%R; auto with zarith.
right; auto.
fold FtoRradix; rewrite <- H10.
ring_simplify (powerRZ radix (Fexp c - 1) + powerRZ radix (Fexp c - prec) -
powerRZ radix (Fexp c - 1))%R.
rewrite Rabs_right; try (apply Rle_ge; auto with real zarith).
rewrite succNormal.
2: right; auto.
2: rewrite <- H10; auto with real zarith.
rewrite <- H10; simpl.
replace (powerRZ radix (Fexp c - 1) + powerRZ radix (Fexp c - prec) -
(powerRZ radix (Fexp c - 1) + powerRZ radix (- dExp b)))%R with
( - (powerRZ radix (- dExp b) - powerRZ radix (Fexp c - prec)))%R by ring.
rewrite Rabs_Ropp; rewrite Rabs_right.
apply Rplus_lt_reg_r with (powerRZ radix (Fexp c - prec)); ring_simplify.
apply Rle_lt_trans with (powerRZ radix (1+(Fexp c - prec))).
rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; right; ring.
apply Rlt_powerRZ; auto with real zarith.
apply Rle_ge; apply Rplus_le_reg_l with (powerRZ radix (Fexp c - prec)); ring_simplify.
apply Rle_powerRZ; auto with real zarith.
fold FtoRradix; rewrite <- H10.
ring_simplify (powerRZ radix (Fexp c - 1) + powerRZ radix (Fexp c - prec) -
powerRZ radix (Fexp c - 1))%R.
rewrite Rabs_right; try (apply Rle_ge; auto with real zarith).
rewrite predSmallOnes; auto with zarith.
rewrite <- H10; unfold eta.
replace (powerRZ radix (Fexp c - 1) + powerRZ radix (Fexp c - prec) -
(powerRZ radix (Fexp c - 1) - powerRZ radix (- dExp b)))%R with
(powerRZ radix (- dExp b)+powerRZ radix (Fexp c - prec))%R by ring.
rewrite Rabs_right.
apply Rle_lt_trans with (0+powerRZ radix (Fexp c - prec))%R; auto with real zarith.
apply Rle_ge; apply Rle_trans with (0+0)%R; auto with real.
apply Rplus_le_compat; auto with real zarith.
right; auto.
rewrite <- H10.
rewrite Rabs_right; try (apply Rle_ge; auto with real zarith).
apply Rlt_powerRZ; auto with real zarith.
unfold phi, u, FtoRradix, FtoR; simpl; rewrite H3.
replace radixH with 1%Z; auto with zarith.
unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite inj_pred; auto with zarith; unfold Zpred, Zminus.
repeat rewrite powerRZ_add; auto with real zarith.
rewrite <- Rinv_powerRZ; auto with real zarith.
rewrite H; simpl; right; field.
assert (0 < powerRZ 2 prec)%R; auto with real zarith.
case (Zle_lt_or_eq 4 prec); auto with zarith; intros precBis.
assert (c - / 2 * powerRZ radix (Fexp c) - powerRZ radix (1- dExp b) -
FtoR radix (FPred b radix prec c) = -powerRZ radix (1- dExp b))%R.
fold FtoRradix; rewrite H7; ring.
unfold FtoRradix; apply ClosestStrictMonotone2l with b prec (c-e)%R (c-/2*powerRZ radix (Fexp c) - powerRZ radix (1-dExp b))%R; auto with zarith.
apply FPredCanonic; auto with zarith.
rewrite H8; rewrite Rabs_Ropp; rewrite Rabs_right.
2: apply Rle_ge; auto with real zarith.
rewrite FSucPred; auto with zarith; fold FtoRradix.
replace (c - / 2 * powerRZ radix (Fexp c) - powerRZ radix (1- dExp b) - c)%R with
(-(/2*powerRZ radix (Fexp c) + powerRZ radix (1-dExp b)))%R by ring.
rewrite Rabs_Ropp; rewrite Rabs_right.
apply Rle_lt_trans with (0+powerRZ radix (1- dExp b))%R; auto with real.
apply Rplus_lt_compat_r.
apply Rle_lt_trans with (/2*0)%R; auto with real.
apply Rmult_lt_compat_l; auto with real zarith.
apply Rle_ge; apply Rle_trans with (0+0)%R; auto with real.
apply Rplus_le_compat; try apply Rmult_le_pos; auto with real zarith.
rewrite H8; rewrite Rabs_Ropp; rewrite Rabs_right.
2: apply Rle_ge; auto with real zarith.
rewrite FPredSimpl2 with b radix prec c; auto with zarith.
rewrite FPredSimpl4;auto with zarith.
simpl (Fnum (Float (pPred (vNum b)) (Zpred (Fexp c)))).
simpl (Fexp (Float (pPred (vNum b)) (Zpred (Fexp c)))).
replace (FtoR radix (Float (Zpred (pPred (vNum b))) (Zpred (Fexp c)))) with
(c-powerRZ radix (Fexp c))%R.
replace (c - / 2 * powerRZ radix (Fexp c) - powerRZ radix (1- dExp b) -
(c - powerRZ radix (Fexp c)))%R with
(/ 2 * powerRZ radix (Fexp c) - powerRZ radix (1- dExp b))%R by field.
rewrite Rabs_right.
apply Rplus_lt_reg_r with (powerRZ radix (1- dExp b)); ring_simplify.
apply Rle_lt_trans with (powerRZ radix (1+(1- dExp b))).
rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; right; ring.
apply Rlt_le_trans with (powerRZ radix (Fexp c-1)).
apply Rlt_powerRZ; auto with real zarith.
