File: Digit.v

package info (click to toggle)
coq-float 1%3A8.2-1.2-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 2,468 kB
  • ctags: 32
  • sloc: makefile: 173
file content (357 lines) | stat: -rw-r--r-- 13,236 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
(****************************************************************************
                                                                             
          IEEE754  :  Digit                                                  
                                                                             
          Laurent Thery                                                      
                                                                             
  *****************************************************************************
  Gives the number of digits necessary to write a number in a given base *)
Require Export ZArithRing.
Require Export Omega.
Require Export Faux.
Section Pdigit.
(* n is the base *)
Variable n : Z.
(* and it is greater or equal to 2 *)
Hypothesis nMoreThan1 : (1 < n)%Z.
 
Let nMoreThanOne := Zlt_1_O _ (Zlt_le_weak _ _ nMoreThan1).
Hint Resolve nMoreThanOne: zarith.
 
Theorem Zpower_nat_less : forall q : nat, (0 < Zpower_nat n q)%Z.
intros q; elim q; simpl in |- *.
rewrite Zpower_nat_O; simpl in |- *; auto with zarith.
intros n0 H; replace (S n0) with (1 + n0);
 [ rewrite Zpower_nat_is_exp | auto with zarith ].
rewrite Zpower_nat_1; auto with zarith.
Qed.
Hint Resolve Zpower_nat_less: zarith.
 
Theorem Zpower_nat_monotone_S :
 forall p : nat, (Zpower_nat n p < Zpower_nat n (S p))%Z.
intros p; rewrite <- (Zmult_1_l (Zpower_nat n p)); replace (S p) with (1 + p);
 [ rewrite Zpower_nat_is_exp | auto with zarith ].
rewrite Zpower_nat_1; auto with zarith.
apply Zmult_gt_0_lt_compat_r; auto with zarith.
apply Zlt_gt; auto with zarith.
Qed.
 
Theorem Zpower_nat_monotone_lt :
 forall p q : nat, p < q -> (Zpower_nat n p < Zpower_nat n q)%Z.
intros p q H'; elim H'; simpl in |- *; auto.
apply Zpower_nat_monotone_S.
intros m H H0; apply Zlt_trans with (1 := H0).
apply Zpower_nat_monotone_S.
Qed.
Hint Resolve Zpower_nat_monotone_lt: zarith.
 
Theorem Zpower_nat_anti_monotone_lt :
 forall p q : nat, (Zpower_nat n p < Zpower_nat n q)%Z -> p < q.
intros p q H'.
case (le_or_lt q p); auto; (intros H'1; generalize H'; case H'1).
intros H'0; Contradict H'0; auto with zarith.
intros m H'0 H'2; Contradict H'2; auto with zarith.
Qed.
 
Theorem Zpower_nat_monotone_le :
 forall p q : nat, p <= q -> (Zpower_nat n p <= Zpower_nat n q)%Z.
intros p q H'; case (le_lt_or_eq _ _ H'); auto with zarith.
intros H1; rewrite H1; auto with zarith.
Qed.
 
Theorem Zpower_nat_anti_monotone_le :
 forall p q : nat, (Zpower_nat n p <= Zpower_nat n q)%Z -> p <= q.
intros p q H'; case (le_or_lt p q); intros H'0; auto with arith.
absurd ((Zpower_nat n p <= Zpower_nat n q)%Z); auto with zarith.
Qed.
 
Theorem Zpower_nat_anti_eq :
 forall p q : nat, Zpower_nat n p = Zpower_nat n q -> p = q.
intros p q H'; apply le_antisym; apply Zpower_nat_anti_monotone_le;
 rewrite H'; auto with zarith.
Qed.
(* To compute the number of digits structurally, we suppose that
   we know already an upper bound q. So we start from q down
   to 0 to find the bigger exponent r such that n^(r-1) < v *)
 
Fixpoint digitAux (v r : Z) (q : positive) {struct q} : nat :=
  match q with
  | xH => 0
  | xI q' =>
      match (n * r)%Z with
      | r' =>
          match (r ?= v)%Z with
          | Datatypes.Gt => 0
          | _ => S (digitAux v r' q')
          end
      end
  | xO q' =>
      match (n * r)%Z with
      | r' =>
          match (r ?= v)%Z with
          | Datatypes.Gt => 0
          | _ => S (digitAux v r' q')
          end
      end
  end.
(* As we know that log_n q < log_2 q we can define our function digit*)
 
Definition digit (q : Z) :=
  match q with
  | Z0 => 0
  | Zpos q' => digitAux (Zabs q) 1 (xO q')
  | Zneg q' => digitAux (Zabs q) 1 (xO q')
  end.
Hint Unfold digit.
 
