File: Fmin.v

package info (click to toggle)
coq-float 1%3A8.4-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,692 kB
  • ctags: 30
  • sloc: makefile: 209
file content (650 lines) | stat: -rw-r--r-- 22,967 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
(****************************************************************************
                                                                             
          IEEE754  :  Fmin                                                     
                                                                             
          Laurent Thery                                                      
                                                                             
  ******************************************************************************)
Require Export Zenum.
Require Export FPred.
 
Section FMinMax.
Variable b : Fbound.
Variable radix : Z.
Variable precision : nat.
 
Let FtoRradix := FtoR radix.
Coercion FtoRradix : float >-> R.
Hypothesis radixMoreThanOne : (1 < radix)%Z.
 
Let radixMoreThanZERO := Zlt_1_O _ (Zlt_le_weak _ _ radixMoreThanOne).
Hint Resolve radixMoreThanZERO: zarith.
Hypothesis precisionNotZero : precision <> 0.
Hypothesis pGivesBound : Zpos (vNum b) = Zpower_nat radix precision.
(* a function that returns a boundd greater than a given nat *)
 
Definition boundNat (n : nat) := Float 1%nat (digit radix n).
 
Theorem boundNatCorrect : forall n : nat, (n < boundNat n)%R.
intros n; unfold FtoRradix, FtoR, boundNat in |- *; simpl in |- *.
rewrite Rmult_1_l.
rewrite <- Zpower_nat_Z_powerRZ; auto with real zarith.
rewrite INR_IZR_INZ; auto with real zarith.
apply Rle_lt_trans with (Zabs n); [rewrite (Zabs_eq (Z_of_nat n))|idtac];auto with real zarith.
Qed.
 
Theorem boundBoundNat : forall n : nat, Fbounded b (boundNat n).
intros n; repeat split; unfold boundNat in |- *; simpl in |- *;
 auto with zarith.
apply vNumbMoreThanOne with (radix := radix) (precision := precision);
 auto with zarith.
apply Zle_trans with 0%Z;[case (dExp b)|idtac]; auto with zarith.
Qed.
(* A function that returns a bounded greater than a given r *)
 
Definition boundR (r : R) := boundNat (Zabs_nat (up (Rabs r))).
 
Theorem boundRCorrect1 : forall r : R, (r < boundR r)%R.
intros r; case (Rle_or_lt r 0); intros H'.
apply Rle_lt_trans with (1 := H').
unfold boundR, boundNat, FtoRradix, FtoR in |- *; simpl in |- *;
 auto with real.
rewrite Rmult_1_l; auto with real zarith.
apply Rlt_trans with (2 := boundNatCorrect (Zabs_nat (up (Rabs r)))).
replace (Rabs r) with r; auto with real.
apply Rlt_le_trans with (r2 := IZR (up r)); auto with real zarith.
case (archimed r); auto.
rewrite INR_IZR_INZ; auto with real zarith.
unfold Rabs in |- *; case (Rcase_abs r); auto with real.
intros H'0; Contradict H'0; auto with real.
Qed.
 
Theorem boundRrOpp : forall r : R, boundR r = boundR (- r).
intros R; unfold boundR in |- *.
rewrite Rabs_Ropp; auto.
Qed.
 
Theorem boundRCorrect2 : forall r : R, (Fopp (boundR r) < r)%R.
intros r; case (Rle_or_lt r 0); intros H'.
rewrite boundRrOpp.
pattern r at 2 in |- *; rewrite <- (Ropp_involutive r).
unfold FtoRradix in |- *; rewrite Fopp_correct.
apply Ropp_lt_contravar; apply boundRCorrect1; auto.
apply Rle_lt_trans with 0%R; auto.
replace 0%R with (-0)%R; auto with real.
unfold FtoRradix in |- *; rewrite Fopp_correct.
apply Ropp_le_contravar.
unfold boundR, boundNat, FtoRradix, FtoR in |- *; simpl in |- *;
 auto with real zarith.
rewrite Rmult_1_l; apply Rlt_le; auto with real zarith arith.
Qed.
(* A function that returns a list containing all the bounded smaller than a given real *)
 
Definition mBFloat (p : R) :=
  map (fun p : Z * Z => Float (fst p) (snd p))
    (mProd Z Z (Z * Z)
       (mZlist (- pPred (vNum b)) (pPred (vNum b)))
       (mZlist (- dExp b) (Fexp (boundR p)))).
 