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; right; field.
apply Rle_ge; apply Rplus_le_reg_l with (powerRZ radix (1- dExp b)); ring_simplify.
apply Rle_trans with (powerRZ radix (Fexp c-1)).
apply Rle_powerRZ; auto with real zarith.
unfold Zminus; repeat rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; right; field.
unfold FtoRradix, FtoR; simpl.
rewrite H3; unfold pPred; rewrite pGivesBound.
unfold nNormMin, Zpred; repeat rewrite plus_IZR.
repeat rewrite Zpower_nat_Z_powerRZ; simpl.
rewrite inj_pred; auto with zarith; unfold Zpred.
repeat rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; field.
simpl; assert (0 < pPred (vNum b))%Z; auto with zarith.
apply pPredMoreThanOne with radix prec; auto with zarith.
simpl; assert (nNormMin radix prec < pPred (vNum b))%Z; auto with zarith.
apply nNormMimLtvNum; auto with zarith.
unfold Rminus; rewrite Rplus_assoc; apply Rplus_le_compat_l.
apply Rle_trans with (-(/ 2 * powerRZ radix (Fexp c)
+powerRZ radix (1- dExp b)))%R;[right; ring|idtac].
apply Ropp_le_contravar.
assert (/ 2 * powerRZ radix (Fexp c) + powerRZ radix (1 - dExp b)
= Float (Zpower_nat radix (pred (pred prec)) +2) (-dExp b))%R.
unfold FtoRradix, FtoR.
simpl (Fnum (Float (Zpower_nat radix (pred (pred prec)) + 2) (- dExp b))).
simpl (Fexp (Float (Zpower_nat radix (pred (pred prec)) + 2) (- dExp b))).
rewrite plus_IZR; rewrite Zpower_nat_Z_powerRZ; rewrite I'.
repeat rewrite inj_pred; auto with zarith; unfold Zpred, Zminus.
repeat rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; field.
rewrite H9; apply RleBoundRoundr with b prec (Closest b radix) (c'+eta)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith.
rewrite Zabs_eq; auto with zarith.
rewrite pGivesBound; apply Zlt_le_trans with (Zpower_nat radix (pred prec+1)); auto with zarith.
apply Zlt_le_trans with (Zpower_nat radix (pred prec)+Zpower_nat radix (pred prec))%Z; auto with zarith.
apply Zplus_lt_compat; auto with zarith.
replace 2%Z with (Zpower_nat radix 1); auto with zarith.
rewrite H; simpl; auto.
rewrite Zpower_nat_is_exp; auto with zarith; rewrite H.
replace (Zpower_nat 2 1) with 2%Z; auto with zarith.
fold FtoRradix; rewrite <- H9.
apply Rle_trans with ( (/2 * powerRZ radix (Fexp c)
+powerRZ radix (- dExp b))+powerRZ radix (- dExp b))%R.
unfold eta; apply Rplus_le_compat_r.
2: unfold Zminus; rewrite powerRZ_add; auto with real zarith.
2: rewrite H; simpl; right; ring.
clear H8 H9.
assert ( /2 * powerRZ radix (Fexp c) + powerRZ radix (- dExp b)
= Float (Zpower_nat radix (pred (pred prec)) + 1) (- dExp b))%R.
unfold FtoRradix, FtoR.
simpl (Fnum (Float (Zpower_nat radix (pred (pred prec)) + 1) (- dExp b))).
simpl (Fexp (Float (Zpower_nat radix (pred (pred prec)) + 1) (- dExp b))).
rewrite plus_IZR; rewrite Zpower_nat_Z_powerRZ; rewrite I'.
repeat rewrite inj_pred; auto with zarith; unfold Zpred, Zminus.
repeat rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; field.
rewrite H8.
apply RleBoundRoundr with b prec (Closest b radix) (phi*c)%R; auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith.
rewrite Zabs_eq; auto with zarith.
rewrite pGivesBound.
apply Zle_lt_trans with (Zpower_nat radix (pred prec)+1)%Z.
apply Zplus_le_compat_r.
apply Zpower_nat_monotone_le; auto with zarith.
apply Zlt_le_trans with (Zpower_nat radix (pred prec) +Zpower_nat radix (pred prec))%Z.
apply Zplus_lt_compat_l.
apply Zle_lt_trans with (Zpower_nat radix 0); auto with zarith.
pattern prec at 3; replace prec with (pred prec +1); auto with zarith.
rewrite Zpower_nat_is_exp; rewrite H; simpl; auto with zarith.
unfold Zpower_nat at 4; simpl; auto with zarith.
fold FtoRradix; rewrite <- H8.
unfold phi,u, FtoRradix, FtoR; simpl.
rewrite H3; rewrite I'; unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
replace radixH with 1%Z; auto with zarith.
apply Rle_trans with
(powerRZ radix (- prec)*powerRZ radix (pred prec) * powerRZ radix (- dExp b + prec - 1)
+ radix*(powerRZ radix (- prec)*powerRZ radix (- prec)
*powerRZ radix (pred prec) * powerRZ radix (- dExp b + prec - 1)))%R;[simpl; right; ring|idtac].
repeat rewrite <- powerRZ_add; auto with real zarith.
apply Rplus_le_compat.
apply Rle_trans with (powerRZ radix (-1+((- dExp b + prec - 1)))).
apply Rle_powerRZ; auto with real zarith.
rewrite inj_pred; auto with zarith; unfold Zpred; auto with zarith.
rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; right; field.
pattern (IZR radix) at 1; replace (IZR radix) with (powerRZ radix 1); auto with real zarith.
rewrite <- powerRZ_add; auto with real zarith.
apply Rle_powerRZ; auto with real zarith.
rewrite inj_pred; auto with zarith; unfold Zpred; auto with zarith.
(* the one problematic float *)
assert (FtoRradix c=powerRZ radix (6-dExp b))%R.
unfold FtoRradix, FtoR; rewrite H3; rewrite I'.
unfold nNormMin; rewrite Zpower_nat_Z_powerRZ; rewrite <- powerRZ_add; auto with real zarith.
replace (pred prec + (- dExp b + prec - 1))%Z with (6 - dExp b)%Z; auto.
replace prec with 4%nat; auto with zarith.
simpl (pred 4); simpl (Z_of_nat 4); simpl (Z_of_nat 3); auto with zarith.
assert (FtoRradix (Float 4 (-dExp b)) = 4*powerRZ radix (-dExp b))%R.
unfold FtoRradix, FtoR; simpl; ring.
assert (EvenClosest b radix prec (phi * c) c' -> FtoRradix c'=Float 4 (-dExp b))%R.
intros; generalize EvenClosestUniqueP; unfold UniqueP; intros T.
unfold FtoRradix; apply T with b prec (phi*c)%R; auto with zarith; clear T.
