1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
|
(** This proof file has been written by
#<A href="http://perso.ens-lyon.fr/sylvie.boldo/">Sylvie Boldo</A>#(1), following a proof
presented by #<A HREF="http://www.cs.berkeley.edu/~wkahan/">Pr William Kahan</A># (2),
and adapted to Coq proof checker with the help of
#<A href="http://perso.ens-lyon.fr/guillaume.melquiond/">Guillaume Melquiond</A>#(1)
and #<A href="http://perso.ens-lyon.fr/marc.daumas/">Marc Daumas</A>#(1). This work
has been partially supported by the #<A HREF="http://www.cnrs.fr">CNRS</A># grant PICS 2533.
(1) #<A HREF="http://www.ens-lyon.fr/LIP/">LIP</A># Computer science laboratory
UMR 5668 CNRS - ENS de Lyon - INRIA
Lyon, France
(2) #<a href="http://www.berkeley.edu/">University of California at Berkeley</A>#
Berkeley, California
*)
Require Export AllFloat.
Section Discriminant1.
Variable bo : Fbound.
Variable precision : nat.
Let radix := 2%Z.
Let FtoRradix := FtoR radix.
Coercion FtoRradix : float >-> R.
Theorem TwoMoreThanOne : (1 < radix)%Z.
unfold radix in |- *; red in |- *; simpl in |- *; auto.
Qed.
Hint Resolve TwoMoreThanOne.
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ TwoMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum bo) = Zpower_nat radix precision.
Variables a b b' c p q d:float.
Let delta := (Rabs (d-(b*b'-a*c)))%R.
Hypothesis Fa : (Fbounded bo a).
Hypothesis Fb : (Fbounded bo b).
Hypothesis Fb': (Fbounded bo b').
Hypothesis Fc : (Fbounded bo c).
Hypothesis Fp : (Fbounded bo p).
Hypothesis Fq : (Fbounded bo q).
Hypothesis Fd : (Fbounded bo d).
(** There is no underflow *)
Hypothesis U1:(- dExp bo <= Fexp d - 1)%Z.
Hypothesis Nd:(Fnormal radix bo d).
Hypothesis Nq:(Fnormal radix bo q).
Hypothesis Np:(Fnormal radix bo p).
Hypothesis Square:(0 <=b*b')%R.
Hypothesis Roundp : (EvenClosest bo radix precision (b*b')%R p).
Hypothesis Roundq : (EvenClosest bo radix precision (a*c)%R q).
Hypothesis Firstcase : (p+q <= 3*(Rabs (p-q)))%R.
Hypothesis Roundd : (EvenClosest bo radix precision (p-q)%R d).
Theorem delta_inf: (delta <= (/2)*(Fulp bo radix precision d)+
((/2)*(Fulp bo radix precision p)+(/2)*(Fulp bo radix precision q)))%R.
unfold delta; rewrite <- Rabs_Ropp.
replace (-(d - (b * b' - a * c)))%R with (((p-q)-d)+((b*b'-p)+-(a*c-q)))%R;[idtac|ring].
apply Rle_trans with ((Rabs ((p-q)-d))+(Rabs (b * b' - p + - (a * c - q))))%R;
[apply Rabs_triang|idtac].
apply Rplus_le_compat.
apply Rmult_le_reg_l with (S (S O)); auto with arith real.
apply Rle_trans with (Fulp bo radix precision d).
unfold FtoRradix; apply ClosestUlp;auto with zarith.
elim Roundd; auto.
right; simpl; field; auto with real.
apply Rle_trans with ((Rabs (b*b'-p))+(Rabs (-(a*c-q))))%R;
[apply Rabs_triang|idtac].
apply Rplus_le_compat.
apply Rmult_le_reg_l with (S (S O)); auto with arith real.
apply Rle_trans with (Fulp bo radix precision p).
unfold FtoRradix; apply ClosestUlp;auto with zarith.
elim Roundp; auto.
right; simpl; field; auto with real.
rewrite Rabs_Ropp; apply Rmult_le_reg_l with (S (S O)); auto with arith real.
apply Rle_trans with (Fulp bo radix precision q).
unfold FtoRradix; apply ClosestUlp;auto with zarith.
elim Roundq; auto.
right; simpl; field; auto with real.
Qed.
Theorem P_positive: (Rle 0 p)%R.
unfold FtoRradix; apply RleRoundedR0 with (b:=bo) (precision:=precision) (P:=(Closest bo radix)) (r:=(b*b')%R); auto.
apply ClosestRoundedModeP with precision; auto.
elim Roundp; auto.
Qed.
Theorem Fulp_le_twice_l: forall x y:float, (0 <= x)%R ->
(Fnormal radix bo x) -> (Fbounded bo y) -> (2*x<=y)%R ->
(2*(Fulp bo radix precision x) <= (Fulp bo radix precision y))%R.
intros.
assert (2*x=(Float (Fnum x) (Zsucc (Fexp x))))%R.
unfold FtoRradix, FtoR, Zsucc; simpl; rewrite powerRZ_add; auto with real zarith; simpl; ring.
apply Rle_trans with (Fulp bo radix precision (Float (Fnum x) (Zsucc (Fexp x)))).
right; rewrite CanonicFulp; auto; [rewrite CanonicFulp|left]; auto.
unfold FtoR, Zsucc; simpl; rewrite powerRZ_add; auto with real zarith.
simpl; ring.
elim H0; intros H4 H5; elim H4; intros.
left; split; auto.
split; simpl; auto with zarith.
apply LeFulpPos; auto with real.
elim H0; intros H4 H5; elim H4; intros;split; simpl; auto with zarith.
fold FtoRradix; rewrite <- H3; apply Rmult_le_pos; auto with real.
fold FtoRradix; rewrite <- H3; auto with real.
Qed.
Theorem Fulp_le_twice_r: forall x y:float, (0 <= x)%R ->
(Fnormal radix bo y) -> (Fbounded bo x) -> (x<=2*y)%R ->
((Fulp bo radix precision x) <= 2*(Fulp bo radix precision y))%R.
intros.
assert (2*y=(Float (Fnum y) (Zsucc (Fexp y))))%R.
unfold FtoRradix, FtoR, Zsucc; simpl; rewrite powerRZ_add; auto with real zarith; simpl; ring.
apply Rle_trans with (Fulp bo radix precision (Float (Fnum y) (Zsucc (Fexp y)))).
2:right; rewrite CanonicFulp; auto; [rewrite CanonicFulp|left]; auto.
2:unfold FtoR, Zsucc; simpl; rewrite powerRZ_add; auto with real zarith.
2:simpl; ring.
2:left; auto.
2:elim H0; intros H6 H5; elim H6; intros.
2:split; auto with zarith.
2:split; simpl; auto with zarith.
apply LeFulpPos; auto with real.
elim H0; intros H6 H5; elim H6; intros;split; simpl; auto with zarith.
fold FtoRradix; rewrite <- H3; auto with real.
Qed.
Theorem Half_Closest_Round: forall (x:float) (r:R),
(- dExp bo <= Zpred (Fexp x))%Z -> (Closest bo radix r x)
-> (Closest bo radix (r/2)%R (Float (Fnum x) (Zpred (Fexp x)))).
intros x r L H.
assert (x/2=(Float (Fnum x) (Zpred (Fexp x))))%R.
unfold FtoRradix, FtoR, Zpred; simpl; rewrite powerRZ_add; auto with real zarith; simpl; field.
elim H; intros H2 H3.
split; [split; simpl; auto with float zarith|idtac].
intros.
fold FtoRradix; rewrite <- H0.
replace (x/2-r/2)%R with (/2*(x-r))%R;[idtac|unfold Rdiv; ring].
rewrite Rabs_mult; rewrite Rabs_right; auto with real.
2: apply Rle_ge; auto with real.
replace (f-r/2)%R with (/2*((Float (Fnum f) (Zsucc (Fexp f)))-r))%R.
rewrite Rabs_mult; rewrite Rabs_right with (/2)%R.
2: apply Rle_ge; auto with real.
apply Rmult_le_compat_l; auto with real.
unfold FtoRradix; apply H3.
split; simpl; auto with zarith float.
unfold FtoRradix, FtoR, Zsucc; simpl; rewrite powerRZ_add; auto with real zarith; simpl; field; auto with real.
Qed.
Theorem Twice_EvenClosest_Round: forall (x:float) (r:R),
(-(dExp bo) <= (Fexp x)-1)%Z -> (Fnormal radix bo x)
-> (EvenClosest bo radix precision r x)
-> (EvenClosest bo radix precision (2*r)%R (Float (Fnum x) (Zsucc (Fexp x)))).
intros x r U Nx H.
assert (x*2=(Float (Fnum x) (Zsucc (Fexp x))))%R.
unfold FtoRradix, FtoR, Zsucc; simpl; rewrite powerRZ_add; auto with real zarith; simpl; ring.
elim H; intros H2 H3; elim H2; intros H'1 H'2; split.
split; [split; simpl; auto with float zarith|idtac].
intros.
fold FtoRradix; rewrite <- H0.
replace (x*2-2*r)%R with (2*(x-r))%R;[idtac|unfold Rdiv; ring].
rewrite Rabs_mult; rewrite Rabs_right; auto with real.
2: apply Rle_ge; auto with real.
case (Zle_lt_or_eq (-(dExp bo))%Z (Fexp f)); auto with zarith float; intros L.
replace (f-2*r)%R with (2*((Float (Fnum f) (Zpred (Fexp f)))-r))%R.
rewrite Rabs_mult; rewrite Rabs_right with (2)%R.
2: apply Rle_ge; auto with real.
apply Rmult_le_compat_l; auto with real.
unfold FtoRradix; apply H'2.
split; simpl; auto with zarith float.
unfold FtoRradix, FtoR, Zpred; simpl; rewrite powerRZ_add; auto with real zarith; simpl; field; auto with real.
replace (f-2*r)%R with (-((2*r)-f))%R;[rewrite Rabs_Ropp|ring].
apply Rle_trans with (2:=Rabs_triang_inv (2*r)%R f).
rewrite Rabs_mult; rewrite (Rabs_right 2%R); try apply Rle_ge;auto with real.
pattern r at 2 in |-*; replace r with (x-(x-r))%R;[idtac|ring].
apply Rle_trans with (2*(Rabs (x)-Rabs (x-r))-Rabs f)%R;[idtac|unfold Rminus; apply Rplus_le_compat_r; apply Rmult_le_compat_l; auto with real].
2: generalize (Rabs_triang_inv x (x-r)%R); unfold Rminus; auto with real.
apply Rplus_le_reg_l with (Rabs f -2*(Rabs (x-r)))%R.
apply Rle_trans with (Rabs f);[right;ring|idtac].
apply Rle_trans with (2*(Rabs x)-4*Rabs (x-r))%R;[idtac|right;ring].
apply Rle_trans with (((powerRZ radix precision)-1)*(powerRZ radix ((Fexp x)-1)))%R.
unfold FtoRradix; rewrite <- Fabs_correct; auto;unfold Fabs, FtoR; simpl.
apply Rmult_le_compat; auto with real zarith.
apply Rle_trans with (Zpred (Zpower_nat radix precision));[rewrite <- pGivesBound|idtac].
apply Rle_IZR;apply Zle_Zpred; auto with float.
unfold Zpred; rewrite plus_IZR; rewrite Zpower_nat_Z_powerRZ; auto with real zarith.
rewrite <- L; apply Rle_powerRZ; auto with real zarith.
apply Rle_trans with (2*(powerRZ radix (Zpred precision))*(powerRZ radix (Fexp x))-2*(powerRZ radix (Fexp x)))%R.
apply Rle_trans with (((powerRZ radix (precision+1))-4)*(powerRZ radix (Fexp x-1)))%R;[apply Rmult_le_compat_r; auto with real zarith|idtac].
rewrite powerRZ_add; auto with real zarith; simpl.
apply Rplus_le_reg_l with (-(powerRZ 2 precision)+4)%R.
ring_simplify.
apply Rle_trans with (powerRZ 2 2)%R; auto with real zarith.
simpl; ring_simplify (2*(2*1))%R; auto with real zarith.
apply Rle_trans with (3+1)%R; auto with real; right; ring.
apply Rle_powerRZ; auto with arith zarith real.
replace (2*powerRZ radix (Fexp x))%R with (4*powerRZ radix (Fexp x -1))%R.
pattern 2%R at 3 in |-*; replace 2%R with (powerRZ radix 1%Z);[idtac|simpl; ring].
repeat rewrite <- powerRZ_add; auto with real zarith.
replace (1+Zpred precision+Fexp x)%Z with ((precision+1)+(Fexp x-1))%Z;[idtac|unfold Zpred; ring].
