File: FPred.v

package info (click to toggle)
coq-float 1%3A8.1-1.0-4
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 2,452 kB
  • ctags: 27
  • sloc: makefile: 258
file content (484 lines) | stat: -rw-r--r-- 19,594 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
(****************************************************************************
                                                                             
          IEEE754  :  FPred                                                     
                                                                             
          Laurent Thery                                                      
                                                                             
  ******************************************************************************)
Require Export FSucc.
Section pred.
Variable b : Fbound.
Variable radix : Z.
Variable precision : nat.
 
Coercion Local FtoRradix := FtoR radix.
Hypothesis radixMoreThanOne : (1 < radix)%Z.
Hypothesis precisionNotZero : precision <> 0.
Hypothesis pGivesBound : Zpos (vNum b) = Zpower_nat radix precision.
 
Definition FPred (x : float) :=
  match Z_eq_bool (Fnum x) (- pPred (vNum b)) with
  | true => Float (- nNormMin radix precision) (Zsucc (Fexp x))
  | false =>
      match Z_eq_bool (Fnum x) (nNormMin radix precision) with
      | true =>
          match Z_eq_bool (Fexp x) (- dExp b) with
          | true => Float (Zpred (Fnum x)) (Fexp x)
          | false => Float (pPred (vNum b)) (Zpred (Fexp x))
          end
      | false => Float (Zpred (Fnum x)) (Fexp x)
      end
  end.
 
Theorem FPredSimpl1 :
 forall x : float,
 Fnum x = (- pPred (vNum b))%Z ->
 FPred x = Float (- nNormMin radix precision) (Zsucc (Fexp x)).
intros x H'; unfold FPred in |- *.
generalize (Z_eq_bool_correct (Fnum x) (- pPred (vNum b)));
 case (Z_eq_bool (Fnum x) (- pPred (vNum b))); auto.
intros H'0; Contradict H'0; auto.
Qed.
 
Theorem FPredSimpl2 :
 forall x : float,
 Fnum x = nNormMin radix precision ->
 Fexp x <> (- dExp b)%Z -> FPred x = Float (pPred (vNum b)) (Zpred (Fexp x)).
intros x H' H'0; unfold FPred in |- *.
generalize (Z_eq_bool_correct (Fnum x) (- pPred (vNum b)));
 case (Z_eq_bool (Fnum x) (- pPred (vNum b))); auto.
intros H'1; absurd (0%nat < Fnum x)%Z; auto with zarith arith.
apply Zle_not_lt; rewrite H'1; replace (Z_of_nat 0) with (- (0))%Z;
 [ apply Zle_Zopp | simpl in |- *; auto ].
unfold pPred in |- *; apply Zle_Zpred; red in |- *; simpl in |- *; auto.
rewrite H'.
apply nNormPos; auto with zarith.
intros H'1;
 generalize (Z_eq_bool_correct (Fnum x) (nNormMin radix precision));
 case (Z_eq_bool (Fnum x) (nNormMin radix precision)).
intros H'2; generalize (Z_eq_bool_correct (Fexp x) (- dExp b));
 case (Z_eq_bool (Fexp x) (- dExp b)); auto.
intros H'3; Contradict H'0; auto.
intros H'2; Contradict H'2; auto.
Qed.
 