assert (Fcanonic radix b (Float 4 (- dExp b))).
right; repeat split; simpl; auto with zarith.
rewrite pGivesBound; replace 4%Z with (Zpower_nat radix 2); auto with zarith.
unfold Zpower_nat; rewrite H; simpl; auto with zarith.
rewrite pGivesBound; rewrite H.
rewrite Zabs_eq; auto with zarith.
replace (2*4)%Z with (Zpower_nat 2 3); auto with zarith.
assert (phi * c - FtoR radix (Float 4 (- dExp b)) = powerRZ radix (-1-dExp b))%R.
rewrite H8; unfold phi,u.
replace radixH with 1%Z; auto with zarith.
fold FtoRradix; rewrite H9.
rewrite Rmult_plus_distr_l; rewrite Rmult_plus_distr_r.
replace (powerRZ radix (- prec) * 1%Z)%R with (powerRZ radix (- prec));
[idtac|simpl; ring].
pattern (IZR radix) at 4; replace (IZR radix) with (powerRZ radix 1); auto with real.
repeat rewrite <- powerRZ_add; auto with real zarith.
replace (- prec + (6 - dExp b))%Z with (2-dExp b)%Z; auto with zarith.
replace (- prec + (1 + - prec) + (6 - dExp b))%Z with (-1-dExp b)%Z; auto with zarith.
replace (powerRZ radix (2 - dExp b)) with (4 * powerRZ radix (- dExp b))%R;[ring|idtac].
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; ring.
split.
apply ClosestSuccPred with prec; auto with zarith.
apply FcanonicBound with radix; auto with zarith.
rewrite H12.
rewrite Rabs_right; [idtac|apply Rle_ge; auto with real zarith].
rewrite succNormal; auto with zarith.
replace ((phi * c -
(Float 4 (- dExp b) + powerRZ radix (Fexp (Float 4 (- dExp b))))))%R with
((phi * c - FtoR radix (Float 4 (- dExp b))) -
powerRZ radix (Fexp (Float 4 (- dExp b))))%R;[rewrite H12|unfold FtoRradix; ring].
simpl (Fexp (Float 4 (- dExp b))).
replace (powerRZ radix (-1 - dExp b) - powerRZ radix (- dExp b))%R with
(-powerRZ radix (-1 - dExp b))%R.
rewrite Rabs_Ropp; rewrite Rabs_right; [idtac|apply Rle_ge]; auto with real zarith.
unfold Zminus; repeat rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; field.
rewrite H9; repeat apply Rmult_le_pos; auto with real zarith.
rewrite H12.
rewrite Rabs_right; [idtac|apply Rle_ge; auto with real zarith].
rewrite predSmallOnes; auto.
replace ((phi * c - (Float 4 (- dExp b) -eta )))%R with
((phi * c - FtoR radix (Float 4 (- dExp b))) + eta)%R;[rewrite H12|unfold FtoRradix; ring].
unfold eta; rewrite Rabs_right.
apply Rle_trans with (powerRZ radix (-1 - dExp b)+0)%R; auto with real zarith.
apply Rle_ge; apply Rle_trans with (0+0)%R; try apply Rplus_le_compat; auto with real zarith.
replace (FtoRradix (Float 4 (- dExp b))) with (powerRZ radix (2-dExp b)).
rewrite Rabs_right; try apply Rle_ge; auto with real zarith.
rewrite H9; unfold Zminus; rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; ring.
left; unfold FNeven.
rewrite FcanonicFnormalizeEq; auto with zarith.
unfold Feven; simpl; unfold Even.
exists 2%Z; auto with zarith.
assert (FtoRradix c' = Float 4 (- dExp b) -> (FPred b radix prec c <= cinf)%R).
intros.
assert (FtoRradix(Float 5 (- dExp b)) = (5 * powerRZ radix (- dExp b)))%R.
unfold FtoRradix, FtoR; simpl; ring.
assert (FtoRradix e=Float 5 (- dExp b)).
apply sym_eq; apply RoundedModeProjectorIdemEq with b prec (Closest b radix); auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith.
rewrite pGivesBound; apply Zlt_le_trans with (Zpower_nat radix 3); auto with zarith.
rewrite H; unfold Zpower_nat; simpl; auto with zarith.
replace (FtoR radix (Float 5 (- dExp b))) with (c'+eta)%R; auto.
fold FtoRradix; rewrite H12; rewrite H11; rewrite H9; unfold eta; ring.
assert (FPred b radix prec c= Float (pPred (vNum b)) (- dExp b +2)).
rewrite FPredSimpl2; auto with zarith.
replace ((Zpred (Fexp c))) with (-dExp b+2)%Z; auto.
rewrite I'; unfold Zpred; rewrite <- precBis; ring.
assert (c - e - FtoR radix (FPred b radix prec c)=
-powerRZ radix (- dExp b))%R.
rewrite predNormal1; auto with zarith.
rewrite H13; rewrite H12; rewrite I'.
replace (powerRZ radix (- dExp b + prec - 1 - 1)) with
(4* powerRZ radix (- dExp b))%R;[ring|idtac].
replace (-dExp b +prec-1-1)%Z with (-dExp b+2)%Z; auto with zarith.
rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; ring.
rewrite H8; auto with real zarith.
right; apply sym_eq; apply ClosestStrictEq with b prec (c-e)%R; auto with zarith.
apply FPredCanonic; auto with zarith.
rewrite H15; rewrite Rabs_Ropp.
rewrite Rabs_right; [idtac|apply Rle_ge; auto with real zarith].
rewrite FSucPred; auto with zarith.
fold FtoRradix; replace (c-e-c)%R with (-e)%R by ring.
rewrite H13; rewrite H12; rewrite Rabs_Ropp.
rewrite Rabs_right; [idtac|apply Rle_ge; apply Rmult_le_pos; auto with real zarith].
apply Rle_lt_trans with (1*powerRZ radix (- dExp b))%R; auto with real.
apply Rmult_lt_compat_r; auto with real zarith.
replace 5%R with (IZR 5); auto with real zarith; simpl; ring.
replace 5%R with (IZR 5); auto with real zarith; simpl; ring.
rewrite H15; rewrite Rabs_Ropp.
rewrite Rabs_right; [idtac|apply Rle_ge; auto with real zarith].
rewrite H14; rewrite FPredSimpl4; auto with zarith; simpl.
replace (FtoR radix (Float (Zpred (pPred (vNum b))) (- dExp b + 2))) with
(c-8*powerRZ radix (- dExp b))%R.