Theorem digitAux1 :
 forall p r, (Zpower_nat n (S p) * r)%Z = (Zpower_nat n p * (n * r))%Z.
intros p r; replace (S p) with (1 + p);
 [ rewrite Zpower_nat_is_exp | auto with arith ].
rewrite Zpower_nat_1; ring.
Qed.
 
Theorem Zcompare_correct :
 forall p q : Z,
 match (p ?= q)%Z with
 | Datatypes.Gt => (q < p)%Z
 | Datatypes.Lt => (p < q)%Z
 | Datatypes.Eq => p = q
 end.
intros p q; unfold Zlt in |- *; generalize (Zcompare_EGAL p q);
 (CaseEq (p ?= q)%Z; simpl in |- *; auto).
intros H H0; case (Zcompare_Gt_Lt_antisym p q); auto.
Qed.
 
Theorem digitAuxLess :
 forall (v r : Z) (q : positive),
 match digitAux v r q with
 | S r' => (Zpower_nat n r' * r <= v)%Z
 | O => True
 end.
intros v r q; generalize r; elim q; clear r q; simpl in |- *; auto.
intros q' Rec r; generalize (Zcompare_correct r v); case (r ?= v)%Z; auto.
intros H1; generalize (Rec (n * r)%Z); case (digitAux v (n * r) q').
intros; rewrite H1; rewrite Zpower_nat_O; auto with zarith.
intros r'; rewrite digitAux1; auto.
intros H1; generalize (Rec (n * r)%Z); case (digitAux v (n * r) q').
intros; rewrite Zpower_nat_O; auto with zarith.
apply Zle_trans with (m := r); auto with zarith.
intros r'; rewrite digitAux1; auto.
intros q' Rec r; generalize (Zcompare_correct r v); case (r ?= v)%Z; auto.
intros H1; generalize (Rec (n * r)%Z); case (digitAux v (n * r) q').
intros; rewrite H1; rewrite Zpower_nat_O; auto with zarith.
intros r'; rewrite digitAux1; auto.
intros H1; generalize (Rec (n * r)%Z); case (digitAux v (n * r) q').
intros; rewrite Zpower_nat_O; auto with zarith.
apply Zle_trans with (m := r); auto with zarith.
intros r'; rewrite digitAux1; auto.
Qed.
(* digit is correct (first part) *)
 
Theorem digitLess :
 forall q : Z, q <> 0%Z -> (Zpower_nat n (pred (digit q)) <= Zabs q)%Z.
intros q; case q.
intros H; Contradict H; auto with zarith.
intros p H; unfold digit in |- *;
 generalize (digitAuxLess (Zabs (Zpos p)) 1 (xO p));
 case (digitAux (Zabs (Zpos p)) 1 (xO p)); simpl in |- *; 
 auto with zarith.
intros p H; unfold digit in |- *;
 generalize (digitAuxLess (Zabs (Zneg p)) 1 (xO p));
 case (digitAux (Zabs (Zneg p)) 1 (xO p)); simpl in |- *; 
 auto with zarith.
Qed.
Hint Resolve digitLess: zarith.
Hint Resolve Zmult_gt_0_lt_compat_r Zmult_gt_0_lt_compat_l: zarith.
 
Fixpoint pos_length (p : positive) : nat :=
  match p with
  | xH => 0
  | xO p' => S (pos_length p')
  | xI p' => S (pos_length p')
  end.
 
Theorem digitAuxMore :
 forall (v r : Z) (q : positive),
 (0 < r)%Z ->
 (v < Zpower_nat n (pos_length q) * r)%Z ->
 (v < Zpower_nat n (digitAux v r q) * r)%Z.
intros v r q; generalize r; elim q; clear r q; simpl in |- *.
intros p Rec r Hr; generalize (Zcompare_correct r v); case (r ?= v)%Z; auto.
intros H1 H2; rewrite <- H1.
apply Zle_lt_trans with (Zpower_nat n 0 * r)%Z; auto with zarith arith.
rewrite Zpower_nat_O; rewrite Zmult_1_l; auto with zarith.
intros H1 H2; rewrite digitAux1.
apply Rec.
apply Zlt_mult_ZERO; auto with zarith.
rewrite <- digitAux1; auto.
rewrite Zpower_nat_O; rewrite Zmult_1_l; auto with zarith.
intros p Rec r Hr; generalize (Zcompare_correct r v); case (r ?= v)%Z; auto.
intros H1 H2; rewrite <- H1.
apply Zle_lt_trans with (Zpower_nat n 0 * r)%Z; auto with zarith arith.
rewrite Zpower_nat_O; rewrite Zmult_1_l; auto with zarith.
intros H1 H2; rewrite digitAux1.
apply Rec.
apply Zlt_mult_ZERO; auto with zarith.
rewrite <- digitAux1; auto.
rewrite Zpower_nat_O; rewrite Zmult_1_l; auto with zarith.
auto.
Qed.
 