Theorem FPredSimpl3 :
 FPred (Float (nNormMin radix precision) (- dExp b)) =
 Float (Zpred (nNormMin radix precision)) (- dExp b).
unfold FPred in |- *; simpl in |- *.
generalize (Z_eq_bool_correct (nNormMin radix precision) (- pPred (vNum b)));
 case (Z_eq_bool (nNormMin radix precision) (- pPred (vNum b))); 
 auto.
intros H'0; absurd (0 < pPred (vNum b))%Z; auto with zarith arith.
rewrite <- (Zopp_involutive (pPred (vNum b))); rewrite <- H'0.
apply Zle_not_lt; replace 0%Z with (- (0))%Z;
 [ apply Zle_Zopp | simpl in |- *; auto ].
apply Zlt_le_weak; apply nNormPos; auto with float zarith.
unfold pPred in |- *; apply Zlt_succ_pred; simpl in |- *;
 auto with float zarith.
simpl in |- *; apply vNumbMoreThanOne with (3 := pGivesBound); auto.
intros H';
 generalize
  (Z_eq_bool_correct (nNormMin radix precision) (nNormMin radix precision));
 case (Z_eq_bool (nNormMin radix precision) (nNormMin radix precision)).
intros H'0; generalize (Z_eq_bool_correct (- dExp b) (- dExp b));
 case (Z_eq_bool (- dExp b) (- dExp b)); auto.
intros H'1; Contradict H'1; auto.
intros H'1; Contradict H'1; auto.
Qed.
 
Theorem FPredSimpl4 :
 forall x : float,
 Fnum x <> (- pPred (vNum b))%Z ->
 Fnum x <> nNormMin radix precision ->
 FPred x = Float (Zpred (Fnum x)) (Fexp x).
intros x H' H'0; unfold FPred in |- *.
generalize (Z_eq_bool_correct (Fnum x) (- pPred (vNum b)));
 case (Z_eq_bool (Fnum x) (- pPred (vNum b))); auto.
intros H'1; Contradict H'; auto.
intros H'1;
 generalize (Z_eq_bool_correct (Fnum x) (nNormMin radix precision));
 case (Z_eq_bool (Fnum x) (nNormMin radix precision)); 
 auto.
intros H'2; Contradict H'0; auto.
Qed.
 
Theorem FPredFopFSucc :
 forall x : float, FPred x = Fopp (FSucc b radix precision (Fopp x)).
intros x.
generalize (Z_eq_bool_correct (Fnum x) (- pPred (vNum b)));
 case (Z_eq_bool (Fnum x) (- pPred (vNum b))); intros H'1.
rewrite FPredSimpl1; auto; rewrite FSuccSimpl1; auto.
unfold Fopp in |- *; simpl in |- *; rewrite H'1; auto with zarith.
generalize (Z_eq_bool_correct (Fnum x) (nNormMin radix precision));
 case (Z_eq_bool (Fnum x) (nNormMin radix precision)); 
 intros H'2.
generalize (Z_eq_bool_correct (Fexp x) (- dExp b));
 case (Z_eq_bool (Fexp x) (- dExp b)); intros H'3.
replace x with (Float (Fnum x) (Fexp x)).
rewrite H'2; rewrite H'3; rewrite FPredSimpl3; unfold Fopp in |- *;
 simpl in |- *; rewrite FSuccSimpl3; simpl in |- *; 
 auto.
rewrite <- Zopp_Zpred_Zs; rewrite Zopp_involutive; auto.
case x; simpl in |- *; auto.
rewrite FPredSimpl2; auto; rewrite FSuccSimpl2; unfold Fopp in |- *;
 simpl in |- *; try rewrite Zopp_involutive; 
 auto.
rewrite H'2; auto.
rewrite FPredSimpl4; auto; rewrite FSuccSimpl4; auto.
unfold Fopp in |- *; simpl in |- *; rewrite <- Zopp_Zpred_Zs;
 rewrite Zopp_involutive; auto.
unfold Fopp in |- *; simpl in |- *; Contradict H'1; rewrite <- H'1;
 rewrite Zopp_involutive; auto.
unfold Fopp in |- *; simpl in |- *; Contradict H'2; auto with zarith.
Qed.
 
Theorem FPredDiff1 :
 forall x : float,
 Fnum x <> nNormMin radix precision ->
 Fminus radix x (FPred x) = Float 1%nat (Fexp x) :>R.
intros x H'; rewrite (FPredFopFSucc x).
pattern x at 1 in |- *; rewrite <- (Fopp_Fopp x).
rewrite <- Fopp_Fminus_dist.
rewrite Fopp_Fminus.
unfold FtoRradix in |- *; rewrite FSuccDiff1; auto.
replace (Fnum (Fopp x)) with (- Fnum x)%Z.
Contradict H'; rewrite <- (Zopp_involutive (Fnum x)); rewrite H';
 auto with zarith.
case x; simpl in |- *; auto.
Qed.
 
