File: ClosestPlus.v

package info (click to toggle)
coq-float 1%3A8.4-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,692 kB
  • ctags: 30
  • sloc: makefile: 209
file content (695 lines) | stat: -rw-r--r-- 27,445 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
(****************************************************************************
                                                                             
          IEEE754  :  ClosestPlus                                                   
                                                                             
          Laurent Thery, Sylvie Boldo                                                      
                                                                             
  ******************************************************************************)

Require Export FroundPlus.
Require Export ClosestProp.
Section ClosestP.
Variable b : Fbound.
Variable radix : Z.
Variable precision : nat.
 
Coercion Local FtoRradix := FtoR radix.
Hypothesis radixMoreThanOne : (1 < radix)%Z.
 
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ radixMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionGreaterThanOne : 1 < precision.
Hypothesis pGivesBound : Zpos (vNum b) = Zpower_nat radix precision.
 
Theorem errorBoundedPlusLe :
 forall p q pq : float,
 Fbounded b p ->
 Fbounded b q ->
 (Fexp p <= Fexp q)%Z ->
 Closest b radix (p + q) pq ->
 exists error : float,
   error = Rabs (p + q - pq) :>R /\
   Fbounded b error /\ Fexp error = Zmin (Fexp p) (Fexp q).
intros p q pq H' H'0 H'1 H'2.
cut (ex (fun m : Z => pq = Float m (Fexp (Fplus radix p q)) :>R)).
2: unfold FtoRradix in |- *;
    apply
     RoundedModeRep
      with (b := b) (precision := precision) (P := Closest b radix); 
    auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
2: rewrite (Fplus_correct radix); auto with arith.
intros H'3; elim H'3; intros m E; clear H'3.
exists
 (Fabs (Fminus radix q (Fminus radix (Float m (Fexp (Fplus radix p q))) p))).
cut (forall A B : Prop, A -> (A -> B) -> A /\ B);
 [ intros tmp; apply tmp; clear tmp | auto ].
unfold FtoRradix in |- *; rewrite Fabs_correct; auto with arith.
cut (forall p q : R, p = q -> Rabs p = Rabs q);
 [ intros tmp; apply tmp; clear tmp | intros p' q' H; rewrite H; auto ].
unfold FtoRradix in |- *; repeat rewrite Fminus_correct; auto with arith.
unfold FtoRradix in E; rewrite E; auto.
ring.
intros H'4.
cut (Rabs (pq - (p + q)) <= Rabs (q - (p + q)))%R.
2: elim H'2; auto.
replace (q - (p + q))%R with (- FtoRradix p)%R.
2: ring.
rewrite Rabs_Ropp.
unfold FtoRradix in |- *; rewrite <- Fabs_correct; auto with arith.
rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr.
unfold FtoRradix in H'4; rewrite <- H'4.
simpl in |- *.
rewrite Zmin_le1; auto.
generalize H'1 H'; case p; case q; unfold Fabs, Fminus, Fopp, Fplus in |- *;
 simpl in |- *; clear H'1 H'.
intros Fnum1 Fexp1 Fnum2 Fexp2 H'5 H'6.
repeat rewrite Zmin_n_n; auto.
repeat rewrite (Zmin_le2 _ _ H'5); auto with zarith.
replace (Zabs_nat (Fexp2 - Fexp2)) with 0.
rewrite Zpower_nat_O.
cut (forall z : Z, (z * 1%nat)%Z = z);
 [ intros tmp; repeat rewrite tmp; clear tmp | auto with zarith ].
unfold FtoRradix, FtoR in |- *; simpl in |- *.
intros H'.
repeat split; simpl in |- *.
rewrite (fun x => Zabs_eq (Zabs x)); auto with zarith.
apply Zle_lt_trans with (Zabs Fnum2); auto.
apply le_IZR.
apply (Rle_monotony_contra_exp radix) with (z := Fexp2); auto.
case H'6; auto.
case H'6; auto.
intros; simpl in |- *; ring.
replace (Fexp2 - Fexp2)%Z with 0%Z; simpl in |- *; auto with zarith.
Qed.
 
Theorem errorBoundedPlusAbs :
 forall p q pq : float,
 Fbounded b p ->
 Fbounded b q ->
 Closest b radix (p + q) pq ->
 exists error : float,
   error = Rabs (p + q - pq) :>R /\
   Fbounded b error /\ Fexp error = Zmin (Fexp p) (Fexp q).
intros p q pq H' H'0 H'1.
case (Zle_or_lt (Fexp p) (Fexp q)); intros H'2.
apply errorBoundedPlusLe; auto.
replace (p + q)%R with (q + p)%R; [ idtac | ring ].
replace (Zmin (Fexp p) (Fexp q)) with (Zmin (Fexp q) (Fexp p));
 [ idtac | apply Zmin_sym ].
apply errorBoundedPlusLe; auto.
auto with zarith.
apply (ClosestCompatible b radix (p + q)%R (q + p)%R pq); auto.
ring.
case H'1; auto.
Qed.
 