rewrite powerRZ_add with (n:=(precision+1)%Z);auto with real zarith; right;ring.
unfold Zminus; rewrite powerRZ_add; auto with real zarith; simpl; field.
unfold Rminus; apply Rplus_le_compat;[rewrite Rmult_assoc; apply Rmult_le_compat_l; auto with real|apply Ropp_le_contravar].
unfold FtoRradix; rewrite <- Fabs_correct; auto; unfold FtoR, Fabs; simpl.
apply Rmult_le_compat_r; auto with real zarith.
apply Rmult_le_reg_l with radix; auto with real zarith.
pattern (IZR radix) at 1 in |-*; replace (IZR radix) with (powerRZ radix 1%Z);[idtac|simpl; ring].
rewrite <- powerRZ_add; auto with real zarith; elim Nx; intros.
replace (1+Zpred precision)%Z with (Z_of_nat precision)%Z;[idtac|unfold Zpred; ring].
apply Rle_trans with (IZR (Zpos (vNum bo)));[rewrite pGivesBound; rewrite Zpower_nat_Z_powerRZ; auto with real zarith|idtac].
apply Rle_trans with (IZR (Zabs (radix * Fnum x))); auto with real zarith.
rewrite Zabs_Zmult; rewrite Zabs_eq; auto with real zarith.
rewrite mult_IZR; auto with real.
replace 4%R with (2*2%nat)%R; [rewrite Rmult_assoc; apply Rmult_le_compat_l; auto with real|simpl;ring].
replace (x+-r)%R with (-(r-x))%R;[rewrite Rabs_Ropp|ring].
apply Rle_trans with (Fulp bo radix precision x).
unfold FtoRradix; apply ClosestUlp; auto.
rewrite CanonicFulp; auto with real zarith.
right; unfold FtoR; simpl; ring.
left; auto.
case H3; intros V.
left; generalize V; unfold FNeven; rewrite FcanonicFnormalizeEq; auto with zarith.
rewrite FcanonicFnormalizeEq; auto with zarith.
elim Nx; intros; left; split; auto with zarith.
elim H1; intros; split; simpl; auto with zarith.
left; auto.
right; intros.
apply trans_eq with (2*(FtoR radix (Float (Fnum q0) (Zpred (Fexp q0)))))%R.
unfold FtoR, Zpred; simpl; rewrite powerRZ_add; auto with real zarith; simpl; field; auto with real.
apply trans_eq with (2*(FtoR radix x))%R;[idtac|unfold FtoR, Zsucc; simpl; rewrite powerRZ_add; auto with real zarith; simpl; ring].
apply Rmult_eq_compat_l; apply V.
replace r with ((2*r)/2)%R;[idtac|field; auto with real].
apply Half_Closest_Round; auto.
apply Zle_trans with (1:=U).
fold (Zpred (Fexp x)); cut (Fexp x <= Fexp q0)%Z; auto with zarith.
apply Zle_trans with (Fexp (Fnormalize radix bo precision q0)).
apply Fcanonic_Rle_Zle with radix bo precision; auto with zarith.
left; auto.
apply FnormalizeCanonic; auto with arith.
elim H1; auto.
generalize ClosestMonotone; unfold MonotoneP; intros.
repeat rewrite <- Fabs_correct; auto.
apply H4 with bo (Rabs r) (Rabs (2*r))%R.
rewrite Rabs_mult; rewrite (Rabs_right 2%R); try apply Rle_ge; auto with real.
apply Rle_lt_trans with (1*Rabs r)%R;[right;ring|apply Rmult_lt_compat_r; auto with real].
apply Rabs_pos_lt;unfold not;intros.
absurd (is_Fzero x).
apply FnormalNotZero with radix bo ; auto.
apply is_Fzero_rep2 with radix; auto.
cut (0 <= FtoR radix x)%R; intros.
cut (FtoR radix x <= 0)%R; intros; auto with real.
apply RleRoundedLessR0 with bo precision (Closest bo radix) r; auto with real.
apply ClosestRoundedModeP with precision; auto.
apply RleRoundedR0 with bo precision (Closest bo radix) r; auto with real.
apply ClosestRoundedModeP with precision; auto.
apply ClosestFabs with precision; auto.
apply ClosestFabs with precision; auto.
generalize ClosestCompatible; unfold CompatibleP; intros T.
apply T with (2*r)%R q0; auto with real float zarith.
apply sym_eq;apply FnormalizeCorrect; auto.
apply FnormalizeBounded; auto with zarith.
elim H1; auto.
apply FcanonicLeastExp with radix bo precision; auto with zarith float.
apply sym_eq; apply FnormalizeCorrect; auto.
elim H1; auto.
apply FnormalizeCanonic; auto with zarith;elim H1; auto.
Qed.
Theorem EvenClosestMonotone2: forall (p q : R) (p' q' : float),
(p <= q)%R -> (EvenClosest bo radix precision p p') ->
(EvenClosest bo radix precision q q') -> (p' <= q')%R.
intros.
case H; intros H2.
generalize EvenClosestMonotone; unfold MonotoneP.
intros W; unfold FtoRradix.
apply W with bo precision p0 q0; auto.
generalize EvenClosestUniqueP; unfold UniqueP.
intros W; unfold FtoRradix.
right; apply W with bo precision p0; auto with real.
rewrite H2; auto.
Qed.
Theorem Fulp_le_twice_r_round: forall (x y:float) (r:R), (0 <= x)%R ->
(Fbounded bo x) -> (Fnormal radix bo y) -> (- dExp bo <= Fexp y - 1)%Z
-> (x<=2*r)%R ->
(EvenClosest bo radix precision r y) ->
((Fulp bo radix precision x) <= 2*(Fulp bo radix precision y))%R.
intros x y r H H0 H1 U H2 H3.
assert (2*y=(Float (Fnum y) (Zsucc (Fexp y))))%R.
unfold FtoRradix, FtoR, Zsucc; simpl; rewrite powerRZ_add; auto with real zarith; simpl; ring.
apply Rle_trans with (Fulp bo radix precision (Float (Fnum y) (Zsucc (Fexp y)))).
2:right; rewrite CanonicFulp; auto; [rewrite CanonicFulp|left]; auto.
2:unfold FtoR, Zsucc; simpl; rewrite powerRZ_add; auto with real zarith.
2:simpl; ring.
2:left; auto.
2:elim H1; intros H6 H5; elim H6; intros.
2:split; simpl; auto with zarith.
2:split; simpl; auto with zarith.
apply LeFulpPos; auto with real.
elim H1; intros H6 H5; elim H6; intros;split; simpl; auto with zarith.
apply EvenClosestMonotone2 with x (2*r)%R; auto.
unfold FtoRradix; apply RoundedModeProjectorIdem with (b:=bo) (P:=(EvenClosest bo radix precision)); auto.
apply EvenClosestRoundedModeP; auto.
apply Twice_EvenClosest_Round; auto.
Qed.
Theorem discri1: (delta <= 2*(Fulp bo radix precision d))%R.
apply Rle_trans with (1:=delta_inf).
case (Rle_or_lt q p); intros H1.
case (Rle_or_lt 0%R q); intros H2.
cut (2*(Fulp bo radix precision q)<=(Fulp bo radix precision p))%R; try intros H3.
cut ((Fulp bo radix precision p)<=2*(Fulp bo radix precision d))%R; try intros H4.
apply Rle_trans with ((/ 2 * Fulp bo radix precision d +
(/ 2 * (2*Fulp bo radix precision d) + / 2 * Fulp bo radix precision d)))%R.
apply Rplus_le_compat; auto with real.
apply Rplus_le_compat; auto with real.
apply Rmult_le_compat_l; auto with real.
apply Rmult_le_reg_l with 2%R; auto with real.
apply Rle_trans with (1:=H3); auto with real.
right; field; auto with real.
apply Fulp_le_twice_r_round with (p-q)%R; auto.
apply P_positive.
apply Rplus_le_reg_l with (2*q-p)%R.
ring_simplify.
apply Rmult_le_reg_l with 2%R; auto with real.
apply Rplus_le_reg_l with (p-3*q)%R.
ring_simplify.
apply Rle_trans with (1:=Firstcase); rewrite Rabs_right.
right; ring.
apply Rle_ge; apply Rplus_le_reg_l with q; ring_simplify; auto with real.
apply Fulp_le_twice_l; auto.
apply Rmult_le_reg_l with 2%R; auto with real.
apply Rplus_le_reg_l with (p-3*q)%R.
ring_simplify.
apply Rle_trans with (1:=Firstcase); rewrite Rabs_right.
right; ring.
apply Rle_ge; apply Rplus_le_reg_l with q; ring_simplify; auto with real.
apply Rle_trans with ((/ 2 * Fulp bo radix precision d +
(/ 2 * (Fulp bo radix precision d) + / 2 * Fulp bo radix precision d)))%R.
apply Rplus_le_compat; auto with real.
apply Rplus_le_compat; auto with real.
apply Rmult_le_compat; auto with real.
unfold Fulp; auto with real zarith.
apply LeFulpPos; auto with real.
fold FtoRradix; apply P_positive.
fold FtoRradix; apply EvenClosestMonotone2 with p (p-q)%R; auto.
apply Rle_trans with (p-0)%R; unfold Rminus; auto with real; right;ring.
unfold FtoRradix; apply RoundedModeProjectorIdem with (b:=bo) (P:=(EvenClosest bo radix precision)); auto.
apply EvenClosestRoundedModeP; auto.
apply Rmult_le_compat; auto with real.
unfold Fulp; auto with real zarith.
rewrite FulpFabs; auto.
apply LeFulpPos; auto with real.
split; auto with zarith float.
rewrite Fabs_correct; auto with real.
fold FtoRradix; apply EvenClosestMonotone2 with (-q)%R (p-q)%R; auto.
generalize P_positive; intros; auto with real.
apply Rle_trans with (0-q)%R; unfold Rminus; auto with real; right;ring.
replace (-q)%R with (FtoRradix (Fabs q)).
unfold FtoRradix; apply RoundedModeProjectorIdem with (b:=bo) (P:=(EvenClosest bo radix precision)); auto.
apply EvenClosestRoundedModeP; auto.
split; auto with zarith float.
unfold FtoRradix;rewrite Fabs_correct; auto with real; rewrite Rabs_left; auto with real.
apply Rle_trans with ((3*/2)*(Fulp bo radix precision d))%R.
right; field; auto with real.
apply Rmult_le_compat_r;auto with zarith real.
unfold Fulp; auto with zarith real.
apply Rmult_le_reg_l with 2%R;auto with real.
apply Rle_trans with 3%R; auto with real.
right; field; auto with real.
replace 3%R with (IZR 3); auto with real zarith.
replace 4%R with (IZR 4); auto with real zarith.
simpl; ring.
simpl; ring.
cut (2*(Fulp bo radix precision p)<=(Fulp bo radix precision q))%R; try intros H3.
cut ((Fulp bo radix precision q)<=2*(Fulp bo radix precision d))%R; try intros H4.
apply Rle_trans with ((/ 2 * Fulp bo radix precision d +
(/ 2 * (Fulp bo radix precision d) + / 2 * (2*Fulp bo radix precision d))))%R.
apply Rplus_le_compat; auto with real.
apply Rplus_le_compat; auto with real.
apply Rmult_le_compat_l; auto with real.
apply Rmult_le_reg_l with 2%R; auto with real.
apply Rle_trans with (1:=H3); auto with real.
right; field; auto with real.
assert (p-q <=0)%R.
apply Rplus_le_reg_l with q.
ring_simplify; auto with real.
rewrite FulpFabs with bo radix precision d; auto.
apply Fulp_le_twice_r_round with (Rabs (p-q))%R; auto.
apply Rle_trans with p; auto with real; apply P_positive.
apply FnormalFabs; auto.
rewrite Rabs_left; auto with real.
apply Rmult_le_reg_l with 2%R; auto with real.
apply Rplus_le_reg_l with (p-q)%R.
ring_simplify.
apply Rle_trans with (1:=Firstcase); rewrite Rabs_left1; auto.
right; ring.
generalize EvenClosestSymmetric; unfold SymmetricP; intros.
rewrite Rabsolu_left1; auto with real.
replace (Fabs d) with (Fopp d).
apply H0; auto.
unfold Fabs, Fopp; replace (Zabs (Fnum d)) with (-(Fnum d))%Z; auto.
rewrite <- Zabs_Zopp; rewrite Zabs_eq; auto with zarith.
cut (Fnum d <= 0)%Z; auto with zarith.
apply R0LeFnum with radix; auto.
apply RleRoundedLessR0 with bo precision (EvenClosest bo radix precision) (p-q)%R; auto with real zarith.
apply EvenClosestRoundedModeP; auto.
apply Fulp_le_twice_l; auto.
apply P_positive.
apply Rmult_le_reg_l with 2%R; auto with real.
apply Rplus_le_reg_l with (-3*p+q)%R.
ring_simplify.
apply Rle_trans with (1:=Firstcase); rewrite Rabs_left1; auto.
right; ring.
apply Rplus_le_reg_l with q.
ring_simplify; auto with real.