Theorem mBFadic_correct1 :
 forall (r : R) (q : float),
 ~ is_Fzero q ->
 (Fopp (boundR r) < q)%R ->
 (q < boundR r)%R -> Fbounded b q -> In q (mBFloat r).
intros r q.
case (Zle_or_lt (Fexp (boundR r)) (Fexp q)); intros H'.
intros H'0 H'1 H'2 H'3; case H'0.
apply is_Fzero_rep2 with (radix := radix); auto.
rewrite <-
 FshiftCorrect with (n := Zabs_nat (Fexp q - Fexp (boundR r))) (x := q);
 auto with arith.
apply is_Fzero_rep1 with (radix := radix).
unfold is_Fzero in |- *.
cut (forall p : Z, (- 1%nat < p)%Z -> (p < 1%nat)%Z -> p = 0%Z);
 [ intros tmp; apply tmp | idtac ].
replace (- 1%nat)%Z with (Fnum (Fopp (boundR r))).
apply Rlt_Fexp_eq_Zlt with (radix := radix); auto with real zarith.
rewrite FshiftCorrect; auto.
unfold Fshift in |- *; simpl in |- *.
rewrite (fun x y => inj_abs (x - y)); auto with zarith.
simpl in |- *; auto.
replace (Z_of_nat 1) with (Fnum (boundR r)).
apply Rlt_Fexp_eq_Zlt with (radix := radix); auto with zarith.
rewrite FshiftCorrect; auto.
unfold Fshift in |- *; simpl in |- *.
rewrite inj_abs; auto with zarith.
generalize H'; simpl in |- *; auto with zarith.
simpl in |- *; auto.
intros p0; case p0; simpl in |- *; auto with zarith.
intros H'0 H'1 H'2 H'3; unfold mBFloat in |- *.
replace q with
 ((fun p : Z * Z => Float (fst p) (snd p)) (Fnum q, Fexp q)).
apply in_map with (f := fun p : Z * Z => Float (fst p) (snd p));
 auto.
apply mProd_correct; auto.
apply mZlist_correct; auto with float.
apply Zle_Zabs_inv1; auto with float.
unfold pPred in |- *; apply Zle_Zpred; auto with float.
apply Zle_Zabs_inv2; auto with float.
unfold pPred in |- *; apply Zle_Zpred; auto with float.
apply mZlist_correct; auto with float.
auto with zarith.
case q; simpl in |- *; auto with zarith.
Qed.
 
Theorem mBFadic_correct2 : forall r : R, In (boundR r) (mBFloat r).
intros r; unfold mBFloat in |- *.
replace (boundR r) with
 ((fun p : Z * Z => Float (fst p) (snd p))
    (Fnum (boundR r), Fexp (boundR r))).
apply in_map with (f := fun p : Z * Z => Float (fst p) (snd p));
 auto.
apply mProd_correct; auto.
apply mZlist_correct; auto.
unfold boundR, boundNat in |- *; simpl in |- *; auto with zarith.
apply Zle_trans with (- (0))%Z; auto with zarith.
apply Zle_Zopp; unfold pPred in |- *; apply Zle_Zpred; simpl in |- *.
apply Zlt_trans with 1%Z; auto with zarith.
apply vNumbMoreThanOne with (3 := pGivesBound); auto.
unfold boundR, boundNat in |- *; simpl in |- *; auto with zarith.
unfold pPred in |- *; apply Zle_Zpred; simpl in |- *.
unfold boundR, boundNat in |- *; simpl in |- *; auto with zarith.
apply vNumbMoreThanOne with (3 := pGivesBound); auto.
apply mZlist_correct; auto.
unfold boundR, boundNat in |- *; simpl in |- *; auto with zarith.
apply Zle_trans with 0%Z; auto with zarith arith.
case (dExp b); auto with zarith.
case (boundR r); simpl in |- *; auto with zarith.
case (boundR r); simpl in |- *; auto with zarith.
Qed.
 
