File: cat.v

package info (click to toggle)
coq-hierarchy-builder 1.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,632 kB
  • sloc: ml: 159; makefile: 104
file content (621 lines) | stat: -rw-r--r-- 23,109 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
Require Import ssreflect ssrfun.
From HB Require Import structures.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Add Search Blacklist "__canonical__".

Declare Scope cat_scope.
Delimit Scope cat_scope with cat.
Local Open Scope cat_scope.

Axiom funext : forall {T : Type} {U : T -> Type} [f g : forall t, U t],
  (forall t, f t = g t) -> f = g.
Axiom propext : forall P Q : Prop, P <-> Q -> P = Q.
Axiom Prop_irrelevance : forall (P : Prop) (x y : P), x = y.

Definition U := Type.
Identity Coercion U_to_type : U >-> Sortclass.

HB.mixin Record HasHom C := { hom : C -> C -> U }.
Unset Universe Checking.
HB.structure Definition Hom : Set := { C of HasHom C }.
Set Universe Checking.
Notation homType := Hom.type.
Bind Scope cat_scope with Hom.type.
Bind Scope cat_scope with hom.
Arguments hom {C} : rename.
Notation "a ~> b" := (hom a b)
   (at level 99, b at level 200, format "a  ~>  b") : cat_scope.

HB.mixin Record Hom_IsPreCat C of Hom C := {
  idmap : forall (a : C), a ~> a;
  comp : forall (a b c : C), (a ~> b) -> (b ~> c) -> (a ~> c);
}.

HB.factory Record IsPreCat C := {
  hom : C -> C -> U;
  idmap : forall (a : C), hom a a;
  comp : forall (a b c : C), hom a b -> hom b c -> hom a c;
}.
HB.builders Context C of IsPreCat C.
  HB.instance Definition _ := HasHom.Build C hom.
  HB.instance Definition _ := Hom_IsPreCat.Build C idmap comp.
HB.end.

Unset Universe Checking.
HB.structure Definition PreCat : Set := { C of IsPreCat C }.
Set Universe Checking.
Notation precat := PreCat.type.
Bind Scope cat_scope with precat.
Arguments idmap {C} {a} : rename.
Arguments comp {C} {a b c} : rename.

Notation "f \o g" := (comp g f) : cat_scope.
Notation "f \; g" := (comp f g) : cat_scope.
Notation "\idmap_ a" := (@idmap _ a) (only parsing, at level 0) : cat_scope.

HB.mixin Record PreCat_IsCat C of PreCat C := {
  comp1o : forall (a b : C) (f : a ~> b), idmap \; f = f;
  compo1 : forall (a b : C) (f : a ~> b), f \; idmap = f;
  compoA : forall (a b c d : C) (f : a ~> b) (g : b ~> c) (h : c ~> d),
    f \; (g \; h) = (f \; g) \; h
}.
Unset Universe Checking.
HB.structure Definition Cat : Set := { C of PreCat_IsCat C & IsPreCat C }.
Set Universe Checking.
Notation cat := Cat.type.
Arguments compo1 {C a b} : rename.
Arguments comp1o {C a b} : rename.
Arguments compoA {C a b c d} : rename.

Definition discrete (T : Type) := T.
HB.instance Definition _ T := @IsPreCat.Build (discrete T) (fun x y => x = y)
  (fun=> erefl) (@etrans _).
Lemma etransA T (a b c d : discrete T) (f : a ~> b) (g : b ~> c) (h : c ~> d) :
    f \; (g \; h) = (f \; g) \; h.
Proof. by rewrite /idmap/comp/=; case: _ / h; case: _ / g. Qed.
HB.instance Definition _ T := PreCat_IsCat.Build (discrete T) (@etrans_id _)
   (fun _ _ _ => erefl) (@etransA _).

HB.instance Definition _ := Cat.copy unit (discrete unit).

HB.instance Definition _ := @IsPreCat.Build U (fun A B => A -> B)
  (fun a => idfun) (fun a b c (f : a -> b) (g : b -> c) => (g \o f)%FUN).
HB.instance Definition _ := PreCat_IsCat.Build U (fun _ _ _ => erefl)
  (fun _ _ _ => erefl) (fun _ _ _ _ _ _ _ => erefl).

Lemma Ucomp (X Y Z : U) (f : X ~> Y) (g : Y ~> Z) : f \; g = (g \o f)%FUN.
Proof. by []. Qed.
Lemma Ucompx (X Y Z : U) (f : X ~> Y) (g : Y ~> Z) x : (f \; g) x = g (f x).
Proof. by []. Qed.
Lemma U1 (X : U) : \idmap_X = idfun.
Proof. by []. Qed.
Lemma U1x (X : U) x : \idmap_X x = x.
Proof. by []. Qed.