2: unfold pPred, Zpred; rewrite pGivesBound.
2: unfold FtoR; simpl.
2: repeat rewrite plus_IZR; simpl; rewrite Zpower_nat_Z_powerRZ.
2: repeat rewrite Rmult_plus_distr_r with (r3:=powerRZ radix (- dExp b + 2)).
2: rewrite <- powerRZ_add; auto with real zarith; rewrite H8.
2: replace (prec + (- dExp b + 2))%Z with (6 - dExp b)%Z; auto with zarith.
2: repeat rewrite powerRZ_add with (m:=2); auto with real zarith.
2: rewrite H; simpl; ring.
replace (c - e - (c - 8 * powerRZ radix (- dExp b)))%R with ((3*powerRZ radix (- dExp b)))%R.
rewrite Rabs_right; try apply Rle_ge; auto with real zarith.
apply Rle_lt_trans with (1*powerRZ radix (- dExp b))%R; auto with real.
apply Rmult_lt_compat_r; auto with real zarith.
replace 3%R with (IZR 3); auto with real zarith; simpl; ring.
apply Rmult_le_pos; auto with real zarith.
replace 3%R with (IZR 3); auto with real zarith; simpl; ring.
rewrite H13; rewrite H12; ring.
assert (0 < pPred (vNum b))%Z; auto with zarith.
apply pPredMoreThanOne with radix prec; auto with zarith.
assert (nNormMin radix prec < pPred (vNum b))%Z; auto with zarith.
apply nNormMimLtvNum; auto with zarith.
case MM; auto with zarith.
intros.
assert (phi*c=9/2*powerRZ radix (-dExp b))%R.
rewrite H8; unfold phi,u; rewrite <- precBis.
replace (radixH) with 1%Z; auto with zarith.
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; field.
assert (FtoRradix (Float 5 (- dExp b)) = 5 * powerRZ radix (- dExp b))%R.
unfold FtoRradix, FtoR; simpl; ring.
assert (Fcanonic radix b (Float 4 (- dExp b))).
right; split; split; simpl; auto with zarith.
rewrite pGivesBound; rewrite H.
replace prec with 4%nat; auto with zarith.
rewrite pGivesBound; rewrite H.
replace prec with 4%nat; auto with zarith.
assert (Fcanonic radix b (Float 5 (- dExp b))).
right; split; split; simpl; auto with zarith.
rewrite pGivesBound; rewrite H.
replace prec with 4%nat; auto with zarith.
rewrite pGivesBound; rewrite H.
replace prec with 4%nat; auto with zarith.
assert (FtoRradix c'= Float 4 (- dExp b) \/ FtoRradix c'= Float 5 (- dExp b))%R.
generalize ClosestMinOrMax; unfold MinOrMaxP; intros T.
case (T b radix (phi*c)%R c'); auto; clear T.
intros; left.
apply (MinUniqueP b radix (phi*c)%R); auto.
split; auto.
apply FcanonicBound with radix; auto.
split.
fold FtoRradix; rewrite H9; rewrite H13.
apply Rmult_le_compat_r; auto with real zarith.
apply Rmult_le_reg_l with 2%R; auto with real.
apply Rle_trans with 9%R;[auto with real|right; field].
apply Rle_trans with (8+1)%R; auto with real.
intros.
apply Rle_trans with (FtoR radix (FPred b radix prec (Float 5 (- dExp b)))).
rewrite <- FnormalizeCorrect with radix b prec f; auto.
apply FPredProp; auto with zarith.
apply FnormalizeCanonic; auto with zarith.
rewrite FnormalizeCorrect; auto with zarith.
apply Rle_lt_trans with (1:=H19).
fold FtoRradix; rewrite H14; rewrite H13.
apply Rmult_lt_compat_r; auto with real zarith.
apply Rmult_lt_reg_l with 2%R; auto with real.
apply Rle_lt_trans with 9%R;[right; field|idtac].
apply Rlt_le_trans with (9+1)%R; auto with real.
right; ring.
rewrite predSmallOnes; auto with zarith.
fold FtoRradix; rewrite H14; rewrite H9.
unfold eta; right; ring.
rewrite H14; rewrite Rabs_right.
unfold Zminus; rewrite powerRZ_add; auto with real zarith.
apply Rmult_lt_compat_r; auto with real zarith.
rewrite H; rewrite <- precBis; simpl.
apply Rlt_le_trans with (IZR 16); auto with real zarith.
apply Rle_lt_trans with (IZR 5); auto with real zarith.
right; simpl; ring.
right; simpl; ring.
apply Rle_ge; apply Rmult_le_pos; auto with real zarith.
apply Rle_trans with (IZR 5); auto with real zarith; right; simpl; ring.
intros; right.
apply (MaxUniqueP b radix (phi*c)%R); auto.
split; auto.
apply FcanonicBound with radix; auto.
split.
fold FtoRradix; rewrite H14; rewrite H13.
apply Rmult_le_compat_r; auto with real zarith.
apply Rmult_le_reg_l with 2%R; auto with real.
apply Rle_trans with 9%R;[right; field|idtac].
apply Rle_trans with (9+1)%R; auto with real.
right; ring.
intros.
apply Rle_trans with (FtoR radix (FSucc b radix prec (Float 4 (- dExp b)))).
rewrite succNormal; auto with zarith.
fold FtoRradix; rewrite H9; rewrite H14; simpl; right; ring.
rewrite H9; repeat apply Rmult_le_pos; auto with real zarith.
rewrite <- FnormalizeCorrect with radix b prec f; auto.
apply FSuccProp; auto with zarith.
apply FnormalizeCanonic; auto with zarith.
rewrite FnormalizeCorrect; auto with zarith.
apply Rlt_le_trans with (2:=H19).
fold FtoRradix; rewrite H9; rewrite H13.
