1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
/* Hierarchy Builder: algebraic hierarchies made easy
This software is released under the terms of the MIT license */
shorten coq.{ term->gref, subst-fun, safe-dest-app, mk-app, mk-eta, subst-prod }.
%%%%%%%%% HB database %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
func from_factory prop -> factoryname.
from_factory (from X _ _) X.
func from_mixin prop -> mixinname.
from_mixin (from _ X _) X.
func from_builder prop -> term.
from_builder (from _ _ X) (global X).
func mixin-src_mixin prop -> mixinname.
mixin-src_mixin (mixin-src _ M _) M.
func mixin-src_src prop -> term.
mixin-src_src (mixin-src _ _ S) S.
func local-canonical-gref prop -> constant.
local-canonical-gref (local-canonical C) C.
func class_name hbclass -> classname.
class_name (class N _ _) N.
func class_structure hbclass -> structure.
class_structure (class _ S _) S.
func class-def_name prop -> classname.
class-def_name (class-def (class N _ _)) N.
func mixin-class_class prop -> classname.
mixin-class_class (mixin-class _ C) C.
func mixin-class_mixin prop -> mixinname.
mixin-class_mixin (mixin-class M _) M.
func classname->def classname -> hbclass.
classname->def CN (class CN S ML) :- class-def (class CN S ML), !.
func classname->mixins classname -> mixins.
classname->mixins CN MLwP :- class-def (class CN _ MLwP), !.
func module-to-export_module prop -> modpath.
module-to-export_module (module-to-export _ _ M) M.
func module-to-export_module-nice prop -> id.
module-to-export_module-nice (module-to-export _ M _) M.
func instance-to-export_instance prop -> constant.
instance-to-export_instance (instance-to-export _ _ M) M.
func instance-to-export_instance-nice prop -> id.
instance-to-export_instance-nice (instance-to-export _ M _) M.
func abbrev-to-export_name prop -> id.
abbrev-to-export_name (abbrev-to-export _ N _) N.
func abbrev-to-export_body prop -> term.
abbrev-to-export_body (abbrev-to-export _ _ B) (global B).
func clause-to-export_clause prop -> prop.
clause-to-export_clause (clause-to-export _ C) C.
func extract-builder prop -> builder.
extract-builder (builder-decl B) B.
func leq-builder builder, builder ->.
leq-builder (builder N _ _ _) (builder M _ _ _) :- N =< M.
func sub-class? hbclass, hbclass ->.
sub-class? (class C1 _ ML1P) (class C2 _ ML2P) :-
not (C1 = C2),
list-w-params_list ML1P ML1,
list-w-params_list ML2P ML2,
std.forall ML2 (m2\ std.exists! ML1 (m1\ m1 = m2)).
% [factory-provides F MLwP] computes the mixins MLwP generated by F
func factory-provides factoryname -> mixins.
factory-provides FactoryAlias MLwP :- std.do! [
std.assert-ok! (factory-alias->gref FactoryAlias Factory) "HB",
gref->deps Factory RMLwP,
w-params.map RMLwP (factory-provides.base Factory) MLwP
].
func mixin->factories mixinname -> list factoryname.
mixin->factories M FL :- std.do! [
std.findall (from F_ M B_) AllF,
std.map AllF from_factory FL
].
:index(1)
func factory-provides.base factoryname, list term, term,
list (w-args mixinname) -> list (w-args mixinname).
factory-provides.base Factory Params T _RMLwP MLwP :- std.do! [
std.findall (from Factory T_ F_) All,
std.map All from_mixin ML,
std.map All from_builder BL,
std.map2 BL ML (factory-provides.one Params T) MLwP,
].
func factory-provides.one list term, term, term, mixinname -> w-args mixinname.
factory-provides.one Params T B M (triple M PL T) :- std.do! [
std.assert-ok! (coq.typecheck B Ty) "Builder illtyped",
subst-prod [T] {subst-prod Params Ty} TyParams,
std.assert! (extract-conclusion-params T TyParams PL) "The conclusion of a builder is a mixin whose parameters depend on other mixins",
].
