1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
From Corelib Require Import ssreflect ssrfun.
From HB Require Import structures.
(**************************************************************************)
(* Stage 5: AddMonoid ---> AddComoid ----> AddAG ----> Ring *)
(* \ \ / *)
(* -> +BiNearRing+ -> SemiRing - *)
(**************************************************************************)
HB.mixin Record AddMonoid_of_TYPE S := {
zero : S;
add : S -> S -> S;
addrA : associative add;
add0r : left_id zero add;
addr0 : right_id zero add;
}.
HB.structure Definition AddMonoid := { A of AddMonoid_of_TYPE A }.
HB.mixin Record AddComoid_of_AddMonoid A of AddMonoid A := {
addrC : commutative (add : A -> A -> A);
}.
HB.factory Record AddComoid_of_TYPE A := {
zero : A;
add : A -> A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
}.
HB.builders Context A (a : AddComoid_of_TYPE A).
Fact addr0 : right_id zero add.
Proof. by move=> x; rewrite addrC add0r. Qed.
HB.instance
Definition to_AddMonoid_of_TYPE :=
AddMonoid_of_TYPE.Build A zero add addrA add0r addr0.
HB.instance
Definition to_AddComoid_of_AddMonoid :=
AddComoid_of_AddMonoid.Build A addrC.
HB.end.
HB.structure Definition AddComoid := { A of AddComoid_of_TYPE A }.
(* End change *)
HB.mixin Record AddAG_of_AddComoid A of AddComoid A := {
opp : A -> A;
addNr : left_inverse zero opp add;
}.
HB.factory Record AddAG_of_TYPE A := {
zero : A;
add : A -> A -> A;
opp : A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
addNr : left_inverse zero opp add;
}.
HB.builders Context A (a : AddAG_of_TYPE A).
HB.instance
Definition to_AddComoid_of_TYPE :=
AddComoid_of_TYPE.Build A zero add addrA addrC add0r.
HB.instance
Definition to_AddAG_of_AddComoid :=
AddAG_of_AddComoid.Build A _ addNr.
HB.end.
HB.structure Definition AddAG := { A of AddAG_of_TYPE A }.
(* Begin changes *)
HB.mixin Record BiNearRing_of_AddMonoid A of AddMonoid A := {
one : A;
mul : A -> A -> A;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
mul0r : left_zero zero mul;
mulr0 : right_zero zero mul;
}.
HB.structure Definition BiNearRing := { A of AddMonoid A & BiNearRing_of_AddMonoid A }.
(* this factory is accidentally a duplicate of BiNearRing_of_AddMonoid *)
(* we alias it for backward compatilibity and uniformity purposes *)
HB.factory Definition SemiRing_of_AddComoid A of AddComoid A :=
BiNearRing_of_AddMonoid A.
HB.builders Context A (a : SemiRing_of_AddComoid A).
HB.instance
Definition to_BiNearRing_of_AddMonoid : BiNearRing_of_AddMonoid A := a.
HB.end.
(* End changes *)
HB.structure Definition SemiRing := { A of AddComoid A & SemiRing_of_AddComoid A }.
Set Implicit Arguments. (* The factory builder will have implicit arguments *)
#[doc="Builds a Ring from an Abelian Group: the absorbing properties mul0r and mul0r are derived from addrC and the other ring axioms, following a proof of Hankel (Gerhard Betsch. On the beginnings and development of near-ring theory. In Near-rings and near-fields. Proceedings of the conference held in Fredericton, New Brunswick, July 18-24, 1993, pages 1–11. Mathematics and its Applications, 336. Kluwer Academic Publishers Group, Dordrecht, 1995)."]
HB.factory Record Ring_of_AddAG A of AddAG A := {
one : A;
mul : A -> A -> A;
mulrA : associative mul;
mulr1 : left_id one mul;
mul1r : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
Unset Implicit Arguments.
HB.builders Context A (a : Ring_of_AddAG A).
Fact mul0r : left_zero zero mul.
Proof.
move=> x; rewrite -[LHS]add0r addrC.
rewrite -{2}(addNr (mul x x)) (addrC (opp _)) addrA.
by rewrite -mulrDl add0r addrC addNr.
Qed.
Fact mulr0 : right_zero zero mul.
Proof.
move=> x; rewrite -[LHS]add0r addrC.
rewrite -{2}(addNr (mul x x)) (addrC (opp _)) addrA.
by rewrite -mulrDr add0r addrC addNr.
Qed.
HB.instance
Definition to_SemiRing_of_AddComoid := SemiRing_of_AddComoid.Build A
_ mul mulrA mulr1 mul1r mulrDl mulrDr mul0r mulr0.
HB.end.
HB.factory Record Ring_of_AddComoid A of AddComoid A := {
opp : A -> A;
one : A;
mul : A -> A -> A;
addNr : left_inverse zero opp add;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
HB.builders Context A (a :Ring_of_AddComoid A).
HB.instance
Definition to_AddAG_of_AddComoid := AddAG_of_AddComoid.Build A _ addNr.
HB.instance
Definition to_Ring_of_AddAG := Ring_of_AddAG.Build A
mulrA mul1r mulr1 mulrDl mulrDr.
HB.end.
HB.factory Record Ring_of_TYPE A := {
zero : A;
one : A;
add : A -> A -> A;
opp : A -> A;
mul : A -> A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
addNr : left_inverse zero opp add;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
HB.builders Context A (a : Ring_of_TYPE A).
HB.instance
Definition to_AddComoid_of_TYPE := AddComoid_of_TYPE.Build A
zero add addrA addrC add0r.
HB.instance
Definition to_Ring_of_AddComoid := Ring_of_AddComoid.Build A
_ _ _ addNr mulrA mul1r mulr1 mulrDl mulrDr.
HB.end.
HB.structure Definition Ring := { A of Ring_of_TYPE A }.
(* Notations *)
Declare Scope hb_scope.
Delimit Scope hb_scope with G.
Local Open Scope hb_scope.
Notation "0" := zero : hb_scope.
Notation "1" := one : hb_scope.
Infix "+" := (@add _) : hb_scope.
Notation "- x" := (@opp _ x) : hb_scope.
Infix "*" := (@mul _) : hb_scope.
Notation "x - y" := (x + - y) : hb_scope.
(* Theory *)
Section Theory.
Variable R : Ring.type.
Implicit Type (x : R).
(* Not general enough anymore, subsumed by Monoid addr0 *)
(* Lemma addr0 : right_id (@zero R) add.
Proof. by move=> x; rewrite addrC add0r. Qed. *)
Lemma addrN : right_inverse (@zero R) opp add.
Proof. by move=> x; rewrite addrC addNr. Qed.
Lemma subrr x : x - x = 0.
Proof. by rewrite addrN. Qed.
Lemma addrNK x y : x + y - y = x.
Proof. by rewrite -addrA subrr addr0. Qed.
End Theory.
HB.graph "hierarchy_5.dot".
(* we check the alias factory is abstracted over the whole section *)
HB.check (SemiRing_of_AddComoid.axioms_ : forall A, forall m : AddMonoid_of_TYPE.axioms_ A, AddComoid_of_AddMonoid.axioms_ A m -> Type).
|