apply Rmult_lt_compat_r; auto with real zarith.
apply Rmult_lt_reg_l with 2%R; auto with real.
apply Rlt_le_trans with 9%R;[idtac|right; field].
apply Rlt_le_trans with (8+1)%R; auto with real.
case H17; auto.
intros.
assert (FtoRradix e=Float 6 (- dExp b)).
apply sym_eq; apply RoundedModeProjectorIdemEq with b prec (Closest b radix); auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith.
rewrite pGivesBound; apply Zlt_le_trans with (Zpower_nat radix 3); auto with zarith.
rewrite H; unfold Zpower_nat; simpl; auto with zarith.
replace (FtoR radix (Float 6 (- dExp b))) with (c'+eta)%R; auto.
rewrite H18; unfold FtoRradix, FtoR; unfold eta; simpl; ring.
assert (FPred b radix prec c= Float (pPred (vNum b)) (- dExp b +2)).
rewrite FPredSimpl2; auto with zarith.
replace ((Zpred (Fexp c))) with (-dExp b+2)%Z; auto.
rewrite I'; unfold Zpred; rewrite <- precBis; ring.
assert (FtoRradix (Float 6 (- dExp b)) = (6 * powerRZ radix (- dExp b))%R).
unfold FtoRradix, FtoR; simpl; ring.
assert (c - e - FtoR radix (FPred b radix prec c)=
-(2* powerRZ radix (- dExp b)))%R.
rewrite predNormal1; auto with zarith.
rewrite H19; rewrite H21; rewrite I'.
replace (powerRZ radix (- dExp b + prec - 1 - 1)) with
(4* powerRZ radix (- dExp b))%R;[ring|idtac].
replace (-dExp b +prec-1-1)%Z with (-dExp b+2)%Z; auto with zarith.
rewrite powerRZ_add; auto with real zarith.
rewrite H; simpl; ring.
rewrite H8; auto with real zarith.
generalize AFZClosestUniqueP; unfold UniqueP; intros T.
right; unfold FtoRradix; apply T with b prec (c-e)%R; auto with zarith.
clear T; split.
apply ClosestSuccPred with prec; auto with zarith.
apply FBoundedPred; auto with zarith.
apply FcanonicBound with radix; auto.
apply FPredCanonic; auto with zarith.
rewrite H22; rewrite Rabs_Ropp.
rewrite Rabs_right; [idtac|apply Rle_ge; apply Rmult_le_pos; auto with real zarith].
rewrite FSucPred; auto with zarith.
fold FtoRradix; replace (c-e-c)%R with (-e)%R by ring.
rewrite H19; rewrite H21; rewrite Rabs_Ropp.
rewrite Rabs_right; [idtac|apply Rle_ge; apply Rmult_le_pos; auto with real zarith].
apply Rmult_le_compat_r; auto with real zarith.
replace 6%R with (IZR 6); auto with real zarith.
replace 2%R with (IZR 2); auto with real zarith.
simpl; ring.
replace 6%R with (IZR 6); auto with real zarith; simpl; ring.
rewrite H22; rewrite Rabs_Ropp.
rewrite Rabs_right; [idtac|apply Rle_ge; apply Rmult_le_pos; auto with real zarith].
rewrite H20; rewrite FPredSimpl4; auto with zarith; simpl.
replace (FtoR radix (Float (Zpred (pPred (vNum b))) (- dExp b + 2))) with
(c-8*powerRZ radix (- dExp b))%R.
2: unfold pPred, Zpred; rewrite pGivesBound.
2: unfold FtoR; simpl.
2: repeat rewrite plus_IZR; simpl; rewrite Zpower_nat_Z_powerRZ.
2: repeat rewrite Rmult_plus_distr_r with (r3:=powerRZ radix (- dExp b + 2)).
2: rewrite <- powerRZ_add; auto with real zarith; rewrite H8.
2: replace (prec + (- dExp b + 2))%Z with (6 - dExp b)%Z; auto with zarith.
2: repeat rewrite powerRZ_add with (m:=2); auto with real zarith.
2: rewrite H; simpl; ring.
replace (c - e - (c - 8 * powerRZ radix (- dExp b)))%R with ((2*powerRZ radix (- dExp b)))%R.
rewrite Rabs_right; auto with real; try apply Rle_ge; apply Rmult_le_pos; auto with real zarith.
rewrite H19; rewrite H21; ring.
assert (0 < pPred (vNum b))%Z; auto with zarith.
apply pPredMoreThanOne with radix prec; auto with zarith.
assert (nNormMin radix prec < pPred (vNum b))%Z; auto with zarith.
apply nNormMimLtvNum; auto with zarith.
left; repeat rewrite Rabs_right; try apply Rle_ge.
apply Rminus_le; rewrite H22.
apply Rle_trans with (-0)%R; auto with real; apply Ropp_le_contravar.
apply Rmult_le_pos;auto with real zarith.
rewrite H20; apply LeFnumZERO; simpl; auto with zarith.
assert (0 < pPred (vNum b))%Z; auto with zarith.
apply pPredMoreThanOne with radix prec; auto with zarith.
apply Rplus_le_reg_l with e; ring_simplify.
rewrite H19; rewrite H21; rewrite H8; unfold Zminus.
rewrite powerRZ_add; auto with real zarith.
apply Rmult_le_compat_r; auto with real zarith.
apply Rle_trans with (powerRZ radix 3); auto with real zarith.
rewrite H; simpl; apply Rle_trans with (IZR 6).
right; simpl; ring.
apply Rle_trans with (IZR 8); auto with real zarith.
right; simpl; ring.
Qed.