Theorem FPredDiff2 :
 forall x : float,
 Fnum x = nNormMin radix precision ->
 Fexp x = (- dExp b)%Z -> Fminus radix x (FPred x) = Float 1%nat (Fexp x) :>R.
intros x H' H'0; rewrite (FPredFopFSucc x).
pattern x at 1 in |- *; rewrite <- (Fopp_Fopp x).
rewrite <- Fopp_Fminus_dist.
rewrite Fopp_Fminus.
unfold FtoRradix in |- *; rewrite FSuccDiff2; auto.
rewrite <- H'; case x; auto.
Qed.
 
Theorem FPredDiff3 :
 forall x : float,
 Fnum x = nNormMin radix precision ->
 Fexp x <> (- dExp b)%Z ->
 Fminus radix x (FPred x) = Float 1%nat (Zpred (Fexp x)) :>R.
intros x H' H'0; rewrite (FPredFopFSucc x).
pattern x at 1 in |- *; rewrite <- (Fopp_Fopp x).
rewrite <- Fopp_Fminus_dist.
rewrite Fopp_Fminus.
unfold FtoRradix in |- *; rewrite FSuccDiff3; auto.
rewrite <- H'; case x; auto.
Qed.
 
Theorem FBoundedPred : forall f : float, Fbounded b f -> Fbounded b (FPred f).
intros f H'; rewrite (FPredFopFSucc f); auto with float.
Qed.
 
Theorem FPredCanonic :
 forall a : float, Fcanonic radix b a -> Fcanonic radix b (FPred a).
intros a H'.
rewrite FPredFopFSucc; auto with float.
Qed.
 
Theorem FPredLt : forall a : float, (FPred a < a)%R.
intros a; rewrite FPredFopFSucc.
pattern a at 2 in |- *; rewrite <- (Fopp_Fopp a).
unfold FtoRradix in |- *; repeat rewrite Fopp_correct.
apply Ropp_lt_contravar.
rewrite <- Fopp_correct; auto with float.
Qed.
 
Theorem R0RltRlePred : forall x : float, (0 < x)%R -> (0 <= FPred x)%R.
intros x H'; rewrite FPredFopFSucc.
unfold FtoRradix in |- *; repeat rewrite Fopp_correct.
replace 0%R with (-0)%R; auto with real.
apply Ropp_le_contravar.
apply R0RltRleSucc; auto.
unfold FtoRradix in |- *; repeat rewrite Fopp_correct.
replace 0%R with (-0)%R; auto with real.
Qed.
 
Theorem FPredProp :
 forall x y : float,
 Fcanonic radix b x -> Fcanonic radix b y -> (x < y)%R -> (x <= FPred y)%R.
intros x y H' H'0 H'1; rewrite FPredFopFSucc.
rewrite <- (Fopp_Fopp x).
unfold FtoRradix in |- *; rewrite Fopp_correct with (x := Fopp x).
rewrite Fopp_correct with (x := FSucc b radix precision (Fopp y));
 auto with float real.
apply Ropp_le_contravar.
apply FSuccProp; auto with float.
repeat rewrite Fopp_correct; auto with real.
Qed.
 
Theorem FPredZleEq :
 forall p q : float,
 (FPred p < q)%R -> (q <= p)%R -> (Fexp p <= Fexp q)%Z -> p = q :>R.
intros p q H' H'0 H'1.
rewrite <- (Ropp_involutive p); rewrite <- (Ropp_involutive q);
 apply Ropp_eq_compat.
unfold FtoRradix in |- *; repeat rewrite <- Fopp_correct.
apply FSuccZleEq with (b := b) (precision := precision); auto.
repeat rewrite Fopp_correct; auto with real.
apply Ropp_lt_cancel.
repeat rewrite <- Fopp_correct; rewrite <- FPredFopFSucc; rewrite Fopp_Fopp;
 auto.
Qed.
 
