File: hierarchy_0.v

package info (click to toggle)
coq-hierarchy-builder 1.10.1-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,216 kB
  • sloc: makefile: 132
file content (181 lines) | stat: -rw-r--r-- 5,080 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
From Corelib Require Import ssreflect ssrfun.
From HB Require Import structures.

HB.mixin Record AddComoid_of_TYPE A := {
  zero : A;
  add : A -> A -> A;
  addrA : associative add;
  addrC : commutative add;
  add0r : left_id zero add;
}.
HB.structure Definition AddComoid := { A of AddComoid_of_TYPE A }.

(* Begin change *)

HB.mixin Record AddAG_of_AddComoid A of AddComoid A := {
  opp : A -> A;
  addNr : left_inverse zero opp add;
}.
HB.factory Record AddAG_of_TYPE A := {
  zero : A;
  add : A -> A -> A;
  opp : A -> A;
  addrA : associative add;
  addrC : commutative add;
  add0r : left_id zero add;
  addNr : left_inverse zero opp add;
}.

HB.builders Context A (a : AddAG_of_TYPE A).

  HB.instance
  Definition to_AddComoid_of_TYPE :=
    AddComoid_of_TYPE.Build A zero add addrA addrC add0r.

  HB.instance
  Definition to_AddAG_of_AddComoid :=
    AddAG_of_AddComoid.Build A _ addNr.

HB.end.
HB.structure Definition AddAG := { A of AddAG_of_TYPE A }.

HB.mixin Record Ring_of_AddAG A of AddAG A := {
  one : A;
  mul : A -> A -> A;
  mulrA : associative mul;
  mul1r : left_id one mul;
  mulr1 : right_id one mul;
  mulrDl : left_distributive mul add;
  mulrDr : right_distributive mul add;
}.
HB.factory Record Ring_of_AddComoid A of AddComoid A := {
  opp : A -> A;
  one : A;
  mul : A -> A -> A;
  addNr : left_inverse zero opp add;
  mulrA : associative mul;
  mul1r : left_id one mul;
  mulr1 : right_id one mul;
  mulrDl : left_distributive mul add;
  mulrDr : right_distributive mul add;
}.

HB.builders Context A (a : Ring_of_AddComoid A).

  HB.instance
  Definition to_AddAG_of_AddComoid := AddAG_of_AddComoid.Build A _ addNr.

  HB.instance
  Definition to_Ring_of_AddAG := Ring_of_AddAG.Build A
    _ _ mulrA mul1r mulr1 mulrDl mulrDr.

HB.end.

(* End change *)

HB.factory Record Ring_of_TYPE A := {
  zero : A;
  one : A;
  add : A -> A -> A;
  opp : A -> A;
  mul : A -> A -> A;
  addrA : associative add;
  addrC : commutative add;
  add0r : left_id zero add;
  addNr : left_inverse zero opp add;
  mulrA : associative mul;
  mul1r : left_id one mul;
  mulr1 : right_id one mul;
  mulrDl : left_distributive mul add;
  mulrDr : right_distributive mul add;
}.

HB.builders Context A (a : Ring_of_TYPE A).

  HB.instance
  Definition to_AddComoid_of_TYPE := AddComoid_of_TYPE.Build A
    zero add addrA addrC add0r.

  HB.instance
  Definition to_Ring_of_AddComoid := Ring_of_AddComoid.Build A
    _ _ _ addNr mulrA mul1r mulr1 mulrDl mulrDr.
  
HB.end.

HB.structure Definition Ring := { A of Ring_of_TYPE A }.

(* Notations *)

Declare Scope hb_scope.
Delimit Scope hb_scope with G.
Local Open Scope hb_scope.
Notation "0" := zero : hb_scope.
Notation "1" := one : hb_scope.
Infix "+" := (@add _) : hb_scope.
Notation "- x" := (@opp _ x) : hb_scope.
Infix "*" := (@mul _) : hb_scope.
Notation "x - y" := (x + - y) : hb_scope.

(* Theory *)

Section Theory.
Variable R : Ring.type.
Implicit Type (x : R).

Lemma addr0 : right_id (@zero R) add.
Proof. by move=> x; rewrite addrC add0r. Qed.

Lemma addrN : right_inverse (@zero R) opp add.
Proof. by move=> x; rewrite addrC addNr. Qed.

Lemma subrr x : x - x = 0.
Proof. by rewrite addrN. Qed.

Lemma addrNK x y : x + y - y = x.
Proof. by rewrite -addrA subrr addr0. Qed.

End Theory.

HB.mixin Record LModule_of_AG (R : Ring.type) (M : Type) of AddAG M := {
  scale : Ring.sort R -> M -> M; (* TODO: insert coercions automatically *)
  scaleDl : forall v, {morph scale^~ v: a b / a + b};
  scaleDr : right_distributive scale add;
  scaleA : forall a b v, scale a (scale b v) = scale (a * b) v;
  scale1r : forall m, scale 1 m = m;
}.
HB.structure Definition LModule (R : Ring.type) :=
  { M of LModule_of_AG R M & }.
Infix "*:" := (@scale _ _) (at level 30) : hb_scope.

Definition regular (R : Type) := R.

HB.instance Definition regular_AG (R : AddAG.type) :=
  AddAG_of_TYPE.Build (regular (AddAG.sort R)) zero add opp addrA addrC add0r addNr.

HB.instance Definition regular_LModule (R : Ring.type) :=
  LModule_of_AG.Build R (regular (Ring.sort R)) mul
    (fun _ _ _ => mulrDl _ _ _) mulrDr mulrA mul1r.

From Corelib Require Import BinNums IntDef.

Axiom Z_add_assoc : forall x y z, Z.add x (Z.add y z) = Z.add (Z.add x y) z.
Axiom Z_add_comm : forall x y, Z.add x y = Z.add y x.
Axiom Z_add_0_l : forall x, Z.add Z0 x = x.
Axiom Z_add_0_r : forall x, Z.add x Z0 = x.
Axiom Z_add_opp_diag_l : forall x, Z.add (Z.opp x) x = Z0.
Axiom Z_mul_add_distr_l :
  forall x y z, Z.mul x (Z.add y z) = Z.add (Z.mul x y) (Z.mul x z).
Axiom Z_mul_add_distr_r :
  forall x y z, Z.mul (Z.add x y) z = Z.add (Z.mul x z) (Z.mul y z).
Axiom Z_mul_assoc : forall x y z, Z.mul x (Z.mul y z) = Z.mul (Z.mul x y) z.
Axiom Z_mul_1_l : forall x, Z.mul (Zpos xH) x = x.
Axiom Z_mul_1_r : forall x, Z.mul x (Zpos xH) = x.

HB.instance Definition Z_ring_axioms :=
  Ring_of_TYPE.Build Z Z0 (Zpos xH) Z.add Z.opp Z.mul
  Z_add_assoc Z_add_comm Z_add_0_l Z_add_opp_diag_l
  Z_mul_assoc Z_mul_1_l Z_mul_1_r
  Z_mul_add_distr_r Z_mul_add_distr_l.

Lemma test (m : Z) (n : regular Z) : m *: n = m * n.
Proof. by []. Qed.