func extract-conclusion-params term, term -> list term.
extract-conclusion-params TheType (prod _ S T) R :- !,
@pi-decl _ S x\ extract-conclusion-params TheType (T x) R.
extract-conclusion-params TheType (app [global GR|Args]) R :- !, std.do! [
std.assert-ok! (factory-alias->gref GR Factory) "HB",
factory->nparams Factory NP,
std.map Args (copy-pack-holes TheType TheType) NewArgs,
std.take NP NewArgs R].
extract-conclusion-params TheType T R :- whd1 T T1, !, extract-conclusion-params TheType T1 R.
% [factories-provide FL ML] computes the mixins ML generated by all F in FL
%
% cons tp p\ nil t\ [pr f1 [p,t]]
% f1 p t = m1 t, m2 p t
% cons tp p\ nil t\ [pr m1 [t], pr m2 [p,t]]
func factories-provide list-w-params factoryname -> mixins.
factories-provide FLwP MLwP :-
list-w-params.flatten-map FLwP factory-provides UnsortedMLwP,
w-params.map UnsortedMLwP (p\t\ toposort-mixins) MLwP.
func undup-grefs list gref -> list gref.
undup-grefs L UL :-
coq.gref.list->set L S,
coq.gref.set.elements S UL.
func undup-sorts list sort -> list sort.
undup-sorts L R :-
if (std.mem L prop) (R1 = [prop]) (R1 = []),
if (std.mem L sprop) (R2 = [sprop]) (R2 = []),
if (std.mem L (typ _)) (R3 = [typ _]) (R3 = []),
std.flatten [R1, R2, R3] R.
% also prunes cs-default
func undup-cs-patterns list cs-pattern -> list cs-pattern.
undup-cs-patterns L R :-
std.map-filter L (x\r\ x = cs-gref r) LGR,
undup-grefs LGR ULGR,
std.map ULGR (x\r\ r = cs-gref x) R1,
std.map-filter L (x\r\ x = cs-sort r) LS,
undup-sorts LS ULS,
std.map ULS (x\r\ r = cs-sort x) R2,
if (std.mem L cs-prod) (R3 = [cs-prod]) (R3 = []),
std.flatten [R1, R2, R3] R.
% Mixins can be topologically sorted according to their dependencies
func toposort-mixins list (w-args mixinname) -> list (w-args mixinname).
toposort-mixins In Out :-
std.map In triple_1 ML,
std.map ML (m\r\sigma D D1\ gref->deps m D1, list-w-params_list D1 D, std.map D (d\r\r = pr d m) r) ES2,
std.flatten ES2 ES,
toposort-proj triple_1 ES In Out.
func toposort-proj (func A -> gref), list (pair gref gref), list A -> list A.
toposort-proj Proj ES In Out :- !, toposort-proj.acc Proj ES [] In Out.
func topo-find B -> A.
func toposort-proj.acc (pred i:A, o:gref), list (pair gref gref), list gref, list A -> list A.
toposort-proj.acc _ ES Acc [] Out :- !,
std.map {std.gref.toposort ES Acc} topo-find Out, !.
toposort-proj.acc Proj ES Acc [A|In] Out :- std.do![
Proj A B,
topo-find B A => toposort-proj.acc Proj ES [B|Acc] In Out
].