Theorem errorBoundedPlus :
 forall p q pq : float,
 (Fbounded b p) ->
 (Fbounded b q) ->
 (Closest b radix (p + q) pq) ->
 exists error : float,
   error = (p + q - pq)%R :>R /\
   (Fbounded b error) /\ (Fexp error) = (Zmin (Fexp p) (Fexp q)).
intros p q pq H' H'0 H'1.
case (errorBoundedPlusAbs p q pq); auto.
intros x H'2; elim H'2; intros H'3 H'4; elim H'4; intros H'5 H'6;
 clear H'4 H'2.
generalize H'3; clear H'3.
unfold Rabs in |- *; case (Rcase_abs (p + q - pq)).
intros H'2 H'3; exists (Fopp x); split; auto.
unfold FtoRradix in |- *; rewrite Fopp_correct; auto.
unfold FtoRradix in H'3; rewrite H'3; ring.
split.
apply oppBounded; auto.
rewrite <- H'6; auto.
intros H'2 H'3; exists x; split; auto.
Qed.
 
Theorem plusExact1 :
 forall p q r : float,
 Fbounded b p ->
 Fbounded b q ->
 Closest b radix (p + q) r ->
 (Fexp r <= Zmin (Fexp p) (Fexp q))%Z -> r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2.
cut
 (2%nat * Rabs (FtoR radix (Fplus radix p q) - FtoR radix r) <=
  Float 1%nat (Fexp r))%R;
 [ rewrite Fplus_correct; auto with zarith; intros Rl1 | idtac ].
case errorBoundedPlus with (p := p) (q := q) (pq := r); auto.
intros x H'3; elim H'3; intros H'4 H'5; elim H'5; intros H'6 H'7;
 clear H'5 H'3.
unfold FtoRradix in H'4; rewrite <- H'4 in Rl1.
2: apply Rle_trans with (Fulp b radix precision r); auto.
2: apply (ClosestUlp b radix precision); auto.
2: rewrite Fplus_correct; auto with zarith.
2: unfold FtoRradix in |- *; apply FulpLe; auto.
2: apply
    RoundedModeBounded
     with (radix := radix) (P := Closest b radix) (r := (p + q)%R); 
    auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
cut (x = 0%R :>R); [ unfold FtoRradix in |- *; intros Eq1 | idtac ].
replace (FtoR radix r) with (FtoR radix r + 0)%R; [ idtac | ring ].
rewrite <- Eq1.
rewrite H'4; ring.
apply (is_Fzero_rep1 radix).
case (Z_zerop (Fnum x)); simpl in |- *; auto.
intros H'3; Contradict Rl1.
apply Rgt_not_le.
red in |- *; apply Rle_lt_trans with (Rabs (FtoR radix x)).
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
rewrite Rabs_mult.
apply Rmult_le_compat; auto with real arith.
generalize H'3; case (Fnum x); simpl in |- *; auto with real zarith.
intros H'5; case H'5; auto.
intros p0 H'5; rewrite Rabs_right; auto with real arith.
replace 1%R with (INR 1); auto with real arith.
intros p0 H'5; rewrite Faux.Rabsolu_left1; auto.
rewrite Ropp_involutive.
replace 1%R with (INR 1); auto with real arith.
replace 0%R with (- 0%nat)%R; auto with real; apply Ropp_le_ge_contravar;
 auto with real arith.
rewrite Rabs_right; auto with real arith.
apply Rle_powerRZ; auto with real arith.
auto with zarith.
apply Rle_ge; cut (1 < radix)%Z; auto with float real zarith.
cut (forall r : R, (2%nat * r)%R = (r + r)%R);
 [ intros tmp; rewrite tmp; clear tmp | intros f; simpl in |- *; ring ].
pattern (Rabs (FtoR radix x)) at 1 in |- *;
 replace (Rabs (FtoR radix x)) with (Rabs (FtoR radix x) + 0)%R;
 [ idtac | ring ].
apply Rplus_lt_compat_l; auto.
case (Rabs_pos (FtoR radix x)); auto.
rewrite <- Fabs_correct; auto with arith.
intros H'5; Contradict H'3.
cut (Fnum (Fabs x) = 0%Z).
unfold Fabs in |- *; simpl in |- *; case (Fnum x); simpl in |- *; auto;
 intros; discriminate.
change (is_Fzero (Fabs x)) in |- *.
apply (is_Fzero_rep2 radix); auto with arith.
Qed.
 