Theorem mBFadic_correct3 : forall r : R, In (Fopp (boundR r)) (mBFloat r).
intros r; unfold mBFloat in |- *.
replace (Fopp (boundR r)) with
 ((fun p : Z * Z => Float (fst p) (snd p))
    (Fnum (Fopp (boundR r)), Fexp (Fopp (boundR r)))).
apply in_map with (f := fun p : Z * Z => Float (fst p) (snd p));
 auto.
apply mProd_correct; auto.
apply mZlist_correct; auto.
unfold boundR, boundNat in |- *; simpl in |- *; auto with zarith.
replace (-1)%Z with (- Z_of_nat 1)%Z; auto with zarith.
apply Zle_Zopp.
unfold pPred in |- *; apply Zle_Zpred; simpl in |- *.
apply (vNumbMoreThanOne radix) with (precision := precision);
 auto with zarith.
unfold pPred in |- *; apply Zle_Zpred; simpl in |- *.
red in |- *; simpl in |- *; auto.
apply mZlist_correct; auto.
unfold boundR, boundNat in |- *; simpl in |- *; auto with zarith.
apply Zle_trans with 0%Z; auto with zarith.
case (dExp b); auto with zarith.
case (boundR r); simpl in |- *; auto with zarith.
case (boundR r); simpl in |- *; auto with zarith.
Qed.
 
Theorem mBFadic_correct4 :
 forall r : R, In (Float 0%nat (- dExp b)) (mBFloat r).
intros p; unfold mBFloat in |- *.
replace (Float 0%nat (- dExp b)) with
 ((fun p : Z * Z => Float (fst p) (snd p))
    (Fnum (Float 0%nat (- dExp b)), Fexp (Float 0%nat (- dExp b)))).
apply in_map with (f := fun p : Z * Z => Float (fst p) (snd p));
 auto.
apply mProd_correct; auto.
apply mZlist_correct; auto.
simpl in |- *; auto with zarith.
replace 0%Z with (- (0))%Z; [ idtac | simpl in |- *; auto ].
apply Zle_Zopp; unfold pPred in |- *; apply Zle_Zpred.
red in |- *; simpl in |- *; auto with zarith.
simpl in |- *; auto with zarith.
unfold pPred in |- *; apply Zle_Zpred.
red in |- *; simpl in |- *; auto with zarith.
apply mZlist_correct; auto.
simpl in |- *; auto with zarith.
unfold boundR, boundNat in |- *; simpl in |- *; auto with zarith.
apply Zle_trans with 0%Z; auto with zarith.
case (dExp b); auto with zarith.
simpl in |- *; auto with zarith.
Qed.
 
Theorem mBPadic_Fbounded :
 forall (p : float) (r : R), In p (mBFloat r) -> Fbounded b p.
intros p r H'; red in |- *; repeat (split; auto).
apply Zpred_Zle_Zabs_intro.
apply mZlist_correct_rev1 with (q := Zpred (Zpos (vNum b)));
 auto with real.
apply
 mProd_correct_rev1
  with
    (l2 := mZlist (- dExp b) (Fexp (boundR r)))
    (C := (Z * Z)%type)
    (b := Fexp p); auto.
apply
 in_map_inv with (f := fun p : Z * Z => Float (fst p) (snd p));
 auto.
intros a1 b1; case a1; case b1; simpl in |- *.
intros z z0 z1 z2 H'0; inversion H'0; auto.
generalize H'; case p; auto.
apply mZlist_correct_rev2 with (p := (- Zpred (Zpos (vNum b)))%Z);
 auto.
apply
 mProd_correct_rev1
  with
    (l2 := mZlist (- dExp b) (Fexp (boundR r)))
    (C := (Z * Z)%type)
    (b := Fexp p); auto.
apply
 in_map_inv with (f := fun p : Z * Z => Float (fst p) (snd p));
 auto.
intros a1 b1; case a1; case b1; simpl in |- *.
intros z z0 z1 z2 H'0; inversion H'0; auto.
generalize H'; case p; auto.
apply mZlist_correct_rev1 with (q := Fexp (boundR r)); auto.
apply
 mProd_correct_rev2
  with
    (l1 := mZlist (- pPred (vNum b)) (pPred (vNum b)))
    (C := (Z * Z)%type)
    (a := Fnum p); auto.
apply
 in_map_inv with (f := fun p : Z * Z => Float (fst p) (snd p));
 auto.
intros a1 b1; case a1; case b1; simpl in |- *.
intros z z0 z1 z2 H'0; inversion H'0; auto.
generalize H'; case p; auto.
Qed.
(* Some general properties of rounded predicate :
   -Projector A bounded is rounded to something equal to itself 
  - Monotone : the rounded predicate is monotone *)
 
Definition ProjectorP (P : R -> float -> Prop) :=
  forall p q : float, Fbounded b p -> P p q -> p = q :>R.
 