% Classes can be topologically sorted according to the subclass relation
func toposort-classes.mk-class-edge prop -> pair classname classname.
toposort-classes.mk-class-edge (sub-class C1 C2 _ _) (pr C2 C1).
func toposort-classes list classname -> list classname.
toposort-classes In Out :- std.do! [
std.findall (sub-class C1_ C2_ _ _) SubClasses,
std.map SubClasses toposort-classes.mk-class-edge ES,
std.gref.toposort ES In Out,
].
func findall-classes -> list hbclass.
findall-classes CLSortedDef :- std.do! [
std.findall (class-def C_) All,
std.map All class-def_name CL,
toposort-classes CL CLSorted,
std.map CLSorted classname->def CLSortedDef,
].
func findall-classes-for.unsorted
list mixinname, list classname -> list classname.
findall-classes-for.unsorted [] CL CL :- !.
findall-classes-for.unsorted [M|ML] CLAcc Out :- std.do! [
std.findall (mixin-class M C_) All,
std.map All mixin-class_class CL,
findall-classes-for.unsorted ML {std.append CL CLAcc} Out
].
func findall-classes-for list mixinname -> list hbclass.
findall-classes-for ML CLSortedDef :- std.do! [
findall-classes-for.unsorted ML [] CL,
toposort-classes CL CLSorted,
std.map CLSorted classname->def CLSortedDef,
].
func findall-builders -> list builder.
findall-builders LFIL :-
std.map {std.findall (builder-decl B_)} extract-builder LFILunsorted,
std.bubblesort LFILunsorted leq-builder LFIL.
func findall-has-mixin-instance cs-pattern -> list prop.
findall-has-mixin-instance P CL :-
std.findall (has-mixin-instance P _ _) CL.
func has-mixin-instance_key prop -> cs-pattern.
has-mixin-instance_key (has-mixin-instance P _ _) P.
func findall-mixin-src term -> list mixinname.
findall-mixin-src T ML :-
std.map {std.findall (mixin-src T M_ V_)} mixin-src_mixin ML.
func findall-factory->constructor -> list prop.
findall-factory->constructor L :-
std.map {std.findall (findall-factory->constructor.aux _)} findall-factory->constructor.make L.
func findall-factory->constructor.aux -> prop.
findall-factory->constructor.aux (factory->constructor F C) :-
is-factory F, !, factory->constructor F C.
func findall-factory->constructor.make prop -> prop.
findall-factory->constructor.make (findall-factory->constructor.aux P) P.
func findall-local-canonical -> list constant.
findall-local-canonical CL :-
std.map {std.findall (local-canonical C_)} local-canonical-gref CL.
% [distinct-pairs-below C AllSuper C1 C2] finds C1 and C2 in
% AllSuper (all super classes of C) such that C1 != C2
% and for which there is no join C3.
% If there exists a join C3 of C1 and C2 then C is a subclass
% of C3 (otherwise C should have been declared before C3)
%
% / --- /-- C1
% C -- no C3 !=
% \ --- \-- C2
%
% [findall-newjoins C AllSuper] finds all C1 and C2 such that C is a (new) join for
% them
pred distinct-pairs-below i:hbclass, i:list hbclass, o:hbclass, o:hbclass.
distinct-pairs-below CurrentClass AllSuper C1 C2 :-
std.mem AllSuper C1, std.mem AllSuper C2,
% no cut until here, since we don't know which C1 and C2 to pick
std.do! [
cmp_term C1 C2 lt,
C1 = class C1n _ _,
C2 = class C2n _ _ ,
not(sub-class? C1 C2),
not(sub-class? C2 C1),
if (join C1n C2n C3n)
(assert-building-bottom-up CurrentClass C3n C1n C2n, fail) % a join, not a valid pair
true, % no join, valid pair
].
pred assert-building-bottom-up i:hbclass, i:classname, i:classname, i:classname.
assert-building-bottom-up CurrentClass C3n C1n C2n :-
class-def (class C3n X Y),
CurrentClass = class CC _ _,
if (not (sub-class? CurrentClass (class C3n X Y)))
(gref->modname CC 1 "." Before, gref->modname_short C3n "." After,
gref->modname_short C1n "." C1nS, gref->modname_short C2n "." C2nS,
Msg1 is "- declare structure " ^ Before ^ " before structure " ^ After ^ " if " ^ After ^ " inherits from it;",
Msg2 is "- declare an additional structure that inherits from both "
^ C1nS ^ " and " ^ C2nS
^ " and from which " ^ Before ^ " and/or " ^ After ^ " inherit.",
coq.error "You must declare the hierarchy bottom-up or add a missing join."