Lemma Algo1_correct_r2_aux_aux4:forall (c csup:float) (r:R),
Fcanonic radix b c -> (0 <= c)%R ->
(r <= 5/4*powerRZ radix (Fexp c))%R ->
Closest b radix (c+r) csup ->
(FtoRradix csup <= FSucc b radix prec c)%R.
intros c csup r; intros.
assert (N:Fbounded b c).
apply FcanonicBound with radix; auto.
assert (G1:(0 < 4)%R).
apply Rlt_le_trans with (IZR 4); auto with real zarith; simpl; right; ring.
assert (G2:(0 < 5)%R).
apply Rlt_le_trans with (IZR 5); auto with real zarith; simpl; right; ring.
assert (c + 5 / 4 * powerRZ radix (Fexp c) - FtoR radix (FSucc b radix prec c)
= (/4*powerRZ radix (Fexp c)))%R.
rewrite succNormal; auto with zarith; field.
apply ClosestStrictMonotone2r with b prec (c+r)%R (c+5/4*powerRZ radix (Fexp c))%R; auto with zarith.
apply FSuccCanonic; auto with zarith.
rewrite H3.
rewrite Rabs_right.
2: apply Rle_ge; unfold Rdiv; apply Rmult_le_pos; auto with real zarith.
rewrite succNormal; auto with zarith.
rewrite succNormal; auto with zarith.
replace (c + 5/4*powerRZ radix (Fexp c) -
(c + powerRZ radix (Fexp c) +
powerRZ radix (Fexp (FSucc b radix prec c))))%R with
((/4*powerRZ radix (Fexp c)-powerRZ radix
(Fexp (FSucc b radix prec c))))%R.
2: field.
assert (Fexp (FSucc b radix prec c) = Fexp c \/
(Fexp (FSucc b radix prec c) = Fexp c+1)%Z).
unfold FSucc.
case (Z_eq_bool (Fnum c) (pPred (vNum b))).
right; simpl; unfold Zsucc; auto.
generalize (Z_eq_bool_correct (Fnum c) (- nNormMin radix prec));
case (Z_eq_bool (Fnum c) (- nNormMin radix prec)).
intros; absurd (0 <= Fnum c)%Z.
apply Zlt_not_le; apply Zlt_le_trans with (-0)%Z; auto with zarith.
rewrite H4; unfold nNormMin; auto with zarith.
apply LeR0Fnum with radix ; auto with real zarith.
intros; left; simpl; auto.
case H4; intros M; rewrite M.
replace (/ 4 * powerRZ radix (Fexp c) - powerRZ radix (Fexp c))%R with
(-(3/4*powerRZ radix (Fexp c) ))%R by field.
rewrite Rabs_Ropp; rewrite Rabs_right.
apply Rmult_lt_compat_r; auto with real zarith.
apply Rle_lt_trans with (1*/4)%R; unfold Rdiv; auto with real.
apply Rmult_lt_compat_r; auto with real.
apply Rlt_le_trans with (IZR 3); auto with real zarith; simpl; right; ring.
apply Rle_ge; unfold Rdiv; repeat apply Rmult_le_pos; auto with real zarith.
apply Rle_trans with (IZR 3); auto with real zarith; simpl; right; ring.
replace (/ 4 * powerRZ radix (Fexp c) - powerRZ radix (Fexp c+1))%R with
(-((radix-/4)*powerRZ radix (Fexp c) ))%R.
2: rewrite powerRZ_add; auto with real zarith; simpl; field.
rewrite Rabs_Ropp; rewrite Rabs_right.
apply Rmult_lt_compat_r; auto with real zarith.
apply Rle_lt_trans with (1*/4)%R; unfold Rdiv; auto with real.
apply Rlt_le_trans with ((4*radix-1)*/4)%R;[idtac|right; field].
apply Rmult_lt_compat_r; auto with real.
apply Rplus_lt_reg_r with 1%R; ring_simplify.
apply Rlt_le_trans with (4*1)%R; auto with real zarith.
apply Rlt_le_trans with (4)%R; auto with real zarith.
apply Rle_lt_trans with (2*1)%R; auto with real zarith.
apply Rle_ge; apply Rmult_le_pos; auto with real zarith.
apply Rplus_le_reg_l with (/4)%R; ring_simplify.
apply Rle_trans with 1%R; auto with real zarith.
apply Rle_trans with (/1)%R; auto with real.
apply Rle_Rinv; auto with real.
apply Rle_trans with (IZR 4); auto with real zarith; simpl; right; ring.
apply FSuccCanonic; auto with zarith.
apply Rle_trans with (1:=H0).
left; unfold FtoRradix; apply FSuccLt; auto with zarith.
rewrite H3.
rewrite FPredSuc; fold FtoRradix; auto with zarith.
replace (c + 5/4*powerRZ radix (Fexp c) - c)%R with (5/4*(powerRZ radix (Fexp c)))%R;[idtac|ring].
rewrite (Rabs_right (5/4*(powerRZ radix (Fexp c) ))).
2: apply Rle_ge; unfold Rdiv;repeat apply Rmult_le_pos; auto with real zarith.
rewrite Rabs_right.
2: apply Rle_ge; apply Rmult_le_pos; auto with real zarith.
apply Rmult_lt_compat_r; auto with real zarith.
apply Rle_lt_trans with (1*/4)%R; auto with real.
apply Rmult_lt_compat_r; auto with real zarith.
apply Rlt_le_trans with (IZR 5); auto with real zarith; simpl; right; ring.
apply Rplus_le_compat_l; auto.
Qed.
Lemma Algo1_correct_r2_aux1: forall (c c' e cinf csup:float),
(radix=2)%Z ->
Fcanonic radix b c ->
(0 <= c)%R ->
(powerRZ radix (prec+1-dExp b) < c)%R ->
Closest b radix (phi*c) c' ->
Closest b radix (c'+eta) e ->
Closest b radix (c-e) cinf ->
Closest b radix (c+e) csup ->
(prec=4 -> EvenClosest b radix prec (phi*c)%R c'
\/ AFZClosest b radix (c-e) cinf) ->
(FtoRradix (FPred b radix prec c) <= cinf)%R
/\ (FtoRradix csup <= FSucc b radix prec c)%R.
intros c c' e cinf csup K Cc Cpos CGe Hc' He Hcinf Hcsup MM.
assert (- dExp b +2 <= Fexp c )%Z.
apply Zle_trans with (Fexp (Float (nNormMin radix prec) (-dExp b+2))); auto with zarith.
apply Fcanonic_Rle_Zle with radix b prec; auto with zarith.
left; split; try split; simpl; auto with zarith.
unfold nNormMin; rewrite pGivesBound; rewrite Zabs_eq; auto with zarith.
rewrite <- (PosNormMin radix b prec); auto with zarith.
fold (FtoRradix c).
replace (FtoR radix (Float (nNormMin radix prec) (- dExp b + 2))) with
(powerRZ radix (prec + 1 - dExp b)).
repeat rewrite Rabs_right; try apply Rle_ge; auto with real zarith.
unfold FtoR; simpl.
unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite <- powerRZ_add; auto with real zarith.
replace (pred prec + (- dExp b + 2))%Z with (prec+1-dExp b)%Z; auto.
rewrite inj_pred; unfold Zpred; auto with zarith.
assert (e <= 5/4*powerRZ radix (Fexp c))%R.
apply Rle_trans with
(powerRZ radix (Fexp c) * (radix / 2 + powerRZ radix (-2)))%R.
apply eLe with c'; auto with zarith.
rewrite K; simpl; right; field.
split.