Definition MonotoneP (P : R -> float -> Prop) :=
  forall (p q : R) (p' q' : float),
  (p < q)%R -> P p p' -> P q q' -> (p' <= q')%R.
(* What it is to be a minimum*)
 
Definition isMin (r : R) (min : float) :=
  Fbounded b min /\
  (min <= r)%R /\
  (forall f : float, Fbounded b f -> (f <= r)%R -> (f <= min)%R).
(* Min is a projector *)
 
Theorem isMin_inv1 : forall (p : float) (r : R), isMin r p -> (p <= r)%R.
intros p r H; case H; intros H1 H2; case H2; auto.
Qed.
 
Theorem ProjectMin : ProjectorP isMin.
red in |- *.
intros p q H' H'0; apply Rle_antisym.
elim H'0; intros H'1 H'2; elim H'2; intros H'3 H'4; apply H'4; clear H'2;
 auto with real.
apply isMin_inv1 with (1 := H'0); auto.
Qed.
(* It is monotone *)
 
Theorem MonotoneMin : MonotoneP isMin.
red in |- *.
intros p q p' q' H' H'0 H'1.
elim H'1; intros H'2 H'3; elim H'3; intros H'4 H'5; apply H'5; clear H'3 H'1;
 auto.
case H'0; auto.
apply Rle_trans with p; auto.
apply isMin_inv1 with (1 := H'0); auto.
apply Rlt_le; auto.
Qed.
(* What it is to be a maximum *)
 
Definition isMax (r : R) (max : float) :=
  Fbounded b max /\
  (r <= max)%R /\
  (forall f : float, Fbounded b f -> (r <= f)%R -> (max <= f)%R).
(* It is a projector *)
 
Theorem isMax_inv1 : forall (p : float) (r : R), isMax r p -> (r <= p)%R.
intros p r H; case H; intros H1 H2; case H2; auto.
Qed.
 
Theorem ProjectMax : ProjectorP isMax.
red in |- *.
intros p q H' H'0; apply Rle_antisym.
apply isMax_inv1 with (1 := H'0); auto.
elim H'0; intros H'1 H'2; elim H'2; intros H'3 H'4; apply H'4; clear H'2;
 auto with real.
Qed.
(* It is monotone *)
 
Theorem MonotoneMax : MonotoneP isMax.
red in |- *.
intros p q p' q' H' H'0 H'1.
elim H'0; intros H'2 H'3; elim H'3; intros H'4 H'5; apply H'5; clear H'3 H'0.
case H'1; auto.
apply Rle_trans with q; auto.
apply Rlt_le; auto.
apply isMax_inv1 with (1 := H'1); auto.
Qed.
(* Minimun is defined upto equality *)
 
Theorem MinEq :
 forall (p q : float) (r : R), isMin r p -> isMin r q -> p = q :>R.
intros p q r H' H'0; apply Rle_antisym.
elim H'0; intros H'1 H'2; elim H'2; intros H'3 H'4; apply H'4; clear H'2 H'0;
 auto.
case H'; auto.
apply isMin_inv1 with (1 := H'); auto.
elim H'; intros H'1 H'2; elim H'2; intros H'3 H'4; apply H'4; clear H'2 H';
 auto.
case H'0; auto.
apply isMin_inv1 with (1 := H'0); auto.
Qed.
(* Maximum is defined upto equality *)
 
Theorem MaxEq :
 forall (p q : float) (r : R), isMax r p -> isMax r q -> p = q :>R.
intros p q r H' H'0; apply Rle_antisym.
elim H'; intros H'1 H'2; elim H'2; intros H'3 H'4; apply H'4; clear H'2 H';
 auto.
case H'0; auto.
apply isMax_inv1 with (1 := H'0); auto.
elim H'0; intros H'1 H'2; elim H'2; intros H'3 H'4; apply H'4; clear H'2 H'0;
 auto.
case H'; auto.
apply isMax_inv1 with (1 := H'); auto.
Qed.
(* Min and Max are related *)
 