"There are two ways out:"
Msg1
Msg2)
true.
func distinct-pairs_pair prop -> pair hbclass hbclass.
distinct-pairs_pair (distinct-pairs-below _ _ X Y) (pr X Y).
func findall-newjoins hbclass, list hbclass -> list (pair hbclass hbclass).
findall-newjoins CurrentClass AllSuper TodoJoins :-
std.findall (distinct-pairs-below CurrentClass AllSuper C1_ C2_) JoinOf,
std.map JoinOf distinct-pairs_pair TodoJoins.
func class-coverage list classname -> coq.gref.set.
class-coverage CNL CSet :-
std.map CNL classname->mixins CMLLwP,
std.map CMLLwP list-w-params_list CMLL,
coq.gref.list->set {std.flatten CMLL} CSet.
func assert-good-coverage! list mixinname, list classname ->.
assert-good-coverage! MLSortedRev CNL :- std.do! [
coq.gref.list->set MLSortedRev MLSet,
class-coverage CNL CMLSet,
if (not(coq.gref.set.equal MLSet CMLSet))
(coq.gref.set.diff CMLSet MLSet Extra,
coq.error "I could not find classes covering exactly mixins:"
{std.any->string MLSortedRev}
"In particular the covering" CNL "also includes mixins:"
{coq.gref.set.elements Extra}
"This should never happen, please report a bug.")
true
].
%%%%% Coq Database %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% [get-structure-coercion S1 S2 F] finds the coecion F from the structure S1 to S2
func get-structure-coercion structure, structure -> term.
get-structure-coercion S T (global F) :-
coq.coercion.db-for (grefclass S) (grefclass T) L,
if (L = [pr F _]) true (coq.error "No one step coercion from" S "to" T).
func get-structure-sort-projection structure -> term.
get-structure-sort-projection (indt S) Proj :- !,
coq.env.projections S L,
if (L = [some P, _]) true (coq.error "No canonical sort projection for" S),
Proj = global (const P).
get-structure-sort-projection S _ :- coq.error "get-structure-sort-projection: not a structure" S.
func get-structure-class-projection structure -> term.
get-structure-class-projection (indt S) T :- !,
coq.env.projections S L,
if (L = [_, some P]) true (coq.error "No canonical class projection for" S),
T = global (const P).
get-structure-class-projection S _ :- coq.error "get-structure-class-projection: not a structure" S.
func get-constructor gref -> gref.
get-constructor (indt R) (indc K) :- !,
if (coq.env.indt R _ _ _ _ [K] _) true (coq.error "Not a record" R).
get-constructor I _ :- coq.error "get-constructor: not an inductive" I.
% finding for locally defined structures
func get-cs-structure cs-instance -> structure.
get-cs-structure (cs-instance _ _ (const Inst)) Struct :- std.do! [
coq.env.typeof (const Inst) InstTy,
coq.prod-tgt->gref InstTy Struct,
is-structure Struct,
].
func get-cs-instance cs-instance -> constant.
get-cs-instance (cs-instance _ _ (const Inst)) Inst.
func has-cs-instance gref, cs-instance ->.
has-cs-instance GTy (cs-instance _ (cs-gref GTy) _).
func mixin-src->has-mixin-instance prop -> prop.
mixin-src->has-mixin-instance (mixin-src (global GR) M I) (has-mixin-instance (cs-gref GR) M IHd) :-
term->gref I IHd.
mixin-src->has-mixin-instance (mixin-src (app [global GR|_] ) M I) (has-mixin-instance (cs-gref GR) M IHd) :-
term->gref I IHd.
mixin-src->has-mixin-instance (mixin-src (prod _ _ _ ) M I) (has-mixin-instance cs-prod M IHd):-
term->gref I IHd.
mixin-src->has-mixin-instance (mixin-src (sort U) M I) (has-mixin-instance (cs-sort U) M IHd):-
term->gref I IHd.