Definition FNPred (x : float) := FPred (Fnormalize radix b precision x).
 
Theorem FNPredFopFNSucc :
 forall x : float, FNPred x = Fopp (FNSucc b radix precision (Fopp x)).
intros x; unfold FNPred, FNSucc in |- *; auto.
rewrite Fnormalize_Fopp; auto.
apply FPredFopFSucc; auto.
Qed.
 
Theorem FNPredCanonic :
 forall a : float, Fbounded b a -> Fcanonic radix b (FNPred a).
intros a H'; unfold FNPred in |- *.
apply FPredCanonic; auto with float.
Qed.
 
Theorem FNPredLt : forall a : float, (FNPred a < a)%R.
intros a; unfold FNPred in |- *.
unfold FtoRradix in |- *;
 rewrite <- (FnormalizeCorrect _ radixMoreThanOne b precision a).
apply FPredLt; auto.
Qed.
 
Theorem FNPredProp :
 forall x y : float,
 Fbounded b x -> Fbounded b y -> (x < y)%R -> (x <= FNPred y)%R.
intros x y H' H'0 H'1; unfold FNPred in |- *.
replace (FtoRradix x) with (FtoRradix (Fnormalize radix b precision x)).
apply FPredProp; auto with float.
unfold FtoRradix in |- *; repeat rewrite FnormalizeCorrect; auto.
unfold FtoRradix in |- *; repeat rewrite FnormalizeCorrect; auto.
Qed.
 