Qed.
End Discriminant1.
Section Discriminant2.
Variable bo : Fbound.
Variable precision : nat.
Let radix := 2%Z.
Let FtoRradix := FtoR radix.
Coercion FtoRradix : float >-> R.
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ TwoMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum bo) = Zpower_nat radix precision.
Variables a b b' c p q t dp dq s d:float.
Let delta := (Rabs (d-(b*b'-a*c)))%R.
Hypothesis Fa : (Fbounded bo a).
Hypothesis Fb : (Fbounded bo b).
Hypothesis Fb': (Fbounded bo b').
Hypothesis Fc : (Fbounded bo c).
Hypothesis Fp : (Fbounded bo p).
Hypothesis Fq : (Fbounded bo q).
Hypothesis Fd : (Fbounded bo d).
Hypothesis Ft : (Fbounded bo t).
Hypothesis Fs : (Fbounded bo s).
Hypothesis Fdp: (Fbounded bo dp).
Hypothesis Fdq: (Fbounded bo dq).
(** There is no underflow *)
Hypothesis U1: (- dExp bo <= (Fexp t)-1)%Z.
Hypothesis U2: (- dExp bo <= Fexp a + Fexp c - precision)%Z.
Hypothesis U3: (- dExp bo <= Fexp q - precision)%Z.
Hypothesis U4: (- dExp bo <= Fexp b + Fexp b' - precision)%Z.
Hypothesis U5: (- dExp bo <= Fexp p - precision)%Z.
Hypothesis Np:(Fnormal radix bo p).
Hypothesis Nq:(Fnormal radix bo q).
Hypothesis Ns:(Fnormal radix bo s).
Hypothesis Nd:(Fnormal radix bo d).
Hypothesis Square:(0 <=b*b')%R.
Hypothesis Roundp : (EvenClosest bo radix precision (b*b')%R p).
Hypothesis Roundq : (EvenClosest bo radix precision (a*c)%R q).
Hypothesis Secondcase : (3*(Rabs (p-q)) < p+q)%R.
Hypothesis Roundt : (EvenClosest bo radix precision (p-q)%R t).
Hypothesis dpEq : (FtoRradix dp=b*b'-p)%R.
Hypothesis dqEq : (FtoRradix dq=a*c-q)%R.
Hypothesis Rounds : (EvenClosest bo radix precision (dp-dq)%R s).
Hypothesis Roundd : (EvenClosest bo radix precision (t+s)%R d).
Hypothesis p_differ_q:~(p=q)%R.
Theorem Q_positive:(0 < q)%R.
case (Rle_or_lt q 0%R); auto; intros.
absurd (3*(Rabs (p-q)) < (Rabs (p-q)))%R.
apply Rle_not_lt; apply Rle_trans with (1*(Rabs (p-q)))%R; auto with real.
apply Rmult_le_compat_r; auto with real.
apply Rle_trans with (IZR 1); auto with real.
apply Rle_trans with (IZR 3); auto with real zarith.
simpl; auto with real zarith.
apply Rlt_le_trans with (1:=Secondcase).
apply Rle_trans with (2:=Rabs_triang_inv p q).
right; rewrite Rabs_right.
rewrite Rabs_left1; auto with real; ring.
apply Rle_ge; apply P_positive with bo precision b b'; auto.
Qed.
Theorem Q_le_two_P:(q <= 2*p)%R.
fold FtoRradix; apply Rmult_le_reg_l with 2%R; auto with real; simpl.
apply Rle_trans with (3*q-q)%R; [right; ring|idtac].
pattern (FtoRradix q) at 1; rewrite <- (Rabs_right q).
2: apply Rle_ge; generalize Q_positive; auto with real.
pattern (FtoRradix q) at 1; replace (FtoRradix q) with (-(p-q)+p)%R;[idtac|ring].
apply Rle_trans with (3*(Rabs (-(p-q))+(Rabs p))-q)%R.
unfold Rminus; apply Rplus_le_compat_r.
apply Rmult_le_compat_l; auto with real.
apply Rle_trans with 2%R; auto with real.
apply Rabs_triang.
rewrite Rabs_Ropp.
rewrite (Rabs_right p).
2:apply Rle_ge; apply P_positive with bo precision b b'; auto.
apply Rle_trans with (3 * (Rabs (p - q)) + (3*p - q))%R;[right;ring|idtac].
apply Rle_trans with (p+q+(3*p-q))%R; auto with real.
right;ring.
Qed.
Theorem P_le_two_Q:(p <= 2*q)%R.
fold FtoRradix; apply Rmult_le_reg_l with 2%R; auto with real; simpl.
apply Rle_trans with (3*p-p)%R; [right; ring|idtac].
pattern (FtoRradix p) at 1; rewrite <- (Rabs_right p).
2: apply Rle_ge; apply P_positive with bo precision b b'; auto with real.
pattern (FtoRradix p) at 1; replace (FtoRradix p) with ((p-q)+q)%R;[idtac|ring].
apply Rle_trans with (3*(Rabs (p-q)+(Rabs q))-p)%R.
unfold Rminus; apply Rplus_le_compat_r.
apply Rmult_le_compat_l; auto with real.
apply Rle_trans with 2%R; auto with real.
apply Rabs_triang.
rewrite (Rabs_right q).
2: apply Rle_ge; generalize Q_positive; auto with real.
apply Rle_trans with (3 * (Rabs (p - q)) + (3*q - p))%R;[right;ring|idtac].
apply Rle_trans with (p+q+(3*q-p))%R; auto with real.
right;ring.
Qed.
Theorem t_exact: (FtoRradix t=p-q)%R.
unfold FtoRradix; rewrite <- Fminus_correct; auto with zarith.
apply sym_eq; apply RoundedModeProjectorIdemEq with (b:=bo) (P:=(EvenClosest bo radix precision)) (precision:=precision); auto.
apply EvenClosestRoundedModeP; auto.
2: rewrite Fminus_correct; auto with zarith.
apply Sterbenz; auto.
fold FtoRradix; apply Rmult_le_reg_l with 2%R; auto with real.
apply Rle_trans with (FtoRradix q);[simpl; right; field; auto with real|idtac].
apply Q_le_two_P.
fold FtoRradix; simpl; apply P_le_two_Q.
Qed.
Theorem dp_dq_le:(Rabs (dp-dq) <= (3/2)*(Rmin
(Fulp bo radix precision p) (Fulp bo radix precision q)))%R.
unfold Rminus; apply Rle_trans with (1:=Rabs_triang dp (-dq)).
rewrite Rabs_Ropp;apply Rmult_le_reg_l with (S (S O))%R; auto with real.
apply Rle_trans with (S 1 * Rabs dp + S 1*Rabs dq)%R;[right;ring|idtac].
apply Rle_trans with ((Fulp bo radix precision p)+(Fulp bo radix precision q))%R.
apply Rplus_le_compat.
rewrite dpEq; unfold FtoRradix; apply ClosestUlp; auto.
elim Roundp; auto.
rewrite dqEq; unfold FtoRradix; apply ClosestUlp; auto.
elim Roundq; auto.
rewrite <- Rmult_assoc.
apply Rle_trans with (3*(Rmin (Fulp bo radix precision p) (Fulp bo radix precision q)))%R;[idtac|apply Rmult_le_compat_r].
2: unfold Rmin; case (Rle_dec (Fulp bo radix precision p) (Fulp bo radix precision q)); intros H1; unfold Fulp; auto with real zarith.
2: right; simpl; unfold Rdiv; field; auto with real.
unfold Rmin; case (Rle_dec (Fulp bo radix precision p) (Fulp bo radix precision q)); intros H1.
apply Rle_trans with (Fulp bo radix precision p+2*Fulp bo radix precision p)%R;[apply Rplus_le_compat_l|right;ring].
apply Fulp_le_twice_r; auto with real; fold radix FtoRradix.
generalize Q_positive; auto with real.
apply Q_le_two_P.
apply Rle_trans with (2*Fulp bo radix precision q+Fulp bo radix precision q)%R;[apply Rplus_le_compat_r|right;ring].
apply Fulp_le_twice_r; auto with real; fold radix FtoRradix.
apply P_positive with bo precision b b'; auto with real.
apply P_le_two_Q.
Qed.
Theorem EvenClosestFabs :
forall (f : float) (r : R), (Fcanonic radix bo f)
-> EvenClosest bo radix precision r f ->
EvenClosest bo radix precision (Rabs r) (Fabs f).
intros.
case (Rle_or_lt 0%R r); intros.
rewrite Rabs_right; auto with real.
unfold Fabs; rewrite Zabs_eq; auto with zarith.
apply LeR0Fnum with (radix := radix); auto with zarith.
apply RleRoundedR0 with bo precision (EvenClosest bo radix precision) r; auto with float zarith.
rewrite Rabs_left; auto with real.
replace (Fabs f) with (Fopp f).
generalize EvenClosestSymmetric; unfold SymmetricP; auto.
unfold Fabs, Fopp; rewrite <- Zabs_Zopp; rewrite Zabs_eq; auto.
assert (Fnum f <= 0)%Z; auto with zarith.
apply R0LeFnum with (radix:=radix); auto with zarith.
apply RleRoundedLessR0 with bo precision (EvenClosest bo radix precision) r; auto with float zarith real.
Qed.
Theorem discri2: (3*(Rmin (Fulp bo radix precision p) (Fulp bo radix precision q))
<= (Rabs (p-q)))%R -> (delta <= 2*(Fulp bo radix precision d))%R.
intros H1; unfold delta.
apply Rle_trans with (1 * Fulp bo radix precision d)%R;[ring_simplify (1 * Fulp bo radix precision d)%R | unfold Fulp; auto with real zarith].
replace (d - (b * b' - a * c))%R with ((d-(t+s))+(t+s-b*b'+a*c))%R;[idtac|ring].
apply Rle_trans with (1:=Rabs_triang (d-(t+s))%R (t + s - b * b' + a * c)%R).
apply Rmult_le_reg_l with 2%R; auto with real.
rewrite Rmult_plus_distr_l.
apply Rle_trans with (Fulp bo radix precision d+Fulp bo radix precision d)%R;[idtac|right;ring].
apply Rplus_le_compat.
rewrite <- Rabs_Ropp; replace (- (d - (t + s)))%R with ((t+s)-d)%R;[idtac|ring].
replace 2%R with (INR 2); auto with real.
unfold FtoRradix; apply ClosestUlp; auto.
elim Roundd; auto.
rewrite t_exact.
replace (p - q + s - b * b' + a * c)%R with (-((dp-dq) - s))%R;[idtac|rewrite dpEq; rewrite dqEq; ring].
rewrite Rabs_Ropp; apply Rle_trans with (Fulp bo radix precision s).
unfold FtoRradix; apply ClosestUlp; auto.
elim Rounds; auto.
rewrite FulpFabs; auto; rewrite FulpFabs with (f:=d); auto.
apply LeFulpPos; auto with real zarith float.
rewrite Fabs_correct; auto with real.
apply EvenClosestMonotone2 with bo precision (Rabs (dp-dq)) (Rabs (t+s))%R; auto.
2: apply EvenClosestFabs; auto; left; auto.
2: apply EvenClosestFabs; auto; left; auto.
cut (Rabs (dp - dq) <= (Rabs (p-q))/2)%R.
intros H2; cut ((Rabs s) <= (Rabs t)/2)%R.
intros H3; apply Rle_trans with (1:=H2).
rewrite <- t_exact; apply Rle_trans with ((Rabs t)-(Rabs t)/2)%R.
right; unfold Rdiv; field; auto with real.
apply Rle_trans with ((Rabs t)-(Rabs s))%R; auto with real.
unfold Rminus; apply Rplus_le_compat_l; auto with real.
replace (t+s)%R with (t-(-s))%R; [idtac|ring].
apply Rle_trans with ((Rabs t)-(Rabs (-s)))%R;[idtac|apply Rabs_triang_inv].
rewrite Rabs_Ropp; auto with real.
assert (t/2=(Float (Fnum t) (Zpred (Fexp t))))%R.
unfold FtoRradix, FtoR, Zpred; simpl; rewrite powerRZ_add; auto with real zarith; simpl ; field.
unfold Rdiv; rewrite <- (Rabs_right (/2)%R); auto with real.