2: apply Algo1_correct_r2_aux_aux4 with e; auto.
case (Z_eq_dec (Fnum c) (nNormMin radix prec)); intros L1.
apply Algo1_correct_r2_aux_aux3 with c' e; auto.
case (Zle_lt_or_eq (- dExp b + 2) (Fexp c)); auto with zarith.
intros M.
Contradict CGe.
replace (FtoRradix c) with (powerRZ radix (prec + 1 - dExp b)); auto with real.
unfold FtoRradix, FtoR; simpl; rewrite <- M; rewrite L1.
unfold nNormMin; rewrite Zpower_nat_Z_powerRZ.
rewrite <- powerRZ_add; auto with real zarith.
replace (pred prec + (- dExp b + 2))%Z with (prec+1-dExp b)%Z; auto.
rewrite inj_pred; unfold Zpred; auto with zarith.
case (Z_eq_dec (Fnum c) (nNormMin radix prec+1)); intros L2.
apply Algo1_correct_r2_aux_aux2 with c' e; auto with zarith.
apply Algo1_correct_r2_aux_aux1 with e; auto with zarith.
Qed.
Lemma Algo1_correct_r2_aux2: forall (c c' e cinf csup:float),
(radix=2)%Z ->
Fcanonic radix b c ->
(0 <= c)%R ->
(c < powerRZ radix (prec-dExp b-1))%R ->
Closest b radix (phi*c) c' ->
Closest b radix (c'+eta) e ->
Closest b radix (c-e) cinf ->
Closest b radix (c+e) csup ->
(FtoRradix (FPred b radix prec c) <= cinf)%R
/\ (FtoRradix csup <= FSucc b radix prec c)%R.
intros.
cut (FtoRradix e = eta)%R; [intros P|idtac].
split.
right; unfold FtoRradix.
apply RoundedModeProjectorIdemEq with b prec (Closest b radix); auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
apply FBoundedPred; auto with zarith.
apply FcanonicBound with radix; auto.
replace (FtoR radix (FPred b radix prec c))%R with (c-e)%R; auto.
fold FtoRradix; rewrite predSmallOnes; auto.
rewrite P; auto.
rewrite Rabs_right; try apply Rle_ge; auto with real zarith.
apply Rlt_le_trans with (1:=H2); auto with real zarith.
right; unfold FtoRradix; apply sym_eq.
apply RoundedModeProjectorIdemEq with b prec (Closest b radix); auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
apply FBoundedSuc; auto with zarith.
apply FcanonicBound with radix; auto.
replace (FtoR radix (FSucc b radix prec c))%R with (c+e)%R; auto.
fold FtoRradix; rewrite succNormal; auto.
rewrite P; unfold eta; replace (Fexp c) with (-dExp b)%Z; auto.
case H0; auto; intros J.
absurd (FtoRradix (firstNormalPos radix b prec) <= c)%R.
apply Rlt_not_le; unfold FtoRradix; rewrite firstNormalPos_eq; auto with zarith.
fold FtoRradix; apply Rlt_le_trans with (1:=H2).
apply Rle_powerRZ; unfold Zpred; auto with real zarith.
apply FnormalLtFirstNormalPos; auto with zarith.
elim J; intuition.
apply sym_eq; apply trans_eq with (Float 1 (-(dExp b))).
unfold eta, FtoRradix, FtoR; simpl; ring.
apply RoundedModeProjectorIdemEq with b prec (Closest b radix); auto with zarith.
apply ClosestRoundedModeP with prec; auto with zarith.
split; simpl; auto with zarith float.
apply vNumbMoreThanOne with radix prec; auto with zarith.
replace (FtoR radix (Float 1 (- dExp b))) with (c'+eta)%R; auto.
replace (FtoRradix c') with 0%R.
unfold eta, FtoRradix, FtoR; simpl; ring.
apply sym_eq; apply RoundedToZero with (phi*c)%R; auto.
rewrite Rabs_mult.
repeat rewrite Rabs_right; try apply Rle_ge; auto with real.
assert (exists f:float, Fbounded b f /\ (f=Float 1 (prec - dExp b-1)) /\
(FtoRradix f= powerRZ radix (prec - dExp b-1))%R).
exists (Float 1 (prec-dExp b-1)).
split; try split; simpl; auto with zarith.
apply vNumbMoreThanOne with radix prec; auto with zarith.
unfold FtoRradix, FtoR; simpl; ring.
elim H7; intros f (Bf,(L2,L3)).
apply Rle_lt_trans with (phi*(FPred b radix prec (Fnormalize radix b prec f)))%R.
apply Rmult_le_compat_l; auto with real.
left; apply phi_Pos.
apply FPredProp; auto with zarith real.
apply FnormalizeCanonic; auto with zarith.
rewrite FnormalizeCorrect; auto with zarith.
fold FtoRradix; rewrite L3; auto.
rewrite predSmallOnes.
unfold FtoRradix; rewrite FnormalizeCorrect; auto with zarith.
fold FtoRradix; rewrite L3; unfold eta, phi.
unfold Zminus; repeat rewrite powerRZ_add; auto with real zarith.
replace radixH with 1%Z; auto with zarith.
apply Rle_lt_trans with ( (u * (1 + radix * u) *
(powerRZ radix prec * powerRZ radix (- (1)) -1 )) * powerRZ radix (-(dExp b)))%R.