Theorem plusExact1bis :
 forall p q r : float,
 Fbounded b p ->
 Fbounded b q ->
 Closest b radix (p + q) r ->
 r <> (p + q)%R :>R -> (Zmin (Fexp p) (Fexp q) < Fexp r)%Z.
intros p0 q0 r0 H' H'0 H'1 H'2;
 case (Zle_or_lt (Fexp r0) (Zmin (Fexp p0) (Fexp q0))); 
 auto.
intros H'3; Contradict H'2.
apply plusExact1; auto.
Qed.
 
Theorem plusExact2Aux :
 forall p q r : float,
 (0 <= p)%R ->
 Fcanonic radix b p ->
 Fbounded b q ->
 Closest b radix (p + q) r ->
 (Fexp r < Zpred (Fexp p))%Z -> r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2 H'3.
apply plusExact1; auto.
apply FcanonicBound with (1 := H'0); auto.
case (Zle_or_lt (Fexp p) (Fexp q)); intros Zl1.
rewrite Zmin_le1; auto with zarith.
apply Zle_trans with (Zpred (Fexp p)); auto with zarith.
unfold Zpred in |- *; auto with zarith.
rewrite Zmin_le2; auto with zarith.
case (Zlt_next _ _ Zl1); intros Zl2.
rewrite Zl2 in H'3.
replace (Fexp q) with (Zpred (Zsucc (Fexp q))); auto with zarith;
 unfold Zpred, Zsucc in |- *; ring.
case H'0; clear H'0; intros H'0.
absurd (r < Float (nNormMin radix precision) (Zpred (Fexp p)))%R.
apply Rle_not_lt; auto.
unfold FtoRradix in |- *;
 apply
  (ClosestMonotone b radix
     (Float (nNormMin radix precision) (Zpred (Fexp p))) (
     p + q)%R); auto; auto.
cut (Float (nNormMin radix precision) (Fexp p) <= p)%R;
 [ intros Eq1 | idtac ].
case (Rle_or_lt 0 q); intros Rl1.
apply Rlt_le_trans with (FtoRradix p).
apply
 Rlt_le_trans with (FtoRradix (Float (nNormMin radix precision) (Fexp p)));
 auto.
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
apply Rmult_lt_compat_l; auto with real arith.
replace 0%R with (IZR 0%nat); auto with real; auto with real float arith.
apply Rlt_IZR; apply nNormPos; auto with zarith.
unfold Zpred in |- *; auto with real float zarith arith.
pattern (FtoRradix p) at 1 in |- *; replace (FtoRradix p) with (p + 0)%R;
 auto with real.
apply Rplus_lt_reg_r with (r := (- q)%R); auto.
replace (- q + (p + q))%R with (FtoRradix p); [ idtac | ring ].
apply
 Rlt_le_trans with (FtoRradix (Float (nNormMin radix precision) (Fexp p)));
 auto.
apply
 Rlt_le_trans
  with (2%nat * Float (nNormMin radix precision) (Zpred (Fexp p)))%R; 
 auto.
cut (forall r : R, (2%nat * r)%R = (r + r)%R);
 [ intros tmp; rewrite tmp; clear tmp | intros; simpl in |- *; ring ].
rewrite (Rplus_comm (- q)).
apply Rplus_lt_compat_l.
rewrite <- Faux.Rabsolu_left1; auto.
rewrite <- (Fabs_correct radix); auto with arith.
unfold FtoRradix in |- *; apply maxMaxBis with (b := b); auto with zarith.
apply Rlt_le; auto.
apply
 Rle_trans with (radix * Float (nNormMin radix precision) (Zpred (Fexp p)))%R.
apply Rmult_le_compat_r; auto.
apply (LeFnumZERO radix); simpl in |- *; auto with arith.
apply Zlt_le_weak; apply nNormPos; auto with zarith.
rewrite INR_IZR_INZ; apply Rle_IZR; simpl in |- *; cut (1 < radix)%Z;
 auto with real zarith.
pattern (Fexp p) at 2 in |- *; replace (Fexp p) with (Zsucc (Zpred (Fexp p)));
 [ idtac | unfold Zsucc, Zpred in |- *; ring ].
unfold FtoRradix, FtoR in |- *; simpl in |- *.
rewrite powerRZ_Zs; auto with real zarith.
repeat rewrite <- Rmult_assoc.
rewrite (Rmult_comm radix); auto with real.
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
apply Rmult_le_compat_r; auto with real zarith.
apply Rle_IZR.
rewrite <- (Zabs_eq (Fnum p)); auto with zarith.
apply pNormal_absolu_min with (b := b); auto with arith.
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto.
apply (LeR0Fnum radix); auto with arith.
apply (RoundedModeProjectorIdem b radix (Closest b radix)); auto.
apply ClosestRoundedModeP with (precision := precision); auto.
repeat split; simpl in |- *.
rewrite Zabs_eq; auto with zarith.
apply ZltNormMinVnum; auto with arith.
apply Zlt_le_weak; apply nNormPos; auto with zarith.
apply Zle_trans with (Fexp q); auto with float zarith.
case (Rle_or_lt 0 r); intros Rl1.
rewrite <- (Rabs_right r); auto with real.
rewrite <- (Fabs_correct radix); auto with arith.
unfold FtoRradix in |- *; apply maxMaxBis with (b := b); auto with zarith.
apply
 RoundedModeBounded
  with (radix := radix) (P := Closest b radix) (r := (p + q)%R); 
 auto.
apply ClosestRoundedModeP with (precision := precision); auto with real.
apply Rlt_le_trans with 0%R; auto.
apply (LeFnumZERO radix); simpl in |- *; auto with arith.
apply Zlt_le_weak; apply nNormPos; auto with zarith.
absurd (- dExp b <= Fexp q)%Z; auto with float.
apply Zlt_not_le.
case H'0; intros Z1 (Z2, Z3); rewrite <- Z2; auto with zarith.
Qed.
 