Theorem MinOppMax :
 forall (p : float) (r : R), isMin r p -> isMax (- r) (Fopp p).
intros p r H'; split.
apply oppBounded; case H'; auto.
split.
unfold FtoRradix in |- *; rewrite Fopp_correct.
apply Ropp_le_contravar; apply isMin_inv1 with (1 := H'); auto.
intros f H'0 H'1.
rewrite <- (Fopp_Fopp f).
unfold FtoRradix in |- *; rewrite Fopp_correct; rewrite Fopp_correct.
apply Ropp_le_contravar.
elim H'.
intros H'2 H'3; elim H'3; intros H'4 H'5; apply H'5; clear H'3.
apply oppBounded; case H'; auto.
rewrite <- (Ropp_involutive r).
unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real.
Qed.
(* Max and Min are related *)
 
Theorem MaxOppMin :
 forall (p : float) (r : R), isMax r p -> isMin (- r) (Fopp p).
intros p r H'; split.
apply oppBounded; case H'; auto.
split.
unfold FtoRradix in |- *; rewrite Fopp_correct.
apply Ropp_le_contravar; apply isMax_inv1 with (1 := H'); auto.
intros f H'0 H'1.
rewrite <- (Fopp_Fopp f).
unfold FtoRradix in |- *; repeat rewrite Fopp_correct.
apply Ropp_le_contravar.
rewrite <- (Fopp_correct radix f).
elim H'.
intros H'2 H'3; elim H'3; intros H'4 H'5; apply H'5; clear H'3.
apply oppBounded; auto.
rewrite <- (Ropp_involutive r).
unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real.
Qed.
(* If I have a strict min I can get a max using FNSucc *)
 
Theorem MinMax :
 forall (p : float) (r : R),
 isMin r p -> r <> p :>R -> isMax r (FNSucc b radix precision p).
intros p r H' H'0.
split.
apply FcanonicBound with (radix := radix); auto with float.
apply FNSuccCanonic; auto.
inversion H'; auto.
split.
case (Rle_or_lt (FNSucc b radix precision p) r); intros H'2; auto.
absurd (FNSucc b radix precision p <= p)%R.
apply Rlt_not_le.
unfold FtoRradix in |- *; apply FNSuccLt; auto.
inversion H'; auto.
elim H0; intros H'1 H'3; apply H'3; auto.
apply FcanonicBound with (radix := radix); auto with float.
apply Rlt_le; auto.
intros f H'2 H'3.
replace (FtoRradix f) with (FtoRradix (Fnormalize radix b precision f)).
unfold FtoRradix in |- *; apply FNSuccProp; auto.
inversion H'; auto.
apply FcanonicBound with (radix := radix); auto with float.
apply Rlt_le_trans with r; auto.
case (Rle_or_lt r p); auto.
intros H'4; Contradict H'0.
apply Rle_antisym; auto; apply isMin_inv1 with (1 := H'); auto.
rewrite FnormalizeCorrect; auto.
unfold FtoRradix in |- *; apply FnormalizeCorrect; auto.
Qed.
(* Find a minimun in a given list if it exists *)
 
Theorem MinExList :
 forall (r : R) (L : list float),
 (forall f : float, In f L -> (r < f)%R) \/
 (exists min : float,
    In min L /\
    (min <= r)%R /\ (forall f : float, In f L -> (f <= r)%R -> (f <= min)%R)).
intros r L; elim L; simpl in |- *; auto.
left; intros f H'; elim H'.
intros a l H'.
elim H';
 [ intros H'0; clear H'
 | intros H'0; elim H'0; intros min E; elim E; intros H'1 H'2; elim H'2;
    intros H'3 H'4; try exact H'4; clear H'2 E H'0 H' ].
case (Rle_or_lt a r); intros H'1.
right; exists a; repeat split; auto.
intros f H'; elim H';
 [ intros H'2; rewrite <- H'2; clear H' | intros H'2; clear H' ];
 auto with real.
intros H'; Contradict H'; auto with real.
apply Rlt_not_le; auto with real.
left; intros f H'; elim H';
 [ intros H'2; rewrite <- H'2; clear H' | intros H'2; clear H' ]; 
 auto.
case (Rle_or_lt a min); intros H'5.
right; exists min; repeat split; auto.
intros f H'; elim H';
 [ intros H'0; rewrite <- H'0; clear H' | intros H'0; clear H' ]; 
 auto.
case (Rle_or_lt a r); intros H'6.
right; exists a; repeat split; auto.
intros f H'; elim H';
 [ intros H'0; rewrite <- H'0; clear H' | intros H'0; clear H' ];
 auto with real.
intros H'; apply Rle_trans with (FtoRradix min); auto with real.
right; exists min; split; auto; split; auto.
intros f H'; elim H';
 [ intros H'0; elim H'0; clear H' | intros H'0; clear H' ]; 
 auto.
intros H'; Contradict H'6; auto with real.
apply Rle_not_lt; auto.
Qed.
 