2: apply Rle_ge; apply Rlt_le; auto with real.
rewrite <- Rabs_mult; fold (Rdiv t 2%R).
rewrite H; unfold FtoRradix; rewrite <- Fabs_correct; auto.
rewrite <- Fabs_correct; auto.
apply EvenClosestMonotone2 with bo precision (Rabs (dp-dq))%R (Rabs (p-q)/2)%R; auto.
apply EvenClosestFabs; auto; left; auto.
replace (Rabs (p - q) / 2)%R with (FtoRradix (Fabs (Float (Fnum t) (Zpred (Fexp t))))).
unfold FtoRradix; apply RoundedModeProjectorIdem with (b:=bo) (P:=(EvenClosest bo radix precision)); auto.
apply EvenClosestRoundedModeP; auto.
split; simpl; auto with zarith float.
rewrite Zabs_eq; auto with zarith float.
unfold FtoRradix; rewrite Fabs_correct; auto; fold FtoRradix; rewrite <- H.
rewrite t_exact; unfold Rdiv; rewrite Rabs_mult; auto with real.
rewrite (Rabs_right (/2)%R); auto with real.
apply Rle_ge; apply Rlt_le; auto with real.
apply Rle_trans with (1:=dp_dq_le).
apply Rmult_le_reg_l with 2%R; auto with real; unfold Rdiv.
rewrite <- Rmult_assoc.
replace (2*(3*/2))%R with 3%R;[idtac|field; auto with real].
apply Rle_trans with (1:=H1).
right; field; auto with real.
Qed.
Theorem discri3: (exists f:float, (Fbounded bo f) /\ (FtoRradix f)=(dp-dq)%R)
-> (delta <= 2*(Fulp bo radix precision d))%R.
intros T; elim T; intros f T1; elim T1; intros H1 H2; clear T T1.
unfold delta.
replace (d - (b * b' - a * c))%R with (-((t+s)-d))%R.
apply Rmult_le_reg_l with (INR 2); auto with arith real.
apply Rle_trans with (Fulp bo radix precision d).
rewrite Rabs_Ropp; unfold FtoRradix; apply ClosestUlp; auto.
elim Roundd; auto.
simpl; apply Rle_trans with (1*(1*(Fulp bo radix precision d)))%R; unfold Fulp; auto with real zarith.
right; ring.
apply Rmult_le_compat; auto with real zarith.
ring_simplify (1 * powerRZ radix (Fexp (Fnormalize radix bo precision d)))%R; auto with real zarith.
replace (FtoRradix s) with (dp-dq)%R.
rewrite dpEq; rewrite dqEq; rewrite t_exact; ring.
rewrite <- H2.
unfold FtoRradix; apply RoundedModeProjectorIdemEq with (b:=bo) (P:=(EvenClosest bo radix precision)) (precision:=precision); auto with real.
apply EvenClosestRoundedModeP; auto.
fold FtoRradix; rewrite H2; auto.
Qed.
Theorem errorBoundedMultClosest_Can:
forall f1 f2 g : float,
Fbounded bo f1 ->
Fbounded bo f2 ->
Closest bo radix (f1* f2) g ->
(- dExp bo <= Fexp f1 + Fexp f2 - precision)%Z ->
(- dExp bo <= Fexp g - precision)%Z ->
Fcanonic radix bo g ->
(exists s : float,
Fbounded bo s /\
(FtoRradix s = f1*f2 - g)%R /\
Fexp s = (Fexp g - precision)%Z /\
(Rabs (Fnum s) <= powerRZ radix (Zpred precision))%R).
intros.
generalize errorBoundedMultClosest; intros T.
elim T with (b:=bo) (radix:=radix) (precision:=precision) (p:=f1) (q:=f2) (pq:=g); auto with zarith real; clear T; fold FtoRradix.
intros g' T1; elim T1; intros dg T2; elim T2; intros H5 T3; elim T3; intros H6 T4; elim T4; intros H7 T5; elim T5; intros H8 T6; elim T6; intros H9 H10; clear T1 T2 T3 T4 T5 T6.
exists dg; split; auto; split.
rewrite <- H8; auto with real.
split; [replace g with g'; auto with zarith|idtac].
apply FcanonicUnique with radix bo precision; auto with arith.
apply Rmult_le_reg_l with (powerRZ radix (Fexp dg)); auto with zarith real.
apply Rle_trans with (Rabs dg);[right; unfold FtoRradix, FtoR|idtac].
rewrite Rabs_mult;rewrite (Rabs_right (powerRZ radix (Fexp dg)));auto with real.
apply Rle_ge; auto with real zarith.
rewrite H9; rewrite <- powerRZ_add; auto with real zarith.
apply Rmult_le_reg_l with (INR 2); auto with real zarith.
apply Rle_trans with (Fulp bo radix precision g').
unfold FtoRradix; apply ClosestUlp; auto.
replace g' with g; auto.
apply FcanonicUnique with radix bo precision; auto with arith.
rewrite CanonicFulp; auto.
right; apply trans_eq with (powerRZ radix (Fexp g'));[unfold FtoR; simpl; ring|idtac].
apply trans_eq with ((powerRZ radix 1%Z)*(powerRZ radix (Fexp dg+Zpred precision)))%R;[rewrite <- powerRZ_add; auto with zarith real|simpl; ring].
rewrite H10; unfold Zpred; auto with zarith real.
ring_simplify (1 + (Fexp g' - precision + (precision + -1)))%Z; auto with real.
rewrite FcanonicFnormalizeEq; auto with zarith.
Qed.
Theorem discri4: (Fexp p)=(Fexp q) -> (delta <= 2*(Fulp bo radix precision d))%R.
intros H1; apply discri3.
generalize errorBoundedMultClosest_Can; intros T.
elim T with (f1:=b) (f2:=b') (g:=p); auto with zarith real; clear T.
intros dp' T2; elim T2; intros H2 T3; elim T3; intros H3 T4; elim T4; intros H4 H5; clear T2 T3 T4.
2: elim Roundp; auto.
generalize errorBoundedMultClosest_Can; intros T.
elim T with (f1:=a) (f2:=c) (g:=q); auto with zarith real; clear T.
intros dq' T2; elim T2; intros H2' T3; elim T3; intros H3' T4; elim T4; intros H4' H5'; clear T2 T3 T4.
2: elim Roundq; auto.
2: left; auto.
2: left; auto.
assert ((Rabs (Fnum dp'-Fnum dq') < (powerRZ radix precision))%R \/
(((Rabs dp')= (powerRZ radix (Zpred (Fexp p))))%R /\ ((Rabs dq')= (powerRZ radix (Zpred (Fexp p))))%R)).
case H5; intros.
left; unfold Rminus; apply Rle_lt_trans with (1:=Rabs_triang (Fnum dp') (-(Fnum dq'))%R).
rewrite Rabs_Ropp.
apply Rlt_le_trans with ((powerRZ radix (Zpred precision)) +(Rabs (Fnum dq')))%R; auto with real zarith.
apply Rle_trans with ((powerRZ radix (Zpred precision))+ (powerRZ radix (Zpred precision)))%R; auto with real zarith.
right; unfold Zpred; repeat rewrite powerRZ_add; auto with real zarith.
simpl; field.
case H5'; intros.
left; unfold Rminus; apply Rle_lt_trans with (1:=Rabs_triang (Fnum dp') (-(Fnum dq'))%R); rewrite Rabs_Ropp.
apply Rle_lt_trans with ((powerRZ radix (Zpred precision)) +(Rabs (Fnum dq')))%R; auto with real zarith.
apply Rlt_le_trans with ((powerRZ radix (Zpred precision))+ (powerRZ radix (Zpred precision)))%R; auto with real zarith.
right; unfold Zpred; repeat rewrite powerRZ_add; auto with real zarith.
simpl; field.
right; unfold FtoRradix, FtoR;repeat rewrite Rabs_mult.
rewrite (Rabs_right (powerRZ radix (Fexp dp'))); try apply Rle_ge; auto with real zarith.
rewrite (Rabs_right (powerRZ radix (Fexp dq'))); try apply Rle_ge; auto with real zarith.
rewrite H; rewrite H0.
repeat rewrite <- powerRZ_add; auto with real zarith.
rewrite H4'; rewrite H4; unfold Zpred.
ring_simplify (precision + -1 + (Fexp p - precision))%Z;
ring_simplify (precision + -1 + (Fexp q - precision))%Z;
ring_simplify (Fexp p+-1)%Z; rewrite <- H1; auto with zarith real.
case H; clear H; intros H.
exists (Float ((Fnum dp')-(Fnum dq'))%Z (Fexp dq')).
split; [split; auto with zarith|idtac].
simpl; apply Zlt_Rlt.
rewrite pGivesBound;rewrite Zpower_nat_Z_powerRZ; auto.
rewrite <- Rabs_Zabs; unfold Zminus; rewrite plus_IZR; rewrite Ropp_Ropp_IZR; auto with real zarith.
simpl; auto with zarith float.
rewrite dpEq; rewrite dqEq; rewrite <- H3; rewrite <- H3'.
unfold FtoRradix, FtoR; simpl.
unfold Zminus; rewrite plus_IZR; rewrite Ropp_Ropp_IZR; replace (Fexp dp') with (Fexp dq');[ring|idtac].
rewrite H4'; rewrite <- H1; auto with zarith.
rewrite dpEq; rewrite dqEq; rewrite <- H3; rewrite <- H3'.
elim H; unfold Rabs; case (Rcase_abs dp'); case (Rcase_abs dq'); intros.
exists (Float 0%Z 0%Z); split;[split; auto with zarith|idtac].
simpl; case (dExp bo); auto with zarith.
apply trans_eq with (-(-dp')+-dq')%R;[rewrite H0; rewrite H6; unfold FtoRradix, FtoR;simpl|idtac];ring.
exists (Float (-2)%Z (Zpred (Fexp p))); split;[split; simpl; auto with zarith|idtac].
rewrite pGivesBound; apply Zle_lt_trans with (Zpower_nat radix 1); auto with zarith.
apply trans_eq with (-(-dp')+-dq')%R;[rewrite H0; rewrite H6; unfold FtoRradix, FtoR; simpl|idtac];ring.
exists (Float 2%Z (Zpred (Fexp p))); split;[split;simpl;auto with zarith|idtac].
rewrite pGivesBound; apply Zle_lt_trans with (Zpower_nat radix 1); auto with zarith.
unfold Rminus;rewrite H0; rewrite H6; unfold FtoRradix, FtoR;simpl; ring.
exists (Float 0%Z 0%Z); split;[split; auto with zarith|idtac].
simpl; case (dExp bo); auto with zarith.
rewrite H0; rewrite H6; unfold FtoRradix, FtoR; simpl;ring.
Qed.
End Discriminant2.
Section Discriminant3.
Variable bo : Fbound.
Variable precision : nat.
Let radix := 2%Z.
Let FtoRradix := FtoR radix.
Coercion FtoRradix : float >-> R.
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ TwoMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum bo) = Zpower_nat radix precision.
Variables a b b' c p q t dp dq s d:float.
Let delta := (Rabs (d-(b*b'-a*c)))%R.
Hypothesis Fa : (Fbounded bo a).
Hypothesis Fb : (Fbounded bo b).
Hypothesis Fb': (Fbounded bo b').
Hypothesis Fc : (Fbounded bo c).
Hypothesis Fp : (Fbounded bo p).
Hypothesis Fq : (Fbounded bo q).
Hypothesis Fd : (Fbounded bo d).
Hypothesis Ft : (Fbounded bo t).
Hypothesis Fs : (Fbounded bo s).
Hypothesis Fdp: (Fbounded bo dp).
Hypothesis Fdq: (Fbounded bo dq).
(** There is no underflow *)
Hypothesis U1: (- dExp bo <= Fexp p - precision)%Z.
Hypothesis U2: (- dExp bo <= Fexp a + Fexp c - precision)%Z.
Hypothesis U3: (- dExp bo <= Fexp q - precision)%Z.
Hypothesis U4: (- dExp bo <= Fexp b + Fexp b' - precision)%Z.
Hypothesis U5: (- dExp bo <= (Fexp d)-1)%Z.
Hypothesis Np:(Fnormal radix bo p).
Hypothesis Nq:(Fnormal radix bo q).
Hypothesis Ns:(Fnormal radix bo s).
Hypothesis Nd:(Fnormal radix bo d).
Hypothesis Square:(0 <=b*b')%R.
Hypothesis Roundp : (EvenClosest bo radix precision (b*b')%R p).
Hypothesis Roundq : (EvenClosest bo radix precision (a*c)%R q).