Theorem plusExact2 :
 forall p q r : float,
 Fcanonic radix b p ->
 Fbounded b q ->
 Closest b radix (p + q) r ->
 (Fexp r < Zpred (Fexp p))%Z -> r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2.
case (Rle_or_lt 0 p); intros Rl1.
apply plusExact2Aux; auto.
replace (p + q)%R with (- (Fopp p + Fopp q))%R.
rewrite <- (plusExact2Aux (Fopp p) (Fopp q) (Fopp r)); auto.
unfold FtoRradix in |- *; rewrite Fopp_correct; ring.
unfold FtoRradix in |- *; rewrite Fopp_correct.
apply Rlt_le; replace 0%R with (-0)%R; auto with real.
apply FcanonicFopp; auto with arith.
apply oppBounded; auto.
replace (Fopp p + Fopp q)%R with (- (p + q))%R.
apply ClosestOpp; auto.
unfold FtoRradix in |- *; repeat rewrite Fopp_correct; ring.
unfold FtoRradix in |- *; repeat rewrite Fopp_correct; ring.
Qed.
 
Theorem plusExactR0 :
 forall p q r : float,
 Fbounded b p ->
 Fbounded b q ->
 Closest b radix (p + q) r -> r = 0%R :>R -> r = (p + q)%R :>R.
intros p q r H' H'0 H'1 H'2.
cut (r = FtoRradix (Fzero (- dExp b)) :>R);
 [ intros Eq1; rewrite Eq1
 | rewrite H'2; apply sym_eq; unfold FtoRradix in |- *; apply FzeroisZero ].
apply plusExact1; auto.
apply (ClosestCompatible b radix (p + q)%R (p + q)%R r); auto.
apply FboundedFzero; auto.
simpl in |- *; auto.
unfold Zmin in |- *; case (Fexp p ?= Fexp q)%Z; auto with float.
Qed.
 