HB.mixin Record IsPreFunctor (C D : Hom.type) (F : C -> D) := {
   Fhom_of : forall (a b : C), (a ~> b) -> (F a ~> F b)
}.

Unset Universe Checking.
HB.structure Definition PreFunctor (C D : Hom.type) : Set :=
  { F of IsPreFunctor C D F }.
Set Universe Checking.
HB.instance Definition _ := HasHom.Build Hom.type PreFunctor.type.
Arguments Fhom_of /.

Definition Fhom_phant (C D : Hom.type) (F : C ~> D)
  of phantom (_ -> _) F := @Fhom_of C D F.
Notation "F ^$" := (@Fhom_phant _ _ _ (Phantom (_ -> _) F) _ _)
   (at level 1, format "F ^$") : cat_scope.
Notation "F <$> f" := (@Fhom_phant _ _ _ (Phantom (_ -> _) F) _ _ f)
   (at level 58, format "F  <$>  f", right associativity) : cat_scope.

Lemma prefunctorP (C D : homType) (F G : C ~> D) (eqFG : F =1 G) :
   let homF a b F := F a ~> F b in
   (forall a b f, eq_rect _ (homF a b) (F <$> f) _ (funext eqFG) = G <$> f) ->
  F = G.
Proof.
rewrite !/Fhom_phant/=.
move: F G => [F [[/= Fhom]]] [G [[/= Ghom]]] in eqFG *.
case: _ / (funext eqFG) => /= in Ghom * => eqFGhom.
congr PreFunctor.Pack; congr PreFunctor.Class; congr IsPreFunctor.Axioms_.
by do 3!apply: funext=> ?.
Qed.

HB.mixin Record PreFunctor_IsFunctor (C D : precat) (F : C -> D)
     of @PreFunctor C D F := {
   F1 : forall (a : C), F^$ \idmap_a = \idmap_(F a);
   Fcomp : forall (a b c : C) (f : a ~> b) (g : b ~> c),
      F^$ (f \; g) = F^$ f \; F^$ g;
}.
Unset Universe Checking.
HB.structure Definition Functor (C D : precat) : Set :=
  { F of IsPreFunctor C D F & PreFunctor_IsFunctor C D F }.
Set Universe Checking.
HB.instance Definition _ := HasHom.Build precat Functor.type.
HB.instance Definition _ := HasHom.Build cat Functor.type.

Lemma functorP (C D : precat) (F G : C ~> D) (eqFG : F =1 G) :
   let homF a b F := F a ~> F b in
   (forall a b f, eq_rect _ (homF a b) (F^$ f) _ (funext eqFG) = G^$ f) ->
  F = G.
Proof.
move=> /= /prefunctorP {eqFG}.
case: F G => [F [/= Fm Fm']] [G [/= Gm Gm']]//=.
move=> [_] /EqdepFacts.eq_sigT_iff_eq_dep eqFG.
case: _ / eqFG in Gm' *.
congr Functor.Pack; congr Functor.Class.
case: Fm' Gm' => [F1 Fc] [G1 Gc].
by congr PreFunctor_IsFunctor.Axioms_; apply: Prop_irrelevance.
Qed.

HB.instance Definition _ (C : precat) :=
  IsPreFunctor.Build C C idfun (fun a b => idfun).
HB.instance Definition _ (C : precat) :=
  PreFunctor_IsFunctor.Build C C idfun (fun=> erefl) (fun _ _ _ _ _ => erefl).

Section comp_prefunctor.
Context {C D E : homType} {F : C ~> D} {G : D ~> E}.

HB.instance Definition _ := IsPreFunctor.Build C E (G \o F)%FUN
   (fun a b f => G^$ (F^$ f)).
Lemma comp_Fun (a b : C) (f : a ~> b) : (G \o F)%FUN^$ f = G^$ (F^$ f).
Proof. by []. Qed.
End comp_prefunctor.

Section comp_functor.
Context {C D E : precat} {F : C ~> D} {G : D ~> E}.
Lemma comp_F1 (a : C) : (G \o F)%FUN^$ \idmap_a = \idmap_((G \o F)%FUN a).
Proof. by rewrite !comp_Fun !F1. Qed.
Lemma comp_Fcomp  (a b c : C) (f : a ~> b) (g : b ~> c) :
  (G \o F)%FUN^$ (f \; g) = (G \o F)%FUN^$ f \; (G \o F)%FUN^$ g.
Proof. by rewrite !comp_Fun !Fcomp. Qed.
HB.instance Definition _ := PreFunctor_IsFunctor.Build C E (G \o F)%FUN
   comp_F1 comp_Fcomp.
End comp_functor.