Hypothesis p_pos:(0 <= p)%R.
Hypothesis q_pos:(0 <= q)%R.
Hypothesis Secondcase : (3*(Rabs (p-q)) < p+q)%R.
Hypothesis Roundt : (EvenClosest bo radix precision (p-q)%R t).
Hypothesis dpEq : (FtoRradix dp=b*b'-p)%R.
Hypothesis dqEq : (FtoRradix dq=a*c-q)%R.
Hypothesis Rounds : (EvenClosest bo radix precision (dp-dq)%R s).
Hypothesis Roundd : (EvenClosest bo radix precision (t+s)%R d).
Hypothesis p_differ_q:~(p=q)%R.
Variable e:Z.
Hypothesis p_eqF : p=(Float (Zpower_nat radix (pred precision)) (Zsucc e)).
Hypothesis p_eqR : (FtoRradix p)=(powerRZ radix (precision+e)%Z).
Hypothesis q_eqExp : (Fexp q)=e.
Theorem discri5: (0 < dp*dq)%R -> (delta <= 2*(Fulp bo radix precision d))%R.
intros.
unfold FtoRradix, delta; apply discri3 with p q t dp dq s; auto.
assert (forall f1 f2 g : float,
Fbounded bo f1 ->
Fbounded bo f2 ->
Closest bo 2 (FtoR 2 f1 * FtoR 2 f2) g ->
(- dExp bo <= Fexp f1 + Fexp f2 - precision)%Z ->
(- dExp bo <= Fexp g - precision)%Z ->
Fcanonic 2 bo g ->
exists s : float,
Fbounded bo s /\
FtoR 2 s = (FtoR 2 f1 * FtoR 2 f2 - FtoR 2 g)%R /\
Fexp s = (Fexp g - precision)%Z /\
(Rabs (Fnum s) <= powerRZ (Zpos 2) (Zpred precision))%R).
apply errorBoundedMultClosest_Can; auto.
fold radix in H0; fold FtoRradix in H0.
elim H0 with (f1:=b) (f2:=b') (g:=p); auto with zarith real.
intros dp' T2; elim T2; intros H2 T3; elim T3; intros H3 T4; elim T4; intros H4 H5; clear T2 T3 T4.
2: elim Roundp; auto.
elim H0 with (f1:=a) (f2:=c) (g:=q); auto with zarith real; clear H0.
intros dq' T2; elim T2; intros H2' T3; elim T3; intros H3' T4; elim T4; intros H4' H5'; clear T2 T3 T4.
2: elim Roundq; auto.
2: left; auto.
2: left; auto.
fold radix; fold FtoRradix; rewrite dpEq; rewrite dqEq; rewrite <- H3; rewrite <- H3'.
exists (Fminus radix dp' dq'); split.
2: unfold FtoRradix; rewrite Fminus_correct; auto with real.
unfold Fminus, Fopp, Fplus; simpl.
repeat rewrite H4'; repeat rewrite q_eqExp; repeat rewrite H4.
replace (Fexp p) with (Zsucc e); [idtac|rewrite p_eqF; auto].
rewrite Zmin_le2; auto with zarith.
split; auto with zarith.
simpl; unfold Zsucc.
ring_simplify (e + 1 - precision - (e - precision))%Z;
ring_simplify (e - precision - (e - precision))%Z.
simpl.
unfold nat_of_P, Zpower_nat; simpl.
replace ( - Fnum dq' * 1)%Z with (- Fnum dq')%Z; [idtac|ring].
apply Zlt_Rlt.
rewrite pGivesBound;rewrite Zpower_nat_Z_powerRZ; auto.
rewrite <- Rabs_Zabs; rewrite plus_IZR;rewrite mult_IZR;rewrite Ropp_Ropp_IZR.
assert (forall (x y z:R), (0 < x*y)%R -> (Rabs x <= z)%R ->
(Rabs y <= z)%R -> (Rabs (2*x-y) < 2*z)%R).
intros.
unfold Rabs; case (Rcase_abs (2*x-y)%R); case (Rle_or_lt 0%R x); intros.
case H7; intros;ring_simplify (- (2 * x - y))%R.
assert (-x <0)%R; auto with real.
apply Rlt_le_trans with (-2*0+y)%R; auto with real.
apply Rplus_lt_compat_r; repeat rewrite Ropp_mult_distr_l_reverse.
apply Ropp_lt_contravar; apply Rmult_lt_compat_l; auto with real.
ring_simplify (-2*0+y)%R; apply Rle_trans with z; auto with real.
apply Rle_trans with (2:=H6); apply RRle_abs.
apply Rle_trans with (1*z)%R; auto with real.
apply Rmult_le_compat_r; auto with real.
apply Rle_trans with (2:=H1); auto with real.
Contradict H0; rewrite <- H8; auto with real.
ring_simplify (0*y)%R; auto with real.
ring_simplify (- (2 * x - y))%R.
apply Rlt_le_trans with ((-2*x)+0)%R;[apply Rplus_lt_compat_l|idtac].
apply Rmult_lt_reg_l with (-x)%R; auto with real.
apply Rle_lt_trans with (-(x*y))%R; auto with real.
apply Rlt_le_trans with (-0)%R; auto with real; right;ring.
apply Rle_trans with (2*(-x))%R;[right;ring|apply Rmult_le_compat_l; auto with real].
apply Rle_trans with (2:=H1); rewrite <- Rabs_Ropp; apply RRle_abs.
apply Rlt_le_trans with (2*x-0)%R;[unfold Rminus; apply Rplus_lt_compat_l|idtac].
apply Ropp_lt_contravar; apply Rmult_lt_reg_l with x; auto with real.
case H7; auto with real.
intros H8; Contradict H0; rewrite <- H8; ring_simplify (0*y)%R; auto with real.
ring_simplify (x*0)%R; auto with real.
apply Rle_trans with (2*x)%R;[right;ring|apply Rmult_le_compat_l; auto with real].
apply Rle_trans with (2:=H1); apply RRle_abs.
apply Rlt_le_trans with (2*0-y)%R; [unfold Rminus; apply Rplus_lt_compat_r; apply Rmult_lt_compat_l; auto with real|idtac].
apply Rle_trans with (-y)%R;[right;ring|apply Rle_trans with z].
apply Rle_trans with (2:=H6); rewrite <- Rabs_Ropp; apply RRle_abs.
apply Rle_trans with (1*z)%R;[right;ring|apply Rmult_le_compat_r; auto with real].
apply Rle_trans with (2:=H1); auto with real.
replace (Fnum dp' * Zpos 2+-Fnum dq')%R with (2*(Fnum dp')-Fnum dq')%R; auto with real zarith.
apply Rlt_le_trans with (2*powerRZ radix (Zpred precision))%R.
apply H0; auto.
apply Rmult_lt_reg_l with (powerRZ radix (Fexp dq')); auto with real zarith.
apply Rmult_lt_reg_l with (powerRZ radix (Fexp dp')); auto with real zarith.
apply Rle_lt_trans with 0%R;[right;ring|apply Rlt_le_trans with (1:=H)].
rewrite dpEq; rewrite dqEq; rewrite <- H3; rewrite <- H3'.
unfold FtoRradix, FtoR; right; ring.
right; unfold Zpred, Zminus; rewrite powerRZ_add; auto with real zarith.
simpl; field; apply Rmult_integral_contrapositive; split; auto with real.
simpl; ring.
simpl;rewrite <-q_eqExp; rewrite <- H4'; auto with zarith float.
Qed.
Theorem discri6: (0< dp)%R -> (dq < 0)%R
-> (delta <= 2*(Fulp bo radix precision d))%R.
intros;unfold delta.
replace (d - (b * b' - a * c))%R with (-((t+s)-d)+-((dp-dq)-s))%R.
2: rewrite dpEq; rewrite dqEq; unfold FtoRradix, radix; rewrite t_exact with bo precision b b' p q t; auto; ring.
apply Rle_trans with (1:=Rabs_triang (-(t+s-d))%R (-(dp-dq-s))%R).
apply Rmult_le_reg_l with (INR 2); auto with real zarith;rewrite Rmult_plus_distr_l.
apply Rle_trans with ((Fulp bo radix precision d)+(Fulp bo radix precision s))%R;[apply Rplus_le_compat|idtac].
rewrite Rabs_Ropp; unfold FtoRradix; apply ClosestUlp; auto.
elim Roundd; auto.
rewrite Rabs_Ropp; unfold FtoRradix; apply ClosestUlp; auto.
elim Rounds; auto.
apply Rle_trans with ((Fulp bo radix precision d+ 3* Fulp bo radix precision d))%R;[apply Rplus_le_compat_l|simpl;right;ring].
apply Rle_trans with (2*Fulp bo radix precision d)%R;[idtac|unfold Fulp; auto with real zarith].
rewrite FulpFabs; auto; rewrite FulpFabs with bo radix precision d; auto.
assert (2*(Fabs d)=(Float (Fnum (Fabs d)) (Zsucc (Fexp (Fabs d)))))%R.
unfold FtoRradix, FtoR, Zsucc; simpl; rewrite powerRZ_add; auto with real zarith; simpl; ring.
apply Rle_trans with (Fulp bo radix precision (Float (Fnum (Fabs d)) (Zsucc (Fexp (Fabs d))))).
2:assert (Fnormal radix bo (Fabs d));[apply FnormalFabs; auto|idtac].
2:right; rewrite CanonicFulp; auto; [rewrite CanonicFulp|left]; auto.
2:unfold FtoR, Zsucc; simpl; rewrite powerRZ_add; auto with real zarith.
2:simpl; ring.
2:left; auto.
2:elim H2; intros H6 H5; elim H6; intros.
2:split; simpl; auto with zarith.
2:split; simpl; auto with zarith.
apply LeFulpPos; auto with real float.
assert (Fnormal radix bo (Fabs d));[apply FnormalFabs; auto|idtac].
elim H2; intros H6 H5; elim H6; intros;split; simpl; auto with zarith.
rewrite Fabs_correct; auto with real zarith.
apply EvenClosestMonotone2 with bo precision (Rabs (dp-dq))%R (2*Rabs (t+s))%R; auto.
2: apply EvenClosestFabs; auto; left; auto.
2: apply Twice_EvenClosest_Round; auto.
2: apply FnormalFabs; auto.
2: apply EvenClosestFabs; auto; left; auto.
unfold Rminus; apply Rle_trans with (1:=Rabs_triang dp (-dq)%R).
apply Rmult_le_reg_l with (INR 2); auto with real zarith; rewrite Rmult_plus_distr_l.
apply Rle_trans with (Fulp bo radix precision p+Fulp bo radix precision q)%R;[apply Rplus_le_compat|idtac].
rewrite dpEq; unfold FtoRradix; apply ClosestUlp; auto.
elim Roundp; auto.
rewrite Rabs_Ropp; rewrite dqEq; unfold FtoRradix; apply ClosestUlp; auto.
elim Roundq; auto.
rewrite CanonicFulp; auto with float;[idtac|left; auto].
rewrite CanonicFulp; auto with float;[idtac|left; auto].
apply Rle_trans with (3*(powerRZ radix e))%R;[right|idtac].
unfold FtoRradix, FtoR; simpl; rewrite q_eqExp; rewrite p_eqF; simpl.
unfold Zsucc; rewrite powerRZ_add; auto with real zarith; simpl;ring.
assert ((powerRZ radix e <= t))%R.
unfold FtoRradix, radix; rewrite t_exact with bo precision b b' p q t; auto.
fold radix; fold FtoRradix; rewrite p_eqR.
apply Rle_trans with (powerRZ radix (precision + e) - ((powerRZ radix precision - 1) * powerRZ radix e))%R; auto with real.
rewrite powerRZ_add; auto with real zarith; right;ring.
unfold Rminus; apply Rplus_le_compat_l; auto with real.
apply Ropp_le_contravar.
unfold FtoRradix, FtoR; rewrite q_eqExp; apply Rmult_le_compat_r; auto with real zarith.
apply Rle_trans with (1:=(RRle_abs (Fnum q))).
assert (Zabs (Fnum q) < Zpower_nat radix precision)%Z; auto with real zarith float.
rewrite <- pGivesBound; auto with zarith float.
rewrite Rabs_Zabs; apply Rle_trans with (Zpred (Zpower_nat radix precision)); auto with real zarith.
unfold Zpred; rewrite plus_IZR.
rewrite Zpower_nat_Z_powerRZ; right; simpl; ring.
assert (0<=s)%R.
unfold FtoRradix; apply RleRoundedR0 with bo precision (EvenClosest bo radix precision) (dp-dq)%R; auto with real.
apply EvenClosestRoundedModeP; auto.
apply Rle_trans with (0-0)%R; unfold Rminus; auto with real.
apply Rplus_le_compat; auto with real.
rewrite Rabs_right; auto with real.