Theorem plusErrorBound1 :
 forall p q r : float,
 Fbounded b p ->
 Fbounded b q ->
 Closest b radix (p + q) r ->
 ~ is_Fzero r ->
 (Rabs (r - (p + q)) < Rabs r * / 2%nat * (radix * / pPred (vNum b)))%R.
intros p q r H' H'0 H'1 H'2.
cut (Fcanonic radix b (Fnormalize radix b precision r));
 [ intros tmp; Casec tmp; intros Fs | idtac ].
3: apply FnormalizeCanonic; auto with arith.
3: apply
    RoundedModeBounded
     with (radix := radix) (P := Closest b radix) (r := (p + q)%R); 
    auto.
3: apply ClosestRoundedModeP with (precision := precision); auto.
2: rewrite <- (plusExact1 p q (Fnormalize radix b precision r)); auto.
2: unfold FtoRradix in |- *; rewrite FnormalizeCorrect; auto with arith.
2: replace (FtoR radix r - FtoR radix r)%R with 0%R; [ idtac | ring ].
2: rewrite Rabs_R0.
2: replace 0%R with (0 * (radix * / pPred (vNum b)))%R;
    [ apply Rmult_lt_compat_r | ring ].
2: replace 0%R with (0 * / pPred (vNum b))%R;
    [ apply Rmult_lt_compat_r | ring ].
2: apply Rinv_0_lt_compat; replace 0%R with (IZR 0); auto with real zarith.
2: apply Rlt_IZR; unfold pPred in |- *; apply Zlt_succ_pred; simpl in |- *.
2: apply vNumbMoreThanOne with (radix := radix) (precision := precision);
    auto with real zarith.
2: cut (1 < radix)%Z; auto with real zarith.
2: replace 0%R with (0 * / 2%nat)%R; [ apply Rmult_lt_compat_r | ring ];
    auto with real.
2: case (Rabs_pos (FtoR radix r)); auto.
2: intros H'3; Contradict H'2.
2: apply is_Fzero_rep2 with (radix := radix); auto with real arith.
2: generalize H'3; fold FtoRradix in |- *; unfold Rabs in |- *;
    case (Rcase_abs r); auto.
2: intros r0 H'2; replace 0%R with (-0)%R; [ rewrite H'2 | idtac ]; ring.
2: apply (ClosestCompatible b radix (p + q)%R (p + q)%R r); auto.
2: apply sym_eq; apply FnormalizeCorrect; auto.
2: apply FnormalizeBounded; auto with arith.
2: apply
    RoundedModeBounded
     with (radix := radix) (P := Closest b radix) (r := (p + q)%R); 
    auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
2: replace (Fexp (Fnormalize radix b precision r)) with (- dExp b)%Z.
2: unfold Zmin in |- *; case (Fexp p ?= Fexp q)%Z; auto with float.
2: apply sym_equal; case Fs; intros H1 H2; case H2; auto.
apply Rle_lt_trans with (/ 2%nat * Fulp b radix precision r)%R.
apply Rmult_le_reg_l with (r := INR 2); auto with real.
rewrite <- Rmult_assoc; rewrite Rinv_r; auto with real; rewrite Rmult_1_l.
unfold FtoRradix in |- *; rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr;
 rewrite <- (Fplus_correct radix); auto with zarith.
apply ClosestUlp; auto.
rewrite Fplus_correct; auto with arith.
replace (Rabs r * / 2%nat * (radix * / pPred (vNum b)))%R with
 (/ 2%nat * (Rabs r * (radix * / pPred (vNum b))))%R;
 [ apply Rmult_lt_compat_l; auto with real | ring ].
replace (Fulp b radix precision r) with
 (Float (pPred (vNum b)) (Zpred (Fexp (Fnormalize radix b precision r))) *
  (radix * / pPred (vNum b)))%R.
apply Rmult_lt_compat_r.
replace 0%R with (radix * 0)%R; [ apply Rmult_lt_compat_l | ring ];
 auto with real arith.
apply Rinv_0_lt_compat; replace 0%R with (IZR 0%nat); auto with real arith;
 apply Rlt_IZR.
unfold pPred in |- *; apply Zlt_succ_pred;
 apply (vNumbMoreThanOne radix) with (precision := precision);
 auto with zarith.
unfold FtoRradix in |- *;
 rewrite <- (FnormalizeCorrect _ radixMoreThanOne b precision r).
rewrite <- (Fabs_correct radix); auto with arith.
apply FnormalBoundAbs; auto with zarith.
unfold Fulp, FtoRradix, FtoR in |- *; simpl in |- *.
apply
 trans_eq
  with
    (pPred (vNum b) * / pPred (vNum b) *
     (radix * powerRZ radix (Zpred (Fexp (Fnormalize radix b precision r)))))%R;
 [ ring | idtac ]; auto.
rewrite Rinv_r; auto with real arith.
rewrite <- powerRZ_Zs; auto with real.
cut (forall r : Z, Zsucc (Zpred r) = r);
 [ intros Er; rewrite Er | intros r'; unfold Zsucc, Zpred in |- * ]; 
 ring.
apply Rlt_dichotomy_converse; right; red in |- *.
replace 0%R with (IZR 0); cut (1 < radix)%Z; auto with real zarith.
apply Rlt_dichotomy_converse; right; red in |- *.
replace 0%R with (IZR 0); auto with real zarith.
unfold pPred in |- *; apply Rlt_IZR; apply Zlt_succ_pred; simpl in |- *.
apply vNumbMoreThanOne with (radix := radix) (precision := precision);
 auto with real arith.
Qed.
 