Theorem FPredSuc :
 forall x : float,
 Fcanonic radix b x -> FPred (FSucc b radix precision x) = x.
intros x H; unfold FPred, FSucc in |- *.
cut (Fbounded b x); [ intros Fb0 | apply FcanonicBound with (1 := H) ].
generalize (Z_eq_bool_correct (Fnum x) (pPred (vNum b)));
 case (Z_eq_bool (Fnum x) (pPred (vNum b))); simpl in |- *.
generalize (Z_eq_bool_correct (nNormMin radix precision) (- pPred (vNum b)));
 case (Z_eq_bool (nNormMin radix precision) (- pPred (vNum b)));
 simpl in |- *.
intros H'; Contradict H'; apply sym_not_equal; apply Zlt_not_eq; auto.
apply Zlt_le_trans with (- 0%nat)%Z.
apply Zlt_Zopp; unfold pPred in |- *; apply Zlt_succ_pred; simpl in |- *;
 apply vNumbMoreThanOne with (3 := pGivesBound); auto.
simpl in |- *; apply Zlt_le_weak; apply nNormPos; auto.
generalize
 (Z_eq_bool_correct (nNormMin radix precision) (nNormMin radix precision));
 case (Z_eq_bool (nNormMin radix precision) (nNormMin radix precision));
 simpl in |- *.
generalize (Z_eq_bool_correct (Zsucc (Fexp x)) (- dExp b));
 case (Z_eq_bool (Zsucc (Fexp x)) (- dExp b)); simpl in |- *.
intros H' H'0 H'1 H'2; absurd (- dExp b <= Fexp x)%Z; auto with float.
rewrite <- H'; auto with float zarith.
replace (Zpred (Zsucc (Fexp x))) with (Fexp x);
 [ idtac | unfold Zsucc, Zpred in |- *; ring ]; auto.
intros H' H'0 H'1 H'2; rewrite <- H'2; auto.
apply floatEq; auto.
intros H'; case H'; auto.
generalize (Z_eq_bool_correct (Fnum x) (- nNormMin radix precision));
 case (Z_eq_bool (Fnum x) (- nNormMin radix precision)); 
 simpl in |- *.
generalize (Z_eq_bool_correct (Fexp x) (- dExp b));
 case (Z_eq_bool (Fexp x) (- dExp b)); simpl in |- *.
generalize (Z_eq_bool_correct (Zsucc (Fnum x)) (- pPred (vNum b)));
 case (Z_eq_bool (Zsucc (Fnum x)) (- pPred (vNum b))); 
 simpl in |- *.
intros H0 H1 H2; absurd (Zsucc (Fnum x) <= Fnum x)%Z; auto with zarith.
rewrite H0; rewrite H2; (apply Zle_Zopp; auto with float arith).
unfold pPred in |- *; apply Zle_Zpred; apply ZltNormMinVnum; auto with zarith.
generalize (Z_eq_bool_correct (Zsucc (Fnum x)) (nNormMin radix precision));
 case (Z_eq_bool (Zsucc (Fnum x)) (nNormMin radix precision)); 
 simpl in |- *.
intros H' H'0 H'1 H'2; Contradict H'2.
rewrite <- H'; auto with zarith.
replace (Zpred (Zsucc (Fnum x))) with (Fnum x);
 [ idtac | unfold Zsucc, Zpred in |- *; ring ]; auto.
intros H' H'0 H'1 H'2 H'3; apply floatEq; auto.
generalize (Z_eq_bool_correct (- pPred (vNum b)) (- pPred (vNum b)));
 case (Z_eq_bool (- pPred (vNum b)) (- pPred (vNum b))); 
 auto.
intros H' H'0 H'1 H'2; rewrite <- H'1.
replace (Zsucc (Zpred (Fexp x))) with (Fexp x);
 [ idtac | unfold Zsucc, Zpred in |- *; ring ]; auto.
apply floatEq; auto.
intros H'; case H'; auto.
generalize (Z_eq_bool_correct (Zsucc (Fnum x)) (- pPred (vNum b)));
 case (Z_eq_bool (Zsucc (Fnum x)) (- pPred (vNum b))); 
 simpl in |- *.
intros H'; absurd (- pPred (vNum b) <= Fnum x)%Z; auto with float.
rewrite <- H'; auto with zarith.
apply Zle_Zabs_inv1; auto with float.
unfold pPred in |- *; apply Zle_Zpred; auto with float.
generalize (Z_eq_bool_correct (Zsucc (Fnum x)) (nNormMin radix precision));
 case (Z_eq_bool (Zsucc (Fnum x)) (nNormMin radix precision)); 
 simpl in |- *.
generalize (Z_eq_bool_correct (Fexp x) (- dExp b));
 case (Z_eq_bool (Fexp x) (- dExp b)); simpl in |- *.
intros H' H'0 H'1 H'2 H'3.
replace (Zpred (Zsucc (Fnum x))) with (Fnum x);
 [ idtac | unfold Zsucc, Zpred in |- *; ring ]; auto.
apply floatEq; auto.
intros H' H'0 H'1 H'2 H'3; case H.
intros H'4; absurd (nNormMin radix precision <= Zabs (Fnum x))%Z.
replace (Fnum x) with (Zpred (Zsucc (Fnum x)));
 [ idtac | unfold Zsucc, Zpred in |- *; ring ]; auto.
rewrite H'0.
apply Zlt_not_le; rewrite Zabs_eq; auto with zarith.
apply Zle_Zpred; apply nNormPos; auto with float zarith.
apply pNormal_absolu_min with (b := b); auto.
intros H'4; Contradict H'; apply FsubnormalFexp with (1 := H'4).
intros H' H'0 H'1 H'2; apply floatEq; simpl in |- *; auto.
unfold Zpred, Zsucc in |- *; ring.
Qed.
 