2: apply Rle_ge; apply Rle_trans with (0+0)%R; auto with real.
2: apply Rplus_le_compat; auto with real zarith.
2: apply Rle_trans with (2:=H2); auto with real zarith.
apply Rle_trans with (4*powerRZ radix e)%R;[apply Rmult_le_compat_r; auto with real zarith|idtac].
replace 3%R with (INR 3);[idtac|simpl; ring].
replace 4%R with (INR 4);[auto with real zarith|simpl;ring].
apply Rle_trans with (4*(t+s))%R;[apply Rmult_le_compat_l; auto with real|simpl; right; ring].
replace 4%R with (INR 4);[auto with real zarith|simpl;ring].
apply Rle_trans with (powerRZ radix e+0)%R;[idtac|apply Rplus_le_compat];auto with real.
Qed.
Theorem discri7: (dp < 0)%R -> (0 < dq)%R
-> (delta <= 2*(Fulp bo radix precision d))%R.
intros L1 L2.
unfold delta, FtoRradix; apply discri3 with p q t dp dq s; auto.
assert (H0:forall f1 f2 g : float,
Fbounded bo f1 ->
Fbounded bo f2 ->
Closest bo 2 (FtoR 2 f1 * FtoR 2 f2) g ->
(- dExp bo <= Fexp f1 + Fexp f2 - precision)%Z ->
(- dExp bo <= Fexp g - precision)%Z ->
Fcanonic 2 bo g ->
exists s : float,
Fbounded bo s /\
FtoR 2 s = (FtoR 2 f1 * FtoR 2 f2 - FtoR 2 g)%R /\
Fexp s = (Fexp g - precision)%Z /\
(Rabs (Fnum s) <= powerRZ (Zpos 2) (Zpred precision))%R).
apply errorBoundedMultClosest_Can; auto.
fold radix in H0; fold FtoRradix in H0.
elim H0 with (f1:=b) (f2:=b') (g:=p); auto with zarith real.
intros dp' T2; elim T2; intros H2 T3; elim T3; intros H3 T4; elim T4; intros H4
H5; clear T2 T3 T4.
2: elim Roundp; auto.
elim H0 with (f1:=a) (f2:=c) (g:=q); auto with zarith real; clear H0.
intros dq' T2; elim T2; intros H2' T3; elim T3; intros H3' T4; elim T4; intros H4' H5'; clear T2 T3 T4.
2: elim Roundq; auto.
2: left; auto.
2: left; auto.
cut (exists dp'':float, (Fexp dp''=Fexp dq' /\ (FtoRradix dp''=dp')%R /\
(Rabs (Fnum dp'') <= powerRZ radix (Zpred precision))%R)).
intros T; elim T; intros dp'' T1; elim T1; intros H4'' T2; elim T2;
intros H5'' H6''; clear T T1 T2.
assert ((Rabs (Fnum dp''-Fnum dq') < (powerRZ radix precision))%R \/
(((Rabs dp'')= (powerRZ radix (Zpred (Fexp q))))%R /\ ((Rabs dq')=
(powerRZ radix (Zpred (Fexp q))))%R)).
case H6''; intros.
left; unfold Rminus; apply Rle_lt_trans with (1:=Rabs_triang (Fnum dp'')
(-(Fnum dq'))%R).
rewrite Rabs_Ropp.
apply Rlt_le_trans with ((powerRZ radix (Zpred precision)) +(Rabs (Fnum
dq')))%R; auto with real zarith.
apply Rle_trans with ((powerRZ radix (Zpred precision))+ (powerRZ radix
(Zpred precision)))%R; auto with real zarith.
right; unfold Zpred; repeat rewrite powerRZ_add; auto with real zarith.
simpl; field.
case H5'; intros.
left; unfold Rminus; apply Rle_lt_trans with (1:=Rabs_triang (Fnum dp'') (-(Fnum
dq'))%R); rewrite Rabs_Ropp.
apply Rle_lt_trans with ((powerRZ radix (Zpred precision)) +(Rabs (Fnum dq')))%R
; auto with real zarith.
apply Rlt_le_trans with ((powerRZ radix (Zpred precision))+ (powerRZ radix (Zpred precision)))%R; auto with real zarith.
right; unfold Zpred; repeat rewrite powerRZ_add; auto with real zarith.
simpl; field.
right; unfold FtoRradix, FtoR;repeat rewrite Rabs_mult.
rewrite (Rabs_right (powerRZ radix (Fexp dp''))); try apply Rle_ge; auto with real zarith.
rewrite (Rabs_right (powerRZ radix (Fexp dq'))); try apply Rle_ge; auto with real zarith.
rewrite H; rewrite H0.
repeat rewrite <- powerRZ_add; auto with real zarith.
rewrite H4''; rewrite H4'; unfold Zpred.
ring_simplify (precision + -1 + (Fexp q - precision))%Z;
ring_simplify (precision + -1 + (Fexp q - precision))%Z;
ring_simplify (Fexp q+-1)%Z; auto with zarith real.
case H; intros V; clear H.
exists (Float (Fnum dp''-Fnum dq') (Fexp dq')).
split;[split; auto with zarith|idtac].
simpl; apply Zlt_Rlt.
rewrite pGivesBound;rewrite Zpower_nat_Z_powerRZ; auto.
rewrite <- Rabs_Zabs; unfold Zminus; rewrite plus_IZR; rewrite Ropp_Ropp_IZR; auto with real zarith.
simpl; auto with zarith float.
fold radix; fold FtoRradix; rewrite dpEq; rewrite dqEq.
rewrite <- H3'; rewrite <- H3;rewrite <- H5''.
unfold FtoRradix, FtoR; simpl.
unfold Zminus; rewrite plus_IZR; rewrite Ropp_Ropp_IZR.
rewrite H4''; ring.
exists (Float (-1)%Z (Fexp q)).
split;[split; simpl; auto with zarith|idtac].
rewrite pGivesBound; apply Zle_lt_trans with (Zpower_nat radix 0); auto with zarith.
fold radix; fold FtoRradix; elim V; intros.
replace (FtoRradix dp) with (-(-dp))%R;[idtac|ring].
rewrite <- (Rabs_left dp); auto with real.
rewrite <- (Rabs_right dq); auto with real.
2: apply Rle_ge; auto with real.
rewrite dpEq; rewrite <- H3; rewrite <- H5''; rewrite H.
rewrite dqEq; rewrite <- H3'; rewrite H0.
unfold FtoRradix, FtoR, Zpred; simpl.
repeat rewrite powerRZ_add; auto with real zarith; simpl; field.
assert (FtoRradix dp'=(Float (2*Fnum dp') (Zpred (Fexp dp'))))%R.
unfold FtoRradix, FtoR, Zpred.
apply trans_eq with ((2 * Fnum dp')%Z*(powerRZ radix (Fexp dp'+-1)))%R;[auto|idtac].
rewrite mult_IZR;rewrite powerRZ_add; auto with real zarith; simpl; field.
simpl; auto with real.
exists (Float (2*Fnum dp') (Zpred (Fexp dp'))); split.
simpl; rewrite H4'; rewrite H4.
rewrite q_eqExp; rewrite p_eqF; unfold Zpred, Zsucc;simpl; auto with zarith.
split; auto with real.
apply Rmult_le_reg_l with (powerRZ radix (Zpred (Fexp dp'))); auto with real zarith.
rewrite <- powerRZ_add; auto with real zarith.
rewrite <- (Rabs_right (powerRZ radix (Zpred (Fexp dp'))));auto with real.
2: apply Rle_ge; auto with real zarith.
rewrite <- Rabs_mult.
replace (powerRZ radix (Zpred (Fexp dp')) *
Fnum (Float (2 * Fnum dp') (Zpred (Fexp dp'))))%R with (FtoRradix dp'); auto with real.
2: rewrite H; unfold FtoRradix, FtoR; simpl; auto with real.
rewrite H3; rewrite <- dpEq.
rewrite H4; unfold Zpred;ring_simplify (Fexp p - precision + -1 + (precision + -1))%Z.
rewrite Rabs_left; auto with real.
apply Rmult_le_reg_l with 2%R; auto with real.
apply Rplus_le_reg_l with (FtoRradix dp).
ring_simplify (dp+2*(-dp))%R.
rewrite <- Rabs_left; auto with real.
assert (Fbounded bo (Float (Zpred (Zpower_nat radix precision)) e)).
split; auto with zarith.
simpl; rewrite pGivesBound; auto with zarith.
rewrite Zabs_eq; auto with zarith.
simpl; auto with zarith.
rewrite <- Rabs_Ropp.
replace (-dp)%R with (p-b*b')%R; [idtac|rewrite dpEq;ring].
elim Roundp; intros K1 K2; elim K1; intros K3 K4.
apply Rle_trans with (Rabs ((Float (Zpred (Zpower_nat radix precision)) e)-b*b')).
unfold FtoRradix; apply K4; auto.
clear K1 K2 K3 K4; rewrite Rabs_left1.
rewrite dpEq; rewrite p_eqR.
apply Rle_trans with (b*b'-(powerRZ radix precision -1)*(powerRZ radix e))%R.
unfold FtoRradix, FtoR, Zpred, radix; simpl.
rewrite plus_IZR; simpl; right; ring_simplify.
rewrite Zpower_nat_Z_powerRZ; auto with real zarith; simpl; ring.
unfold Rminus; rewrite Rplus_assoc; apply Rplus_le_compat_l.
replace (Fexp p) with (Zsucc e);[unfold Zsucc|rewrite p_eqF; simpl; auto with zarith].
ring_simplify (e+1-2)%Z; unfold Zminus.
repeat rewrite powerRZ_add; auto with real zarith; simpl; right; field.
apply Rplus_le_reg_l with (p-(Float (Zpred (Zpower_nat radix precision)) e))%R.
apply Rle_trans with (-(b*b'-p))%R;[right;ring|idtac].
rewrite <- dpEq; rewrite <- Rabs_left; auto with real.
rewrite dpEq; apply Rmult_le_reg_l with (INR 2); auto with real zarith.
apply Rle_trans with (Fulp bo radix precision p).
unfold FtoRradix; apply ClosestUlp; auto.
elim Roundp; auto.
rewrite CanonicFulp; auto;[idtac|left; auto].
replace (Fexp p) with (Zsucc e);[unfold Zsucc|rewrite p_eqF; simpl; auto with zarith].
rewrite p_eqR; unfold FtoRradix, FtoR, Zpred; simpl.
rewrite plus_IZR; rewrite Zpower_nat_Z_powerRZ; auto with real zarith.
repeat rewrite powerRZ_add; auto with real zarith; simpl; right; field.
Qed.
Theorem discri8: (delta <= 2*(Fulp bo radix precision d))%R.
case (Rle_or_lt 0%R dp); intros H;[case H; clear H; intros H|idtac].
case (Rle_or_lt 0%R dq); intros H';[case H'; clear H'; intros H'|idtac].
apply discri5; auto with real.
apply Rle_lt_trans with (dp*0)%R;[right;ring|auto with real].
unfold FtoRradix, delta; apply discri3 with p q t dp dq s; auto.
exists dp; split; auto.
fold radix; fold FtoRradix; rewrite <- H'; ring.
apply discri6; auto.
unfold FtoRradix, delta; apply discri3 with p q t dp dq s; auto.
exists (Fopp dq); split; auto with float zarith.
rewrite Fopp_correct; fold radix; fold FtoRradix; rewrite <- H; ring.
case (Rle_or_lt 0%R dq); intros H';[case H'; clear H'; intros H'|idtac].
apply discri7; auto.
unfold FtoRradix, delta; apply discri3 with p q t dp dq s; auto.
exists dp; split; auto.
fold radix; fold FtoRradix; rewrite <- H'; ring.
apply discri5; auto.
apply Rle_lt_trans with (-dp*0)%R;[right;ring|idtac].
apply Rlt_le_trans with ((-dp)*(-dq))%R;[auto with real|right;ring].
Qed.
End Discriminant3.
Section Discriminant4.
Variable bo : Fbound.
Variable precision : nat.
Let radix := 2%Z.
Let FtoRradix := FtoR radix.
Coercion FtoRradix : float >-> R.
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ TwoMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum bo) = Zpower_nat radix precision.
Variables a b c p q t dp dq s d:float.
Let delta := (Rabs (d-(b*b-a*c)))%R.
Hypothesis Fa : (Fbounded bo a).
Hypothesis Fb : (Fbounded bo b).
Hypothesis Fc : (Fbounded bo c).