Theorem plusErrorBound1bis :
 forall p q r : float,
 Fbounded b p ->
 Fbounded b q ->
 Closest b radix (p + q) r ->
 ~ is_Fzero r ->
 (Rabs (r - (p + q)) <= Rabs r * / 2%nat * (radix * / Zpos (vNum b)))%R.
intros p q r H' H'0 H'1 H'2.
cut (Fcanonic radix b (Fnormalize radix b precision r));
 [ intros tmp; Casec tmp; intros Fs | idtac ].
3: apply FnormalizeCanonic; auto with arith.
3: apply
    RoundedModeBounded
     with (radix := radix) (P := Closest b radix) (r := (p + q)%R); 
    auto.
3: apply ClosestRoundedModeP with (precision := precision); auto.
2: rewrite <- (plusExact1 p q (Fnormalize radix b precision r)); auto.
2: unfold FtoRradix in |- *; rewrite FnormalizeCorrect; auto.
2: replace (FtoR radix r - FtoR radix r)%R with 0%R; [ idtac | ring ].
2: rewrite Rabs_R0.
2: replace 0%R with (0 * (radix * / Zpos (vNum b)))%R;
    [ apply Rmult_le_compat_r | ring ]; auto with real zarith.
2: replace 0%R with (0 * / Zpos (vNum b))%R;
    [ apply Rmult_le_compat_r | ring ]; auto with real zarith.
2: replace 0%R with (0 * / 2%nat)%R; [ apply Rmult_le_compat_r | ring ];
    auto with real zarith.
2: apply (ClosestCompatible b radix (p + q)%R (p + q)%R r); auto.
2: apply sym_eq; apply FnormalizeCorrect; auto.
2: apply FnormalizeBounded; auto with arith.
2: apply
    RoundedModeBounded
     with (radix := radix) (P := Closest b radix) (r := (p + q)%R); 
    auto.
2: apply ClosestRoundedModeP with (precision := precision); auto.
2: replace (Fexp (Fnormalize radix b precision r)) with (- dExp b)%Z.
2: unfold Zmin in |- *; case (Fexp p ?= Fexp q)%Z; intuition.
2: case Fs; intros H1 (H2, H3); auto.
apply Rle_trans with (/ 2%nat * Fulp b radix precision r)%R.
replace (Rabs (FtoRradix r - (FtoRradix p + FtoRradix q))) with
 (/ 2%nat * (2%nat * Rabs (FtoRradix r - (FtoRradix p + FtoRradix q))))%R;
 [ idtac | rewrite <- Rmult_assoc; rewrite Rinv_l; auto with real ].
apply Rmult_le_compat_l; auto with real.
replace (FtoRradix r - (FtoRradix p + FtoRradix q))%R with
 (- (FtoRradix p + FtoRradix q - FtoRradix r))%R;
 [ rewrite Rabs_Ropp | ring ].
apply (ClosestUlp b radix); auto.
replace (Rabs r * / 2%nat * (radix * / Zpos (vNum b)))%R with
 (/ 2%nat * (Rabs r * (radix * / Zpos (vNum b))))%R;
 [ apply Rmult_le_compat_l; auto with real | ring ].
replace (Fulp b radix precision r) with
 (Zpos (vNum b) *
  FtoR radix (Float 1%nat (Zpred (Fexp (Fnormalize radix b precision r)))) *
  (radix * / Zpos (vNum b)))%R.
apply Rmult_le_compat_r.
replace 0%R with (radix * 0)%R; [ apply Rmult_le_compat_l | ring ];
 apply Rlt_le; auto with real arith.
apply Rinv_0_lt_compat; replace 0%R with (INR 0); auto with float real arith.
rewrite INR_IZR_INZ; apply Rlt_IZR; simpl in |- *; apply Zlt_1_O;
 apply Zlt_le_weak;
 apply (vNumbMoreThanOne radix) with (precision := precision);
 auto with zarith.
unfold FtoRradix in |- *;
 rewrite <- (FnormalizeCorrect _ radixMoreThanOne b precision r).
rewrite <- (Fabs_correct radix); auto with arith.
apply FnormalBoundAbs2 with precision; auto with arith.
unfold Fulp, FtoRradix, FtoR in |- *; simpl in |- *.
apply
 trans_eq
  with
    (nat_of_P (vNum b) * / nat_of_P (vNum b) *
     (radix * powerRZ radix (Zpred (Fexp (Fnormalize radix b precision r)))))%R;
 [ ring | idtac ]; auto.
rewrite Rinv_r; auto with real arith.
rewrite <- powerRZ_Zs; auto with real zarith.
rewrite <- Zsucc_pred; ring.
Qed.
 