simpl; right; ring.
apply Rmult_lt_compat_r; auto with real zarith.
apply Rle_lt_trans with (/radix - powerRZ radix (1-prec-prec))%R.
replace (powerRZ radix prec) with (/powerRZ radix (-prec))%R.
unfold u; right; unfold Zminus; repeat rewrite powerRZ_add; auto with real zarith.
simpl; field; auto with real zarith.
rewrite <- Rinv_powerRZ; auto with real zarith.
apply Rlt_le_trans with (/radix-0)%R; auto with real zarith.
unfold Rminus; apply Rplus_lt_compat_l; auto with real zarith.
apply Rle_trans with (/radix)%R; auto with real zarith.
apply Rle_Rinv; auto with real zarith.
apply Rle_trans with (IZR 2); auto with real zarith.
apply FnormalizeCanonic; auto with zarith.
unfold FtoRradix; rewrite FnormalizeCorrect; auto with zarith.
fold FtoRradix; rewrite L3.
rewrite Rabs_right; try apply Rle_ge; auto with real zarith.
left; apply phi_Pos.
Qed.
Lemma Algo1_correct_r2_aux3: forall (c c' e cinf csup:float),
(radix=2)%Z ->
Fcanonic radix b c ->
(Rabs c < powerRZ radix (prec-dExp b-1))%R
\/ (powerRZ radix (prec+1-dExp b) < Rabs c)%R ->
Closest b radix (phi*(Rabs c)) c' ->
Closest b radix (c'+eta) e ->
Closest b radix (c-e) cinf ->
Closest b radix (c+e) csup ->
(prec=4 -> EvenClosest b radix prec (phi*Rabs c)%R c'
\/ (AFZClosest b radix (c-e) cinf
/\ AFZClosest b radix (c+e) csup)) ->
(FtoRradix (FPred b radix prec c) <= cinf)%R
/\ (FtoRradix csup <= FSucc b radix prec c)%R.
intros c c' e cinf csup K Cc CInt Hc' He Hcinf Hcsup MM.
case (Rle_or_lt 0 c); intros.
case CInt; intros.
apply Algo1_correct_r2_aux2 with c' e; auto.
rewrite <- (Rabs_right c); auto.
apply Rle_ge; auto.
rewrite <- (Rabs_right c); auto.
apply Rle_ge; auto.
apply Algo1_correct_r2_aux1 with c' e; auto.
rewrite <- (Rabs_right c); auto.
apply Rle_ge; auto.
rewrite <- (Rabs_right c); auto.
apply Rle_ge; auto.
intros; case MM; auto; intros.
left; rewrite <- (Rabs_right c); auto.
apply Rle_ge; auto.
elim H2; auto.
assert ((FPred b radix prec (Fopp c) <= Fopp csup)%R
/\ (Fopp cinf <= FSucc b radix prec (Fopp c) )%R).
case CInt; intros.
apply Algo1_correct_r2_aux2 with c' e; auto.
apply FcanonicFopp; auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
replace (FtoRradix (Fopp c)) with (Rabs c); auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
rewrite Rabs_left; auto with real.
replace (FtoRradix (Fopp c)) with (Rabs c); auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
rewrite Rabs_left; auto with real.
replace (Fopp c -e)%R with (-(c+e))%R.
apply ClosestOpp; auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith; ring.
replace (Fopp c +e)%R with (-(c-e))%R.
apply ClosestOpp; auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith; ring.
apply Algo1_correct_r2_aux1 with c' e; auto.
apply FcanonicFopp; auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
replace (FtoRradix (Fopp c)) with (Rabs c); auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
rewrite Rabs_left; auto with real.
replace (FtoRradix (Fopp c)) with (Rabs c); auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
rewrite Rabs_left; auto with real.
replace (Fopp c -e)%R with (-(c+e))%R.
apply ClosestOpp; auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith; ring.
replace (Fopp c +e)%R with (-(c-e))%R.
apply ClosestOpp; auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith; ring.
intros; case MM; auto; intros.
left; replace (FtoRradix (Fopp c)) with (Rabs c); auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
rewrite Rabs_left; auto with real.
elim H2; intros.
right; replace (Fopp c -e)%R with (-(c+e))%R.
apply AFZClosestSymmetric; auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith; ring.
elim H0; intros L1 L2; clear H0; split; apply Ropp_le_cancel.
rewrite FPredFopFSucc; auto with zarith.
apply Rle_trans with (FSucc b radix prec (Fopp c)).
apply Rle_trans with (2:=L2).
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
apply Rle_trans with (Fopp csup).
2: unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
apply Rle_trans with (2:=L1).
rewrite FPredFopFSucc; auto with zarith.
rewrite Fopp_Fopp.
unfold FtoRradix; rewrite Fopp_correct; auto with real zarith.
Qed.
Lemma PredSucc_Algo1_correct_r2: forall (c c' e cinf csup:float),
(radix=2)%Z ->
Fcanonic radix b c ->
(Rabs c < powerRZ radix (prec-dExp b-1))%R
\/ (powerRZ radix (prec+1-dExp b) < Rabs c)%R ->
Closest b radix (phi*(Rabs c)) c' ->
Closest b radix (c'+eta) e ->
Closest b radix (c-e) cinf ->
Closest b radix (c+e) csup ->
(prec=4 -> EvenClosest b radix prec (phi*Rabs c)%R c'
\/ (AFZClosest b radix (c-e) cinf
/\ AFZClosest b radix (c+e) csup)) ->
(FtoRradix (FPred b radix prec c) = cinf)%R
/\ (FtoRradix csup = FSucc b radix prec c)%R.
intros.
assert ((FtoRradix (FPred b radix prec c) <= cinf)%R
/\ (FtoRradix csup <= FSucc b radix prec c)%R).
apply Algo1_correct_r2_aux3 with c' e; auto.
assert ((FtoRradix cinf<= (FPred b radix prec c))%R
/\ (FtoRradix (FSucc b radix prec c) <= csup)%R).
apply PredSucc_Algo1_correct with c' e; auto.
elim H7; elim H8; intros; split; auto with real.
Qed.
End PredComput.
|