HB.instance Definition _ := Hom_IsPreCat.Build precat
  (fun C => [the C ~> C of idfun])
  (fun C D E (F : C ~> D) (G : D ~> E) => [the C ~> E of (G \o F)%FUN]).
HB.instance Definition _ := Hom_IsPreCat.Build cat
  (fun C => [the C ~> C of idfun])
  (fun C D E (F : C ~> D) (G : D ~> E) => [the C ~> E of (G \o F)%FUN]).

Lemma funext_frefl A B (f : A -> B) : funext (frefl f) = erefl.
Proof. exact: Prop_irrelevance. Qed.

Definition precat_cat : PreCat_IsCat precat.
Proof.
by split=> [C D F|C D F|C D C' D' F G H];
   apply/functorP => a b f /=; rewrite funext_frefl.
Qed.
HB.instance Definition _ := precat_cat.
Definition cat_cat : PreCat_IsCat cat.
Proof.
by split=> [C D F|C D F|C D C' D' F G H];
   apply/functorP => a b f /=; rewrite funext_frefl.
Qed.
HB.instance Definition _ := cat_cat.

HB.mixin Record Hom_IsPreConcrete T of Hom T := {
  concrete : T -> U;
  concrete_fun : forall (a b : T), (a ~> b) -> (concrete a) -> (concrete b);
}.
Unset Universe Checking.
HB.structure Definition PreConcreteHom : Set :=
  { C of Hom_IsPreConcrete C & HasHom C }.
Set Universe Checking.
Coercion concrete : PreConcreteHom.sort >-> U.

HB.mixin Record PreConcrete_IsConcrete T of PreConcreteHom T := {
  concrete_fun_inj : forall (a b : T), injective (concrete_fun a b)
}.
Unset Universe Checking.
HB.structure Definition ConcreteHom : Set :=
  { C of PreConcreteHom C & PreConcrete_IsConcrete C }.
Set Universe Checking.

HB.instance Definition _ (C : ConcreteHom.type) :=
  IsPreFunctor.Build _ _ (concrete : C -> U) concrete_fun.

HB.mixin Record PreCat_IsConcrete T of ConcreteHom T & PreCat T := {
  concrete1 : forall (a : T), concrete <$> \idmap_a = idfun;
  concrete_comp : forall (a b c : T) (f : a ~> b) (g : b ~> c),
    concrete <$> (f \; g) = ((concrete <$> g) \o (concrete <$> f))%FUN;
}.
Unset Universe Checking.
HB.structure Definition ConcretePreCat : Set :=
  { C of PreCat C & ConcreteHom C & PreCat_IsConcrete C }.
HB.structure Definition ConcreteCat : Set :=
  { C of Cat C & ConcreteHom C & PreCat_IsConcrete C }.
Set Universe Checking.

HB.instance Definition _ (C : ConcretePreCat.type) :=
  PreFunctor_IsFunctor.Build _ _ (concrete : C -> U) (@concrete1 _) (@concrete_comp _).
HB.instance Definition _ (C : ConcreteCat.type) :=
  PreFunctor_IsFunctor.Build _ _ (concrete : C -> U) (@concrete1 _) (@concrete_comp _).

HB.instance Definition _ := Hom_IsPreConcrete.Build U (fun _ _ => id).
HB.instance Definition _ := PreConcrete_IsConcrete.Build U (fun _ _ _ _ => id).
HB.instance Definition _ := PreCat_IsConcrete.Build U
   (fun=> erefl) (fun _ _ _ _ _ => erefl).

Unset Universe Checking.
HB.instance Definition _ := Hom_IsPreConcrete.Build homType (fun _ _ => id).
HB.instance Definition _ := Hom_IsPreConcrete.Build precat (fun _ _ => id).
HB.instance Definition _ := Hom_IsPreConcrete.Build cat (fun _ _ => id).
Lemma homType_concrete_subproof : PreConcrete_IsConcrete homType.
Proof.
constructor=> C D F G FG; apply: prefunctorP.
  by move=> x; congr (_ x); apply: FG.
by move=> *; apply: Prop_irrelevance.
Qed.
HB.instance Definition _ := homType_concrete_subproof.

Lemma precat_concrete_subproof : PreConcrete_IsConcrete precat.
Proof.
constructor=> C D F G FG; apply: functorP.
  by move=> x; congr (_ x); apply: FG.
by move=> *; apply: Prop_irrelevance.
Qed.
HB.instance Definition _ := precat_concrete_subproof.