% this auxiliary function iterates over the list of arguments of an application,
% and create the necessary unify condition for each arguments
% and at the end returns the mixin-src clause with all the conditions
func mixin-instance-type->mixin-src.aux
list term, % list of arguments
term, % head of the original application
mixinname, % name of mixin
term, % instance body
list prop % Cond list
-> prop.
mixin-instance-type->mixin-src.aux [] T M I Cond (mixin-src T M I :- Cond).
mixin-instance-type->mixin-src.aux [A|Args] T M I Cond (pi a \ C a) :-
pi a \
sigma Ta\
coq.mk-app T [a] Ta,
mixin-instance-type->mixin-src.aux Args Ta M I [coq.unify-eq A a ok|Cond] (C a).
% transforms the type of a mixin instance into a
% mixin-src clause with eventual conditions regarding its parameters
:index (1)
func mixin-instance-type->mixin-src
term, % type of the instance Ty
mixinname, % name of mixin
term, % instance body I of type Ty
list prop % Cond list
-> prop.
mixin-instance-type->mixin-src (app _ as F) M I Cond C :-
factory? F (triple _ _ Subject),
safe-dest-app Subject Hd Args,
mixin-instance-type->mixin-src.aux Args Hd M I Cond C.
mixin-instance-type->mixin-src (prod N_ _ F) M I Cond (pi a \ C a) :-
pi a\
sigma Ia \
coq.mk-app I [a] Ia,
mixin-instance-type->mixin-src (F a) M Ia Cond (C a).
func has-mixin-instance->mixin-src prop -> prop.
has-mixin-instance->mixin-src (has-mixin-instance _ M IHd) C :- std.do![
T = global IHd,
coq.env.typeof IHd Ty,
mixin-instance-type->mixin-src Ty M T [] C,
].
func get-canonical-structures term -> list structure.
get-canonical-structures TyTrm StructL :- std.do! [
term->cs-pattern TyTrm Pat, !,
coq.CS.db-for _ Pat DBGTyL,
std.map-filter DBGTyL get-cs-structure StructL,
].
func get-canonical-instances term -> list constant.
get-canonical-instances TyTrm StructL :-
term->cs-pattern TyTrm Pat,
coq.CS.db-for _ Pat DBGTyL,
std.map-filter DBGTyL get-cs-instance StructL.
func has-CS-instance? term, structure ->.
has-CS-instance? TyTerm (indt Struct) :-
term->cs-pattern TyTerm Pat,
coq.env.projections Struct [some Proj, _],
coq.CS.db-for (const Proj) Pat L,
not(L = []).
pred structure-nparams i:structure, o:int.
structure-nparams Structure NParams :-
class-def (class Class Structure _),
factory->nparams Class NParams.
func factory? term -> w-args factoryname.
factory? S (triple F Params T) :-
not (var S), !,
safe-dest-app S (global GR) Args,
factory-alias->gref GR F ok,
factory->nparams F NP, !,
std.split-at NP Args Params [T|_].
% [find-max-classes Mixins Classes] states that Classes is a list of classes
% which contain all the mixins in Mixins.
% Although it is not strictly necessary, but desirable for debugging,
% we use a heuristic that tries to minimize the number
% of classes by assuming Mixins are reversed topologically sorted.
% Note: works with flat mixins, no params
pred find-max-classes i:list mixinname, o:list classname.
find-max-classes [] [].
find-max-classes [M|Mixins] [C|Classes] :-
mixin->first-class M C,
std.do! [
class-def (class C _ MLwP),
list-w-params_list MLwP ML,
std.filter Mixins (x\ not (std.mem! ML x)) Mixins',
find-max-classes Mixins' Classes
].
find-max-classes [M|_] _ :- coq.error "HB: cannot find a class containing mixin" M.
|