Theorem plusErrorBound1withZero :
 forall p q r : float,
 Fbounded b p ->
 Fbounded b q ->
 Closest b radix (p + q) r ->
 (Rabs (r - (p + q)) <= Rabs r * / 2%nat * (radix * / pPred (vNum b)))%R.
intros p q r H H0 H1.
case (Req_dec r 0); intros Hr.
replace (Rabs (r - (p + q))) with (Rabs r * / 2%nat * 0)%R.
apply Rmult_le_compat_l.
replace 0%R with (Rabs r * 0)%R; [ apply Rmult_le_compat_l | ring ];
 auto with real arith.
replace 0%R with (radix * 0)%R; [ apply Rmult_le_compat_l | ring ];
 auto with real arith.
apply Rlt_le; apply Rinv_0_lt_compat; auto with real arith.
replace 0%R with (IZR 0%nat); auto with real zarith; apply Rlt_IZR.
apply Zle_lt_trans with (nNormMin radix precision).
apply Zlt_le_weak; apply nNormPos; auto with real zarith.
apply nNormMimLtvNum; auto with real zarith.
rewrite <- plusExactR0 with (3 := H1); auto with real zarith.
rewrite Hr; repeat rewrite Rabs_R0 || (rewrite Rminus_diag_eq; auto); ring.
apply Rlt_le; apply plusErrorBound1; auto.
Contradict Hr; unfold FtoRradix in |- *; apply is_Fzero_rep1; auto.
Qed.
 
Theorem pPredMoreThanOne : (0 < pPred (vNum b))%Z.
unfold pPred in |- *; apply Zlt_succ_pred; simpl in |- *.
apply (vNumbMoreThanOne radix) with (precision := precision);
 auto with zarith.
Qed.
 
Theorem pPredMoreThanRadix : (radix < pPred (vNum b))%Z.
apply Zle_lt_trans with (nNormMin radix precision).
pattern radix at 1 in |- *; rewrite <- (Zpower_nat_1 radix);
 unfold nNormMin in |- *; auto with zarith.
apply nNormMimLtvNum; auto with zarith.
Qed.
 
Theorem RoundBound :
 forall x y p : float,
 Fbounded b x ->
 Fbounded b y ->
 Fbounded b p ->
 Closest b radix (x + y) p ->
 (radix < 2%nat * pPred (vNum b))%Z ->
 (Rabs p <=
  Rabs (x + y) *
  (2%nat * pPred (vNum b) * / (2%nat * pPred (vNum b) - radix)))%R.
intros x y p H H0 H1 H2 H3.
cut (0 < 2%nat * pPred (vNum b))%Z;
 [ intros NZ1 | apply Zlt_trans with radix; auto with zarith ].
cut (0 < 2%nat * pPred (vNum b))%R;
 [ intros NZ1'
 | rewrite INR_IZR_INZ; rewrite <- Rmult_IZR; auto with real zarith ].
cut (radix < 2%nat * pPred (vNum b))%R;
 [ intros NZ2
 | rewrite INR_IZR_INZ; rewrite <- Rmult_IZR; auto with real zarith ].
replace (Rabs p) with
 (Rabs p * ((2%nat * pPred (vNum b) - radix) * / (2%nat * pPred (vNum b))) *
  (2%nat * pPred (vNum b) * / (2%nat * pPred (vNum b) - radix)))%R.
2: replace
    (Rabs p * ((2%nat * pPred (vNum b) - radix) * / (2%nat * pPred (vNum b))) *
     (2%nat * pPred (vNum b) * / (2%nat * pPred (vNum b) - radix)))%R with
    (Rabs p *
     ((2%nat * pPred (vNum b) - radix) * / (2%nat * pPred (vNum b) - radix)) *
     (2%nat * pPred (vNum b) * / (2%nat * pPred (vNum b))))%R;
    [ idtac | ring ].
2: repeat rewrite Rinv_r; auto with real zarith; try ring.
apply Rmult_le_compat_r.
replace 0%R with (2%nat * pPred (vNum b) * 0)%R;
 [ apply Rmult_le_compat_l | ring ]; auto with real zarith.
replace ((2%nat * pPred (vNum b) - radix) * / (2%nat * pPred (vNum b)))%R
 with (1 - radix * / (2%nat * pPred (vNum b)))%R.
2: unfold Rminus in |- *; rewrite Rmult_plus_distr_r; rewrite Rinv_r;
    auto with real.
replace (Rabs p * (1 - radix * / (2%nat * pPred (vNum b))))%R with
 (Rabs p - Rabs p * (radix * / (2%nat * pPred (vNum b))))%R;
 [ idtac | ring; ring ].
apply Rplus_le_reg_l with (Rabs p * (radix * / (2%nat * pPred (vNum b))))%R.
replace
 (Rabs (FtoRradix p) * (radix * / (2%nat * pPred (vNum b))) +
  (Rabs (FtoRradix p) -
   Rabs (FtoRradix p) * (radix * / (2%nat * pPred (vNum b)))))%R with
 (Rabs p); [ idtac | ring ].
apply Rle_trans with (Rabs (p - (x + y)) + Rabs (x + y))%R.
pattern (FtoRradix p) at 1 in |- *;
 replace (FtoRradix p) with (p - (x + y) + (x + y))%R;
 [ apply Rabs_triang | ring ].
rewrite (Rplus_comm (Rabs (p - (x + y))) (Rabs (x + y)));
 rewrite
  (Rplus_comm (Rabs p * (radix * / (2%nat * pPred (vNum b)))) (Rabs (x + y)))
  ; apply Rplus_le_compat_l.
replace (Rabs p * (radix * / (2%nat * pPred (vNum b))))%R with
 (Rabs p * / 2%nat * (radix * / pPred (vNum b)))%R;
 [ apply plusErrorBound1withZero | idtac ]; auto.
rewrite (Rinv_mult_distr 2%nat (pPred (vNum b))); auto with real zarith.
ring.
apply NEq_IZRO; auto with real zarith.
generalize pPredMoreThanOne; auto with zarith.
Qed.
 