Hypothesis Fp : (Fbounded bo p).
Hypothesis Fq : (Fbounded bo q).
Hypothesis Fd : (Fbounded bo d).
Hypothesis Ft : (Fbounded bo t).
Hypothesis Fs : (Fbounded bo s).
Hypothesis Fdp: (Fbounded bo dp).
Hypothesis Fdq: (Fbounded bo dq).
(** There is no underflow *)
Hypothesis U0: (- dExp bo <= Fexp d - 1)%Z.
Hypothesis U1: (- dExp bo <= (Fexp t)-1)%Z.
Hypothesis U2: (- dExp bo <= Fexp a + Fexp c - precision)%Z.
Hypothesis U3: (- dExp bo <= Fexp q - precision)%Z.
Hypothesis U4: (- dExp bo <= Fexp b + Fexp b - precision)%Z.
Hypothesis U5: (- dExp bo <= Fexp p - precision)%Z.
Hypothesis Np:(Fnormal radix bo p).
Hypothesis Nq:(Fnormal radix bo q).
Hypothesis Ns:(Fnormal radix bo s).
Hypothesis Nd:(Fnormal radix bo d).
Hypothesis Roundp : (EvenClosest bo radix precision (b*b)%R p).
Hypothesis Roundq : (EvenClosest bo radix precision (a*c)%R q).
Hypothesis Firstcase : (p+q <= 3*(Rabs (p-q)))%R ->
(EvenClosest bo radix precision (p-q)%R d).
Hypothesis SRoundt : (3*(Rabs (p-q)) < p+q)%R -> (EvenClosest bo radix precision (p-q)%R t).
Hypothesis SdpEq : (3*(Rabs (p-q)) < p+q)%R -> (FtoRradix dp=b*b-p)%R.
Hypothesis SdqEq : (3*(Rabs (p-q)) < p+q)%R -> (FtoRradix dq=a*c-q)%R.
Hypothesis SRounds : (3*(Rabs (p-q)) < p+q)%R -> (EvenClosest bo radix precision (dp-dq)%R s).
Hypothesis SRoundd : (3*(Rabs (p-q)) < p+q)%R -> (EvenClosest bo radix precision (t+s)%R d).
Theorem discri9: (delta <= 2*(Fulp bo radix precision d))%R.
assert (Square:(0<=b*b)%R).
apply Rle_trans with (Rsqr b); auto with real.
case (Rle_or_lt (p + q)%R (3 * Rabs (p - q))%R); intros.
unfold delta;apply discri1 with p q; auto.
case (Rle_or_lt (3*(Rmin (Fulp bo radix precision p) (Fulp bo radix precision q)))%R (Rabs (p-q))%R); intros.
unfold delta; apply discri2 with p q t dp dq s; auto.
case (Zle_or_lt (Fexp q) (Fexp p)); intros.
case (Zle_lt_or_eq (Fexp q) (Fexp p)); auto;intros.
assert (Fexp q = Zpred (Fexp p))%Z.
cut (Zle (Fexp q) (Zpred (Fexp p))); auto with zarith.
cut (Zle (Zpred (Fexp p)) (Fexp q)); auto with zarith.
clear H1;apply Zle_powerRZ with radix; auto with real zarith.
apply Rle_trans with (Fulp bo radix precision (Float (Fnum p) (Zpred (Fexp p)))).
rewrite CanonicFulp; auto.
unfold FtoR; simpl; right; ring.
left; split; auto with zarith.
split; simpl; auto with zarith float.
simpl; elim Np; auto with zarith.
apply Rle_trans with (Fulp bo radix precision q).
apply LeFulpPos; auto with real float zarith.
split; simpl; auto with zarith float.
apply LeFnumZERO; simpl; auto with real zarith.
apply LeR0Fnum with radix; auto with real zarith.
apply P_positive with bo precision b b; auto.
apply Rmult_le_reg_l with 2%R; auto with real.
apply Rle_trans with (FtoRradix p).
unfold FtoRradix, FtoR, Zpred; simpl; rewrite powerRZ_add; auto with real zarith; simpl; right; field.
apply P_le_two_Q with bo precision b b; auto.
rewrite CanonicFulp; auto with zarith.
unfold FtoR; simpl; right; ring.
left; auto.
clear H1 H2; assert (FtoRradix p=powerRZ radix (precision+Zpred (Fexp p)))%R.
case (Zle_lt_or_eq (Zpower_nat radix (pred precision)) (Fnum p)).
elim Np; intros.
apply Zmult_le_reg_r with radix; auto with zarith.
apply Zlt_gt; auto with zarith.
apply Zle_trans with (Zpower_nat radix precision).
pattern radix at 2 in |-*; replace radix with (Zpower_nat radix 1).
rewrite <- Zpower_nat_is_exp; auto with zarith.
simpl; auto with zarith.
rewrite <- pGivesBound; apply Zle_trans with (1:=H2).
rewrite Zabs_eq; auto with zarith.
cut (0<=Fnum p)%Z; auto with zarith.
apply LeR0Fnum with radix; auto.
apply P_positive with bo precision b b; auto.
intros H1; Contradict H0.
apply Rle_not_lt.
rewrite CanonicFulp; auto; [idtac|left; auto].
rewrite CanonicFulp; auto; [idtac|left; auto].
replace (FtoR radix (Float (S 0) (Fexp p))) with (powerRZ radix (Fexp p));[idtac|unfold FtoR; simpl; ring].
replace (FtoR radix (Float (S 0) (Fexp q))) with (powerRZ radix (Fexp q));[idtac|unfold FtoR; simpl; ring].
rewrite H3; unfold Rmin.
case (Rle_dec (powerRZ radix (Fexp p)) (powerRZ radix (Zpred (Fexp p)))); auto with real zarith; intros J.
Contradict J; apply Rlt_not_le; auto with real zarith.
clear J; rewrite Rabs_right.
unfold FtoRradix, FtoR, Rminus.
apply Rle_trans with ((Zsucc (Zpower_nat radix (pred precision))*(powerRZ radix (Fexp p))+-((Zpred (Zpower_nat radix precision))*(powerRZ radix (Fexp q)))))%R.
unfold Zpred, Zsucc; rewrite plus_IZR; rewrite plus_IZR; repeat rewrite Zpower_nat_Z_powerRZ.
rewrite inj_pred; auto with zarith.
rewrite H3; unfold Zpred; simpl; right;ring_simplify.
repeat rewrite powerRZ_add; auto with real zarith; simpl; field.
apply Rplus_le_compat;[apply Rmult_le_compat_r; auto with real zarith|idtac].
apply Ropp_le_contravar; apply Rmult_le_compat_r; auto with real zarith.
apply Rle_trans with (1:=RRle_abs (Fnum q)).
rewrite Rabs_Zabs; rewrite <- pGivesBound;auto with zarith float.
elim Fq; intros; auto with zarith.
apply Rle_IZR;apply Zle_Zpred; auto.
apply Rle_ge; apply Rlt_le; apply Rplus_lt_reg_r with q.
ring_simplify.
unfold FtoRradix; apply FcanonicPosFexpRlt with bo precision; auto with zarith.
apply Rlt_le; apply Q_positive with bo precision b b p; auto.
apply P_positive with bo precision b b; auto.
left; auto.
left; auto.
intros H1; unfold FtoRradix, FtoR; rewrite <- H1.
rewrite Zpower_nat_Z_powerRZ; rewrite <- powerRZ_add; auto with real zarith.
rewrite inj_pred; auto with zarith.
replace (Zpred precision+Fexp p)%Z with (precision + Zpred (Fexp p))%Z;[auto with real|unfold Zpred; ring].
unfold delta; apply discri8 with p q t dp dq s (Zpred (Fexp p)); auto.
apply FcanonicUnique with radix bo precision; auto with zarith real.
left; auto.
left; split; [split;simpl|idtac]; auto with zarith.
rewrite Zabs_eq; auto with zarith.
rewrite pGivesBound; auto with zarith.
simpl (Fnum (Float (Zpower_nat 2 (pred precision)) (Zsucc (Zpred (Fexp p))))).
replace radix with (Zpower_nat radix 1);[idtac|simpl; auto with zarith].
rewrite <-Zpower_nat_is_exp; rewrite pGivesBound; auto with zarith.
rewrite Zabs_eq; auto with zarith.
fold FtoRradix; rewrite H1; unfold FtoRradix, FtoR, Zpred, Zsucc; simpl.
rewrite Zpower_nat_Z_powerRZ; rewrite <- powerRZ_add; auto with real zarith.
rewrite inj_pred; auto with zarith; unfold Zpred.
replace (precision + -1 + (Fexp p + -1 + 1))%Z with (precision+(Fexp p+-1))%Z; auto with real; ring.
unfold delta;apply discri4 with p q t dp dq s; auto.
assert (Fexp p = Zpred (Fexp q))%Z.
cut (Zle (Fexp p) (Zpred (Fexp q))); auto with zarith.
cut (Zle (Zpred (Fexp q)) (Fexp p)); auto with zarith.
clear H1;apply Zle_powerRZ with radix; auto with real zarith.
apply Rle_trans with (Fulp bo radix precision (Float (Fnum q) (Zpred (Fexp q)))).
rewrite CanonicFulp; auto.
unfold FtoR; simpl; right; ring.
left; split; auto with zarith.
split; simpl; auto with zarith float.
simpl; elim Nq; auto with zarith.
apply Rle_trans with (Fulp bo radix precision p).
apply LeFulpPos; auto with real float zarith.
split; simpl; auto with zarith float.
apply LeFnumZERO; simpl; auto with real zarith.
apply LeR0Fnum with radix; auto with real zarith.
apply Rlt_le; apply Q_positive with bo precision b b p; auto.
apply Rmult_le_reg_l with 2%R; auto with real.
apply Rle_trans with (FtoRradix q).
unfold FtoRradix, FtoR, Zpred; simpl; rewrite powerRZ_add; auto with real zarith; simpl; right; field.
apply Q_le_two_P with bo precision b b; auto.
rewrite CanonicFulp; auto with zarith.
unfold FtoR; simpl; right; ring.
left; auto.
clear H1; assert (FtoRradix q=powerRZ radix (precision+Zpred (Fexp q)))%R.
case (Zle_lt_or_eq (Zpower_nat radix (pred precision)) (Fnum q)).
elim Nq; intros.
apply Zmult_le_reg_r with radix; auto with zarith.
apply Zlt_gt; auto with zarith.
apply Zle_trans with (Zpower_nat radix precision).
pattern radix at 2 in |-*; replace radix with (Zpower_nat radix 1).
rewrite <- Zpower_nat_is_exp; auto with zarith.
simpl; auto with zarith.
rewrite <- pGivesBound; apply Zle_trans with (1:=H3).
rewrite Zabs_eq; auto with zarith.
cut (0<=Fnum q)%Z; auto with zarith.
apply LeR0Fnum with radix; auto.
apply Rlt_le; apply Q_positive with bo precision b b p; auto.
intros H1; Contradict H0.
apply Rle_not_lt.
rewrite CanonicFulp; auto; [idtac|left; auto].
rewrite CanonicFulp; auto; [idtac|left; auto].
replace (FtoR radix (Float (S 0) (Fexp p))) with (powerRZ radix (Fexp p));[idtac|unfold FtoR; simpl; ring].
replace (FtoR radix (Float (S 0) (Fexp q))) with (powerRZ radix (Fexp q));[idtac|unfold FtoR; simpl; ring].
rewrite H2; unfold Rmin.
case (Rle_dec (powerRZ radix (Zpred (Fexp q))) (powerRZ radix (Fexp q))); auto with real zarith; intros J.
clear J; rewrite Rabs_left1.
unfold FtoRradix, FtoR, Rminus.
apply Rle_trans with (- ((Zpred (Zpower_nat radix precision)) * powerRZ radix (Fexp p) + - ((Zsucc (Zpower_nat radix (pred precision))) * powerRZ radix (Fexp q))))%R.
unfold Zpred, Zsucc; rewrite plus_IZR; rewrite plus_IZR; repeat rewrite Zpower_nat_Z_powerRZ.
rewrite inj_pred; auto with zarith.
rewrite H2; unfold Zpred; simpl; right;ring_simplify.
repeat rewrite powerRZ_add; auto with real zarith; simpl; field.
apply Ropp_le_contravar.
apply Rplus_le_compat;[apply Rmult_le_compat_r; auto with real zarith|idtac].