Theorem FSucPred :
 forall x : float,
 Fcanonic radix b x -> FSucc b radix precision (FPred x) = x.
intros x H; unfold FPred, FSucc in |- *.
cut (Fbounded b x); [ intros Fb0 | apply FcanonicBound with (1 := H) ].
generalize (Z_eq_bool_correct (Fnum x) (- pPred (vNum b)));
 case (Z_eq_bool (Fnum x) (- pPred (vNum b))); simpl in |- *.
generalize (Z_eq_bool_correct (- nNormMin radix precision) (pPred (vNum b)));
 case (Z_eq_bool (- nNormMin radix precision) (pPred (vNum b)));
 simpl in |- *.
intros H'; Contradict H'; apply Zlt_not_eq; auto.
rewrite <- (Zopp_involutive (pPred (vNum b))); apply Zlt_Zopp.
apply Zlt_le_trans with (- 0%nat)%Z.
apply Zlt_Zopp; unfold pPred in |- *; apply Zlt_succ_pred; simpl in |- *.
apply (vNumbMoreThanOne radix) with (precision := precision); auto.
simpl in |- *; apply Zlt_le_weak; apply nNormPos; auto with zarith arith.
generalize
 (Z_eq_bool_correct (- nNormMin radix precision) (- nNormMin radix precision));
 case (Z_eq_bool (- nNormMin radix precision) (- nNormMin radix precision));
 simpl in |- *.
generalize (Z_eq_bool_correct (Zsucc (Fexp x)) (- dExp b));
 case (Z_eq_bool (Zsucc (Fexp x)) (- dExp b)); simpl in |- *.
intros H' H'0 H'1 H'2; absurd (- dExp b <= Fexp x)%Z; auto with float.
rewrite <- H'; auto with zarith.
intros H' H'0 H'1 H'2; rewrite <- H'2; apply floatEq; simpl in |- *; auto;
 unfold Zsucc, Zpred in |- *; ring.
intros H'; case H'; auto.
generalize (Z_eq_bool_correct (Fnum x) (nNormMin radix precision));
 case (Z_eq_bool (Fnum x) (nNormMin radix precision)); 
 simpl in |- *.
generalize (Z_eq_bool_correct (Fexp x) (- dExp b));
 case (Z_eq_bool (Fexp x) (- dExp b)); simpl in |- *.
generalize (Z_eq_bool_correct (Zpred (Fnum x)) (pPred (vNum b)));
 case (Z_eq_bool (Zpred (Fnum x)) (pPred (vNum b))); 
 simpl in |- *.
intros H' H'0 H'1 H'2; absurd (nNormMin radix precision <= pPred (vNum b))%Z;
 auto with float.
rewrite <- H'; rewrite H'1; auto with zarith.
rewrite <- H'1; auto with float.
apply Zle_Zabs_inv2; auto with float zarith.
unfold pPred in |- *; apply Zle_Zpred; auto with float.
generalize (Z_eq_bool_correct (Zpred (Fnum x)) (- nNormMin radix precision));
 case (Z_eq_bool (Zpred (Fnum x)) (- nNormMin radix precision));
 simpl in |- *.
intros H' H'0 H'1 H'2 H'3;
 absurd (Zpred (nNormMin radix precision) = (- nNormMin radix precision)%Z);
 auto with zarith.
case (nNormMin radix precision); simpl in |- *; auto;
 try (intros; red in |- *; intros; discriminate).
intros p; case p; simpl in |- *; auto;
 try (intros; red in |- *; intros; discriminate).
rewrite <- H'; rewrite <- H'2; auto.
intros H' H'0 H'1 H'2 H'3; apply floatEq; simpl in |- *; auto;
 unfold Zpred, Zsucc in |- *; ring.
generalize (Z_eq_bool_correct (pPred (vNum b)) (pPred (vNum b)));
 case (Z_eq_bool (pPred (vNum b)) (pPred (vNum b))); 
 auto.
intros H' H'0 H'1 H'2; rewrite <- H'1; apply floatEq; simpl in |- *; auto;
 unfold Zpred, Zsucc in |- *; ring.
intros H'; case H'; auto.
generalize (Z_eq_bool_correct (Zpred (Fnum x)) (pPred (vNum b)));
 case (Z_eq_bool (Zpred (Fnum x)) (pPred (vNum b))); 
 simpl in |- *.
intros H'; absurd (Fnum x <= pPred (vNum b))%Z; auto with float.
rewrite <- H'.
apply Zlt_not_le; apply Zlt_pred; auto.
apply Zle_Zabs_inv2; unfold pPred in |- *; apply Zle_Zpred; auto with float.
generalize (Z_eq_bool_correct (Zpred (Fnum x)) (- nNormMin radix precision));
 case (Z_eq_bool (Zpred (Fnum x)) (- nNormMin radix precision));
 simpl in |- *.
generalize (Z_eq_bool_correct (Fexp x) (- dExp b));
 case (Z_eq_bool (Fexp x) (- dExp b)); simpl in |- *.
intros H' H'0 H'1 H'2 H'3; apply floatEq; simpl in |- *; auto;
 unfold Zsucc, Zpred in |- *; ring.
intros H' H'0 H'1 H'2 H'3; case H; intros C0.
absurd (nNormMin radix precision <= Zabs (Fnum x))%Z; auto with float.
replace (Fnum x) with (Zsucc (Zpred (Fnum x)));
 [ idtac | unfold Zsucc, Zpred in |- *; ring ].
rewrite H'0.
rewrite <- Zopp_Zpred_Zs; rewrite Zabs_Zopp.
rewrite Zabs_eq; auto with zarith.
apply Zle_Zpred; simpl in |- *; apply nNormPos; auto with float zarith.
apply pNormal_absolu_min with (b := b); auto.
Contradict H'; apply FsubnormalFexp with (1 := C0).
intros H' H'0 H'1 H'2; apply floatEq; simpl in |- *; auto.
unfold Zpred, Zsucc in |- *; ring.
Qed.
 