Theorem pos_length_pow :
 forall p : positive, (Zpos p < Zpower_nat n (S (pos_length p)))%Z.
intros p; elim p; simpl in |- *; auto.
intros p0 H; rewrite Zpos_xI.
apply Zlt_le_trans with (Z_of_nat 2 * Zpower_nat n (S (pos_length p0)))%Z.
replace (Z_of_nat 2) with (1 + 1)%Z; [ idtac | simpl in |- *; auto ].
replace 2%Z with (1 + 1)%Z; [ auto with zarith | simpl in |- *; auto ].
replace (S (S (pos_length p0))) with (1 + S (pos_length p0));
 [ rewrite Zpower_nat_is_exp | auto with arith ].
rewrite Zpower_nat_1; auto with zarith.
cut (Z_of_nat 2 <= n)%Z; [ auto with zarith | idtac ].
replace (Z_of_nat 2) with (Zsucc 1);
 [ auto with zarith | simpl in |- *; auto ].
intros p0 H; rewrite Zpos_xO.
apply Zlt_le_trans with (Z_of_nat 2 * Zpower_nat n (S (pos_length p0)))%Z.
replace (Z_of_nat 2) with (1 + 1)%Z; [ idtac | simpl in |- *; auto ].
replace 2%Z with (1 + 1)%Z; [ auto with zarith | simpl in |- *; auto ].
replace (S (S (pos_length p0))) with (1 + S (pos_length p0));
 [ rewrite Zpower_nat_is_exp | auto with arith ].
rewrite Zpower_nat_1; auto with zarith.
cut (Z_of_nat 2 <= n)%Z; [ auto with zarith | idtac ].
replace (Z_of_nat 2) with (Zsucc 1);
 [ auto with zarith | simpl in |- *; auto ].
rewrite Zpower_nat_1; auto.
Qed.
(* digit is correct (second part) *)
 
Theorem digitMore : forall q : Z, (Zabs q < Zpower_nat n (digit q))%Z.
intros q; case q.
simpl in |- *; rewrite Zpower_nat_O; simpl in |- *; auto with zarith.
intros q'; rewrite <- (Zmult_1_r (Zpower_nat n (digit (Zpos q')))).
unfold digit in |- *; apply digitAuxMore; auto with zarith.
rewrite Zmult_1_r.
simpl in |- *; apply pos_length_pow.
intros q'; rewrite <- (Zmult_1_r (Zpower_nat n (digit (Zneg q')))).
unfold digit in |- *; apply digitAuxMore; auto with zarith.
rewrite Zmult_1_r.
simpl in |- *; apply pos_length_pow.
Qed.
Hint Resolve digitMore: zarith.
(* if we find an r such that n^(r-1) =< q < n^r 
   then r is the number of digits *)
 
Theorem digitInv :
 forall (q : Z) (r : nat),
 (Zpower_nat n (pred r) <= Zabs q)%Z ->
 (Zabs q < Zpower_nat n r)%Z -> digit q = r.
intros q r H' H'0; case (le_or_lt (digit q) r).
intros H'1; case (le_lt_or_eq _ _ H'1); auto; intros H'2.
absurd (Zabs q < Zpower_nat n (digit q))%Z; auto with zarith.
apply Zle_not_lt; auto with zarith.
apply Zle_trans with (m := Zpower_nat n (pred r)); auto with zarith.
apply Zpower_nat_monotone_le.
generalize H'2; case r; auto with arith.
intros H'1.
absurd (Zpower_nat n (pred (digit q)) <= Zabs q)%Z; auto with zarith.
apply Zlt_not_le; auto with zarith.
apply Zlt_le_trans with (m := Zpower_nat n r); auto.
apply Zpower_nat_monotone_le.
generalize H'1; case (digit q); auto with arith.
apply digitLess; auto with zarith.
generalize H'1; case q; unfold digit in |- *; intros tmp; intros; red in |- *;
 intros; try discriminate; Contradict tmp; auto with arith.
Qed.
 