Theorem plusExactExp :
 forall p q pq : float,
 Fbounded b p ->
 Fbounded b q ->
 Closest b radix (p + q) pq ->
 ex
   (fun r : float =>
    ex
      (fun s : float =>
       Fbounded b r /\
       Fbounded b s /\
       s = pq :>R /\
       r = (p + q - s)%R :>R /\
       Fexp r = Zmin (Fexp p) (Fexp q) :>Z /\
       (Fexp r <= Fexp s)%Z /\ (Fexp s <= Zsucc (Zmax (Fexp p) (Fexp q)))%Z)).
intros p q pq H H0 H1.
case (plusExpBound b radix precision) with (P := Closest b radix) (5 := H1);
 auto with zarith.
apply (ClosestRoundedModeP b radix precision); auto with zarith.
intros r (H2, (H3, (H4, H5))); fold FtoRradix in H3.
case (Req_dec (p + q - pq) 0); intros Hr.
cut (Fbounded b (Fzero (Zmin (Fexp p) (Fexp q)))); [ intros Fbs | idtac ].
exists (Fzero (Zmin (Fexp p) (Fexp q))); exists r; repeat (split; auto).
rewrite (FzeroisReallyZero radix); rewrite <- Hr; rewrite <- H3; auto.
case (Zmin_or (Fexp p) (Fexp q)); intros Hz; rewrite Hz;
 apply FboundedZeroSameExp; auto.
case (errorBoundedPlus p q pq); auto.
intros error (H6, (H7, H8)).
exists error; exists r; repeat (split; auto).
rewrite H3; auto.
rewrite H8; auto.
Qed.
 
Theorem plusExactExpCanonic :
 forall c d p q : float,
 Fbounded b c ->
 Fbounded b d ->
 Fbounded b p ->
 Fbounded b q ->
 Closest b radix (c + d) p ->
 q = (c + d - p)%R :>R ->
 q <> 0%R :>R ->
 ex
   (fun r : float =>
    ex
      (fun s : float =>
       Fcanonic radix b s /\
       Fbounded b r /\
       s = p :>R /\
       r = (c + d - s)%R :>R /\
       Fexp r = Zmin (Fexp c) (Fexp d) :>Z /\
       (Fexp r < Fexp s)%Z /\ (Fexp s <= Zsucc (Zmax (Fexp c) (Fexp d)))%Z)).
intros c d p q H H0 H1 H2 H3 H4 H5.
case (plusExactExp c d p); auto.
intros r (s, (H6, (H7, (H8, (H9, (H10, (H11, H12))))))).
exists r; exists (Fnormalize radix b precision s).
repeat (split; auto with float).
apply FnormalizeCanonic; auto with arith.
rewrite <- H8; apply (FnormalizeCorrect radix); auto with zarith.
rewrite (FnormalizeCorrect radix); auto with zarith.
apply
 ClosestErrorExpStrict
  with (radix := radix) (b := b) (precision := precision) (x := (c + d)%R);
 auto with float.
apply FnormalizeBounded; auto with arith.
apply (ClosestCompatible b radix (c + d)%R (c + d)%R p); auto.
rewrite (FnormalizeCorrect radix); auto with zarith.
apply FnormalizeBounded; auto with arith.
rewrite (FnormalizeCorrect radix); auto with zarith.
fold FtoRradix in |- *; rewrite H9; rewrite H8; rewrite <- H4; auto.
apply Zle_trans with (Fexp s); auto.
apply FcanonicLeastExp with radix b precision; auto with arith.
apply sym_eq; apply FnormalizeCorrect; auto with real.
apply FnormalizeCanonic; auto with arith.
Qed.
End ClosestP.