Theorem MinEx : forall r : R, exists min : float, isMin r min.
intros r.
case (MinExList r (mBFloat r)).
intros H'0; absurd (Fopp (boundR r) <= r)%R; auto.
apply Rlt_not_le.
apply H'0.
apply mBFadic_correct3; auto.
(* A minimum always exists *)
apply Rlt_le.
apply boundRCorrect2; auto.
intros H'0; elim H'0; intros min E; elim E; intros H'1 H'2; elim H'2;
 intros H'3 H'4; clear H'2 E H'0.
exists min; split; auto.
apply mBPadic_Fbounded with (r := r); auto.
split; auto.
intros f H'0 H'2.
case (Req_dec f 0); intros H'6.
replace (FtoRradix f) with (FtoRradix (Float 0%nat (- dExp b))).
apply H'4; auto.
apply mBFadic_correct4; auto.
replace (FtoRradix (Float 0%nat (- dExp b))) with (FtoRradix f); auto.
rewrite H'6.
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto with real.
rewrite H'6.
unfold FtoRradix, FtoR in |- *; simpl in |- *; auto with real.
case (Rle_or_lt f (Fopp (boundR r))); intros H'5.
apply Rle_trans with (FtoRradix (Fopp (boundR r))); auto.
apply H'4; auto.
apply mBFadic_correct3; auto.
apply Rlt_le.
apply boundRCorrect2; auto.
case (Rle_or_lt (boundR r) f); intros H'7.
Contradict H'2; apply Rlt_not_le.
apply Rlt_le_trans with (FtoRradix (boundR r)); auto.
apply boundRCorrect1; auto.
apply H'4; auto.
apply mBFadic_correct1; auto.
Contradict H'6; unfold FtoRradix in |- *; apply is_Fzero_rep1; auto.
Qed.
 
Theorem MaxEx : forall r : R, exists max : float, isMax r max.
intros r; case (MinEx r).
intros x H'.
case (Req_dec x r); intros H'1.
exists x.
rewrite <- H'1.
red in |- *; split; [ case H' | split ]; auto with real.
(* A maximum always exists *)
exists (FNSucc b radix precision x).
apply MinMax; auto.
Qed.
 
Theorem MinBinade :
 forall (r : R) (p : float),
 Fbounded b p ->
 (p <= r)%R -> (r < FNSucc b radix precision p)%R -> isMin r p.
intros r p H' H'0 H'1.
split; auto.
split; auto.
intros f H'2 H'3.
case (Rle_or_lt f p); auto; intros H'5.
Contradict H'3.
(* If we are between a bound and its successor, it is our minimum *)
apply Rlt_not_le.
apply Rlt_le_trans with (1 := H'1); auto with real.
replace (FtoRradix f) with (FtoRradix (Fnormalize radix b precision f)).
unfold FtoRradix in |- *; apply FNSuccProp; auto; try apply FnormalizeCanonic;
 auto.
unfold FtoRradix in |- *; repeat rewrite FnormalizeCorrect; auto with real.
apply FcanonicBound with (radix := radix); auto.
apply FnormalizeCanonic; auto.
unfold FtoRradix in |- *; rewrite FnormalizeCorrect; auto with real.
unfold FtoRradix in |- *; rewrite FnormalizeCorrect; auto with real.
Qed.
 