Theorem digitO : digit 0 = 0.
unfold digit in |- *; simpl in |- *; auto with arith.
Qed.
 
Theorem digit1 : digit 1 = 1.
unfold digit in |- *; simpl in |- *; auto.
Qed.
(* digit is monotone *)
 
Theorem digit_monotone :
 forall p q : Z, (Zabs p <= Zabs q)%Z -> digit p <= digit q.
intros p q H; case (le_or_lt (digit p) (digit q)); auto; intros H1.
absurd ((Zabs p <= Zabs q)%Z); trivial.
apply Zlt_not_le.
cut (p <> 0%Z); [ intros H2 | idtac ].
apply Zlt_le_trans with (2 := digitLess p H2).
cut (digit q <= pred (digit p)); [ intros H3 | idtac ].
apply Zlt_le_trans with (2 := Zpower_nat_monotone_le _ _ H3);
 auto with zarith.
generalize H1; case (digit p); simpl in |- *; auto with arith.
generalize H1; case p; simpl in |- *; intros tmp; intros; red in |- *; intros;
 try discriminate; Contradict tmp; auto with arith.
Qed.
Hint Resolve digit_monotone: arith.
(* if the number is not null so is the number of digits *)
 
Theorem digitNotZero : forall q : Z, q <> 0%Z -> 0 < digit q.
intros q H'.
apply lt_le_trans with (m := digit 1); auto with zarith.
apply digit_monotone.
generalize H'; case q; simpl in |- *; auto with zarith; intros q'; case q';
 simpl in |- *; auto with zarith arith; intros; red in |- *; 
 simpl in |- *; red in |- *; intros; discriminate.
Qed.
Hint Resolve Zlt_gt: zarith.
 
Theorem digitAdd :
 forall (q : Z) (r : nat),
 q <> 0%Z -> digit (q * Zpower_nat n r) = digit q + r.
intros q r H0.
apply digitInv.
replace (pred (digit q + r)) with (pred (digit q) + r).
rewrite Zpower_nat_is_exp; rewrite Zabs_Zmult;
 rewrite (fun x => Zabs_eq (Zpower_nat n x)); auto with zarith arith.
generalize (digitNotZero _ H0); case (digit q); auto with arith.
intros H'; Contradict H'; auto with arith.
rewrite Zpower_nat_is_exp; rewrite Zabs_Zmult;
 rewrite (fun x => Zabs_eq (Zpower_nat n x)); auto with zarith arith.
Qed.
 
Theorem digit_minus1 : forall p : nat, digit (Zpower_nat n p - 1) = p.
intros p; case p; auto.
intros n0; apply digitInv; auto.
rewrite Zabs_eq.
cut (Zpower_nat n (pred (S n0)) < Zpower_nat n (S n0))%Z; auto with zarith.
cut (0 < Zpower_nat n (S n0))%Z; auto with zarith.
rewrite Zabs_eq; auto with zarith.
Qed.
 
Theorem digit_bound :
 forall (x y z : Z) (n : nat),
 (Zabs x <= Zabs y)%Z ->
 (Zabs y <= Zabs z)%Z -> digit x = n -> digit z = n -> digit y = n.
intros x y z n0 H' H'0 H'1 H'2; apply le_antisym.
rewrite <- H'2; auto with arith.
rewrite <- H'1; auto with arith.
Qed.
 
Theorem digit_abs : forall p : Z, digit (Zabs p) = digit p.
intros p; case p; simpl in |- *; auto.
Qed.
(* Strict comparison on the number of digits gives comparison on the numbers *)
 
Theorem digit_anti_monotone_lt :
 (1 < n)%Z -> forall p q : Z, digit p < digit q -> (Zabs p < Zabs q)%Z.
intros H' p q H'0.
case (Zle_or_lt (Zabs q) (Zabs p)); auto; intros H'1.
Contradict H'0.
case (Zle_lt_or_eq _ _ H'1); intros H'2.
apply le_not_lt; auto with arith.
rewrite <- (digit_abs p); rewrite <- (digit_abs q); rewrite H'2;
 auto with arith.
Qed.
End Pdigit.
Hint Resolve Zpower_nat_less: zarith.
Hint Resolve Zpower_nat_monotone_lt: zarith.
Hint Resolve Zpower_nat_monotone_le: zarith.
Hint Unfold digit.
Hint Resolve digitLess: zarith.
Hint Resolve digitMore: zarith.
Hint Resolve digit_monotone: arith.