Theorem FNPredSuc :
 forall x : float,
 Fbounded b x -> FNPred (FNSucc b radix precision x) = x :>R.
intros x H'; unfold FNPred in |- *; rewrite FcanonicFnormalizeEq; auto.
unfold FNSucc in |- *; rewrite FPredSuc; auto.
unfold FtoRradix in |- *; apply FnormalizeCorrect; auto.
apply FnormalizeCanonic; auto.
apply FNSuccCanonic; auto.
Qed.
 
Theorem FNPredSucEq :
 forall x : float,
 Fcanonic radix b x -> FNPred (FNSucc b radix precision x) = x.
intros x H'.
apply FcanonicUnique with (precision := precision) (5 := H'); auto.
apply FNPredCanonic; auto with float.
apply FcanonicBound with (radix := radix); auto.
apply FNSuccCanonic; auto.
apply FcanonicBound with (radix := radix); auto.
apply FNPredSuc; auto.
apply FcanonicBound with (radix := radix); auto.
Qed.
 
Theorem FNSucPred :
 forall x : float,
 Fbounded b x -> FNSucc b radix precision (FNPred x) = x :>R.
intros x H'; unfold FNSucc in |- *; rewrite FcanonicFnormalizeEq; auto.
unfold FNPred in |- *; rewrite FSucPred; auto.
unfold FtoRradix in |- *; apply FnormalizeCorrect; auto.
apply FnormalizeCanonic; auto.
apply FNPredCanonic; auto.
Qed.
 
Theorem FNSucPredEq :
 forall x : float,
 Fcanonic radix b x -> FNSucc b radix precision (FNPred x) = x.
intros x H'.
apply FcanonicUnique with (5 := H') (precision := precision); auto.
apply FNSuccCanonic; auto.
apply FcanonicBound with (radix := radix); auto.
apply FNPredCanonic; auto.
apply FcanonicBound with (radix := radix); auto.
apply FNSucPred; auto.
apply FcanonicBound with (radix := radix); auto.
Qed.


End pred.
Hint Resolve FBoundedPred FPredCanonic FPredLt R0RltRleSucc FPredProp
  FNPredCanonic FNPredLt FNPredProp: float.