Theorem FminRep :
 forall p q : float,
 isMin p q -> exists m : Z, q = Float m (Fexp p) :>R.
intros p q H'.
replace (FtoRradix q) with (FtoRradix (Fnormalize radix b precision q)).
2: unfold FtoRradix in |- *; apply FnormalizeCorrect; auto.
case (Zle_or_lt (Fexp (Fnormalize radix b precision q)) (Fexp p)); intros H'1.
exists (Fnum p).
unfold FtoRradix in |- *; apply FSuccZleEq with (3 := pGivesBound); auto.
(* A min of a float is always represnetable with the same exposant *)
replace (Float (Fnum p) (Fexp p)) with p; [ idtac | case p ]; auto.
replace (FtoR radix (Fnormalize radix b precision q)) with (FtoR radix q);
 [ idtac | rewrite FnormalizeCorrect ]; auto.
apply isMin_inv1 with (1 := H'); auto.
replace (FSucc b radix precision (Fnormalize radix b precision q)) with
 (FNSucc b radix precision q); [ idtac | case p ]; 
 auto.
replace (Float (Fnum p) (Fexp p)) with p; [ idtac | case p ]; auto.
case (Req_dec p q); intros Eq0.
unfold FtoRradix in Eq0; rewrite Eq0.
apply FNSuccLt; auto.
case (MinMax q p); auto.
intros H'2 H'3; elim H'3; intros H'4 H'5; clear H'3.
case H'4; auto.
intros H'0; absurd (p <= q)%R; rewrite H'0; auto.
apply Rlt_not_le; auto.
unfold FtoRradix in |- *; apply FNSuccLt; auto.
inversion H'.
elim H0; intros H'3 H'6; apply H'6; clear H0; auto.
rewrite <- H'0; auto with real.
exists
 (Fnum
    (Fshift radix (Zabs_nat (Fexp (Fnormalize radix b precision q) - Fexp p))
       (Fnormalize radix b precision q))).
pattern (Fexp p) at 2 in |- *;
 replace (Fexp p) with
  (Fexp
     (Fshift radix
        (Zabs_nat (Fexp (Fnormalize radix b precision q) - Fexp p))
        (Fnormalize radix b precision q))).
unfold FtoRradix in |- *;
 rewrite <-
  FshiftCorrect
                with
                (n := 
                  Zabs_nat (Fexp (Fnormalize radix b precision q) - Fexp p))
               (x := Fnormalize radix b precision q).
case
 (Fshift radix (Zabs_nat (Fexp (Fnormalize radix b precision q) - Fexp p))
    (Fnormalize radix b precision q)); auto.
auto with arith.
simpl in |- *; rewrite inj_abs; auto with zarith.
Qed.
 
Theorem MaxBinade :
 forall (r : R) (p : float),
 Fbounded b p ->
 (r <= p)%R -> (FNPred b radix precision p < r)%R -> isMax r p.
intros r p H' H'0 H'1.
rewrite <- (Ropp_involutive r).
rewrite <- (Fopp_Fopp p).
apply MinOppMax.
apply MinBinade; auto with real float.
unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real.
(* Same for max *)
rewrite <- (Fopp_Fopp (FNSucc b radix precision (Fopp p))).
rewrite <- FNPredFopFNSucc; auto.
unfold FtoRradix in |- *; rewrite Fopp_correct; auto with real arith.
Qed.
 
Theorem MaxMin :
 forall (p : float) (r : R),
 isMax r p -> r <> p :>R -> isMin r (FNPred b radix precision p).
intros p r H' H'0.
rewrite <- (Fopp_Fopp (FNPred b radix precision p)).
rewrite <- (Ropp_involutive r).
apply MaxOppMin.
rewrite FNPredFopFNSucc; auto.
rewrite Fopp_Fopp; auto.
(* Taking the pred of a max we get a min *)
apply MinMax; auto.
apply MaxOppMin; auto.
Contradict H'0.
rewrite <- (Ropp_involutive r); rewrite H'0; auto; unfold FtoRradix in |- *;
 rewrite Fopp_correct; auto; apply Ropp_involutive.
Qed.
 
Theorem FmaxRep :
 forall p q : float,
 isMax p q -> exists m : Z, q = Float m (Fexp p) :>R.
intros p q H'; case (FminRep (Fopp p) (Fopp q)).
unfold FtoRradix in |- *; rewrite Fopp_correct.
apply MaxOppMin; auto.
intros x H'0.
exists (- x)%Z.
rewrite <- (Ropp_involutive (FtoRradix q)).
(* The max of a float can be represented with the same exposant *)
unfold FtoRradix in |- *; rewrite <- Fopp_correct.
unfold FtoRradix in H'0; rewrite H'0.
unfold FtoR in |- *; simpl in |- *; auto with real.
rewrite Ropp_Ropp_IZR; rewrite Ropp_mult_distr_l_reverse; auto.
Qed.
 
End FMinMax.
Hint Resolve ProjectMax MonotoneMax MinOppMax MaxOppMin MinMax MinBinade
  MaxBinade MaxMin: float.