2:apply Ropp_le_contravar; apply Rmult_le_compat_r; auto with real zarith.
apply Rle_trans with (1:=RRle_abs (Fnum p)).
rewrite Rabs_Zabs; rewrite <- pGivesBound;auto with zarith float.
elim Fp; intros; auto with zarith.
apply Rle_IZR;apply Zle_Zpred; auto.
apply Rlt_le; apply Rplus_lt_reg_r with q.
ring_simplify.
unfold FtoRradix; apply FcanonicPosFexpRlt with bo precision; auto with zarith.
2:apply Rlt_le; apply Q_positive with bo precision b b p; auto.
apply P_positive with bo precision b b; auto.
left; auto.
left; auto.
Contradict J; auto with real zarith.
intros H1; unfold FtoRradix, FtoR; rewrite <- H1.
rewrite Zpower_nat_Z_powerRZ; rewrite <- powerRZ_add; auto with real zarith.
rewrite inj_pred; auto with zarith.
replace (Zpred precision+Fexp q)%Z with (precision + Zpred (Fexp q))%Z;[auto with real|unfold Zpred; ring].
unfold delta; rewrite <-Rabs_Ropp.
replace (- (d - (b * b - a * c)))%R with (Fopp d-(a*c-b*b))%R;[idtac|unfold FtoRradix; rewrite Fopp_correct; ring].
replace (Fulp bo radix precision d) with (Fulp bo radix precision (Fopp d)); auto with float zarith.
2: unfold Fulp; rewrite Fnormalize_Fopp; unfold Fopp; simpl; auto with real zarith.
apply discri8 with q p (Fopp t) dq dp (Fopp s) (Zpred (Fexp q)); auto with float zarith.
apply FnormalFop; auto.
apply FnormalFop; auto.
fold radix; fold FtoRradix; case (Rle_or_lt 0%R (a*c)%R); auto.
intros H3; absurd (0 < q)%R.
apply Rle_not_lt; unfold FtoRradix; apply RleRoundedLessR0 with bo precision (EvenClosest bo radix precision) (a*c)%R; auto with real.
apply EvenClosestRoundedModeP; auto.
apply Q_positive with bo precision b b p; auto.
fold radix; fold FtoRradix; rewrite (Rplus_comm q p).
replace (q-p)%R with (-(p-q))%R; auto with real; rewrite Rabs_Ropp; auto.
fold radix; fold FtoRradix; replace (q-p)%R with (-(p-q))%R; auto with real.
generalize EvenClosestSymmetric; unfold SymmetricP;intros T; apply T; auto.
fold radix; fold FtoRradix; replace (dq-dp)%R with (-(dp-dq))%R;auto with real.
generalize EvenClosestSymmetric; unfold SymmetricP;intros T; apply T; auto.
fold radix; fold FtoRradix; replace (Fopp t+Fopp s)%R with (-(t+s))%R;[idtac|unfold FtoRradix; repeat rewrite Fopp_correct; ring].
generalize EvenClosestSymmetric; unfold SymmetricP;intros T; apply T; auto.
apply FcanonicUnique with radix bo precision; auto with zarith real.
left; auto.
left; split; [split;simpl|idtac]; auto with zarith.
rewrite Zabs_eq; auto with zarith.
rewrite pGivesBound; auto with zarith.
simpl (Fnum (Float (Zpower_nat 2 (pred precision)) (Zsucc (Zpred (Fexp q))))).
replace radix with (Zpower_nat radix 1);[idtac|simpl; auto with zarith].
rewrite <-Zpower_nat_is_exp; rewrite pGivesBound; auto with zarith.
rewrite Zabs_eq; auto with zarith.
fold FtoRradix; rewrite H1; unfold FtoRradix, FtoR, Zpred, Zsucc; simpl.
rewrite Zpower_nat_Z_powerRZ; rewrite <- powerRZ_add; auto with real zarith.
rewrite inj_pred; auto with zarith; unfold Zpred.
replace (precision + -1 + (Fexp q + -1 + 1))%Z with (precision+(Fexp q+-1))%Z; auto with real; ring.
Qed.
End Discriminant4.
Section Discriminant5.
Variable bo : Fbound.
Variable precision : nat.
Let radix := 2%Z.
Let FtoRradix := FtoR radix.
Coercion FtoRradix : float >-> R.
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ TwoMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum bo) = Zpower_nat radix precision.
Variables a b c p q t dp dq s d:float.
Let delta := (Rabs (d-(b*b-a*c)))%R.
Hypothesis Fa : (Fbounded bo a).
Hypothesis Fb : (Fbounded bo b).
Hypothesis Fc : (Fbounded bo c).
Hypothesis Fp : (Fbounded bo p).
Hypothesis Fq : (Fbounded bo q).
Hypothesis Fd : (Fbounded bo d).
Hypothesis Ft : (Fbounded bo t).
Hypothesis Fs : (Fbounded bo s).
Hypothesis Fdp: (Fbounded bo dp).
Hypothesis Fdq: (Fbounded bo dq).
(** There is no underflow *)
Hypothesis U0: (- dExp bo <= Fexp d - 1)%Z.
Hypothesis U1: (- dExp bo <= (Fexp t)-1)%Z.
Hypothesis U2: (- dExp bo <= Fexp a + Fexp c - precision)%Z.
Hypothesis U3: (- dExp bo <= Fexp q - precision)%Z.
Hypothesis U4: (- dExp bo <= Fexp b + Fexp b - precision)%Z.
Hypothesis U5: (- dExp bo <= Fexp p - precision)%Z.
Hypothesis Np:(FtoRradix p=0)%R \/ (Fnormal radix bo p).
Hypothesis Nq:(FtoRradix q=0)%R \/ (Fnormal radix bo q).
Hypothesis Ns:(FtoRradix s=0)%R \/ (Fnormal radix bo s).
Hypothesis Nd: (Fnormal radix bo d).
Hypothesis Roundp : (EvenClosest bo radix precision (b*b)%R p).
Hypothesis Roundq : (EvenClosest bo radix precision (a*c)%R q).
Hypothesis Firstcase : (p+q <= 3*(Rabs (p-q)))%R ->
(EvenClosest bo radix precision (p-q)%R d).
Hypothesis SRoundt : (3*(Rabs (p-q)) < p+q)%R -> (EvenClosest bo radix precision (p-q)%R t).
Hypothesis SdpEq : (3*(Rabs (p-q)) < p+q)%R -> (FtoRradix dp=b*b-p)%R.
Hypothesis SdqEq : (3*(Rabs (p-q)) < p+q)%R -> (FtoRradix dq=a*c-q)%R.
Hypothesis SRounds : (3*(Rabs (p-q)) < p+q)%R -> (EvenClosest bo radix precision (dp-dq)%R s).
Hypothesis SRoundd : (3*(Rabs (p-q)) < p+q)%R -> (EvenClosest bo radix precision (t+s)%R d).
Theorem discri: (delta <= 2*(Fulp bo radix precision d))%R.
case Np; intros.
assert (FtoRradix d=(Fopp q))%R.
apply sym_eq; unfold FtoRradix; apply RoundedModeProjectorIdemEq with bo precision (EvenClosest bo radix precision); auto with float zarith.
replace (FtoR radix (Fopp q)) with (p-q)%R; [apply Firstcase|rewrite Fopp_correct; fold FtoRradix; rewrite H; ring].
rewrite H; ring_simplify (0-q)%R; ring_simplify (0+q)%R.
rewrite Rabs_Ropp; apply Rle_trans with (1:=(RRle_abs q)).
apply Rle_trans with (1*(Rabs q))%R; auto with real.
apply Rmult_le_compat_r; auto with real.
apply Rle_trans with 2%R; auto with real.
unfold delta; rewrite H0.
unfold FtoRradix; rewrite Fopp_correct; fold FtoRradix.
replace (-q-(b*b-a*c))%R with ((a*c-q)+(-(b*b)))%R;[idtac|ring].
apply Rle_trans with (1:=(Rabs_triang (a * c - q)%R (-(b*b))%R)).
apply Rle_trans with (/2*(Fulp bo radix precision q)+/2*(Fulp bo radix precision p))%R.
apply Rplus_le_compat; apply Rmult_le_reg_l with (2%nat)%R; auto with real zarith.
apply Rle_trans with (Fulp bo radix precision q);[idtac|simpl; right; field; auto with real].
unfold FtoRradix; apply ClosestUlp; auto.
elim Roundq; auto.
apply Rle_trans with (Fulp bo radix precision p);[idtac|simpl; right; field; auto with real].
replace (-(b*b))%R with (-(b*b-p))%R;[rewrite Rabs_Ropp|rewrite H;ring].
unfold FtoRradix; apply ClosestUlp; auto.
elim Roundp; auto.
apply Rle_trans with (/ 2 * Fulp bo radix precision q + / 2 * Fulp bo radix precision q)%R;[apply Rplus_le_compat; auto with real|idtac].
apply Rmult_le_compat_l; auto with real.
rewrite Fulp_zero.
unfold Fulp; apply Rle_powerRZ;auto with real zarith float.
apply is_Fzero_rep2 with radix; auto with zarith.
apply Rle_trans with (1 * Fulp bo radix precision q)%R;[right; field; auto with real|idtac].
apply Rmult_le_compat; auto with real zarith float.
unfold Fulp; auto with real zarith.
right; apply trans_eq with (Fulp bo radix precision (Fopp q)).
unfold Fulp; rewrite Fnormalize_Fopp; auto with real zarith.
apply FulpComp; auto with float zarith.
case Nq; intros.
assert (FtoRradix d=p)%R.
apply sym_eq; unfold FtoRradix; apply RoundedModeProjectorIdemEq with bo precision (EvenClosest bo radix precision); auto with float zarith.
replace (FtoR radix p) with (p-q)%R; [apply Firstcase|fold FtoRradix; rewrite H0; ring].
rewrite H0; ring_simplify (p+0)%R; ring_simplify (p-0)%R.
apply Rle_trans with (1:=(RRle_abs p)).
apply Rle_trans with (1*(Rabs p))%R; auto with real.
apply Rmult_le_compat_r; auto with real.
apply Rle_trans with 2%R; auto with real.
unfold delta; rewrite H1.
replace (p-(b*b-a*c))%R with (a*c+(-(b*b-p)))%R;[idtac|ring].
apply Rle_trans with (1:=(Rabs_triang (a * c )%R (-(b*b-p))%R)).
apply Rle_trans with (/2*(Fulp bo radix precision q)+/2*(Fulp bo radix precision p))%R.
apply Rplus_le_compat; apply Rmult_le_reg_l with (2%nat)%R; auto with real zarith.
apply Rle_trans with (Fulp bo radix precision q);[idtac|simpl; right; field; auto with real].
replace (a*c)%R with (a*c-q)%R;[idtac|rewrite H0;ring].
unfold FtoRradix; apply ClosestUlp; auto.
elim Roundq; auto.
apply Rle_trans with (Fulp bo radix precision p);[idtac|simpl; right; field; auto with real].
rewrite Rabs_Ropp; unfold FtoRradix; apply ClosestUlp; auto.
elim Roundp; auto.
apply Rle_trans with (/ 2 * Fulp bo radix precision p + / 2 * Fulp bo radix precision p)%R;[apply Rplus_le_compat; auto with real|idtac].
apply Rmult_le_compat_l; auto with real.
rewrite Fulp_zero.
unfold Fulp; apply Rle_powerRZ;auto with real zarith float.
apply is_Fzero_rep2 with radix; auto with zarith.
apply Rle_trans with (1 * Fulp bo radix precision p)%R;[right; field; auto with real|idtac].
apply Rmult_le_compat; auto with real zarith float.
unfold Fulp; auto with real zarith.
right; apply FulpComp; auto with float zarith.
case (Rle_or_lt (p + q)%R (3 * Rabs (p - q))%R); intros.
unfold delta;apply discri1 with p q; auto.
apply Rle_trans with (Rsqr (FtoR 2 b)) ; auto with real.
case Ns; intros.
unfold delta; apply discri3 with p q t dp dq s; auto with real float zarith.
apply Rle_trans with (Rsqr (FtoR 2 b)) ; auto with real.
2:unfold delta; apply discri9 with p q t dp dq s; auto.
exists (Float 0%Z 0%Z).
split.
unfold Fbounded; split; auto with zarith.
simpl; case (dExp bo); auto with zarith.
apply trans_eq with 0%R.
unfold FtoR; simpl; ring.
fold radix; fold FtoRradix.
rewrite <- H2.
unfold FtoRradix; rewrite plusExactR0 with bo radix precision dp (Fopp dq) s; auto.
rewrite Fopp_correct; ring.
auto with zarith float.
replace (FtoR radix dp + FtoR radix (Fopp dq))%R with (dp - dq)%R; auto.
elim SRounds; auto.
unfold FtoRradix; rewrite Fopp_correct; auto with real.
Qed.
End Discriminant5.
|