Lemma cat_concrete_subproof : PreConcrete_IsConcrete cat.
Proof.
constructor=> C D F G FG; apply: functorP.
  by move=> x; congr (_ x); apply: FG.
by move=> *; apply: Prop_irrelevance.
Qed.
HB.instance Definition _ := cat_concrete_subproof.
HB.instance Definition _ := PreCat_IsConcrete.Build precat
   (fun=> erefl) (fun _ _ _ _ _ => erefl).
HB.instance Definition _ := PreCat_IsConcrete.Build cat
   (fun=> erefl) (fun _ _ _ _ _ => erefl).
Set Universe Checking.

Definition cst (C D : homType) (c : C) := fun of D => c.
Arguments cst {C} D c.
HB.instance Definition _ {C D : precat} (c : C) :=
  IsPreFunctor.Build D C (cst D c) (fun _ _ _ => idmap).
HB.instance Definition _ {C D : cat} (c : C) :=
  PreFunctor_IsFunctor.Build D C (cst D c) (fun=> erefl)
    (fun _ _ _ _ _ => esym (compo1 idmap)).

Definition catop (C : Type) : Type := C.
HB.instance Definition _ (C : homType) := HasHom.Build (catop C) (fun a b => hom b a).
HB.instance Definition _ (C : precat) := Hom_IsPreCat.Build (catop C) (fun=> idmap)
   (fun _ _ _ f g => g \; f).
HB.instance Definition _ (C : cat) := PreCat_IsCat.Build (catop C)
   (fun _ _ _ => compo1 _) (fun _ _ _ => comp1o _)
   (fun _ _ _ _ _ _ _ => esym (compoA _ _ _)).
Notation "C ^op" := (catop C) (at level 10, format "C ^op") : cat_scope.


HB.instance Definition _ {C : precat} {c : C} :=
  IsPreFunctor.Build C _ (hom c) (fun a b f g => g \; f).
Lemma hom_Fhom_subproof (C : cat) (x : C) :
  PreFunctor_IsFunctor _ _ (hom x).
Proof. by split=> *; apply/funext => h; [apply: compo1 | apply: compoA]. Qed.
HB.instance Definition _ {C : cat} {c : C} := hom_Fhom_subproof c.

Lemma hom_op {C : homType} (c : C^op) : hom c = (@hom C)^~ c.
Proof. reflexivity. Qed.

Lemma homFhomx {C : precat} (a b c : C) (f : a ~> b) (g : c ~> a) :
  (hom c <$> f) g = g \; f.
Proof. by []. Qed.

Notation "C ~> D :> T" := ([the T of C] ~> [the T of D])
  (at level 99, D, T at level 200, format "C  ~>  D  :>  T").
Notation "C :~>: D :> T" := ([the T of C : Type] ~> [the T of D : Type])
  (at level 99, D, T at level 200, format "C  :~>:  D  :>  T").

Definition dprod {I : Type} (C : I -> Type) := forall i, C i.

Section hom_dprod.
Context {I : Type} (C : I -> Hom.type).
Definition dprod_hom_subdef (a b : dprod C) := forall i, a i ~> b i.
HB.instance Definition _ := HasHom.Build (dprod C) dprod_hom_subdef.
End hom_dprod.
Arguments dprod_hom_subdef /.

Section precat_dprod.
Context {I : Type} (C : I -> precat).
Definition dprod_idmap_subdef (a : dprod C) : a ~> a := fun=> idmap.
Definition dprod_comp_subdef (a b c : dprod C) (f : a ~> b) (g : b ~> c) : a ~> c :=
  fun i => f i \; g i.
HB.instance Definition _ := IsPreCat.Build (dprod C)
   dprod_idmap_subdef dprod_comp_subdef.
End precat_dprod.
Arguments dprod_idmap_subdef /.
Arguments dprod_comp_subdef /.

Section cat_dprod.
Context {I : Type} (C : I -> cat).
Local Notation type := (dprod C).
Lemma dprod_is_cat : PreCat_IsCat type.
Proof.
split=> [a b f|a b f|a b c d f g h]; apply/funext => i;
[exact: comp1o | exact: compo1 | exact: compoA].
Qed.
HB.instance Definition _ := dprod_is_cat.
End cat_dprod.

Section hom_prod.
Context {C D : Hom.type}.
Definition prod_hom_subdef (a b : C * D) := ((a.1 ~> b.1) * (a.2 ~> b.2))%type.
HB.instance Definition _ := HasHom.Build (C * D)%type prod_hom_subdef.
End hom_prod.

Section precat_prod.
Context {C D : precat}.
HB.instance Definition _ := IsPreCat.Build (C * D)%type (fun _ => (idmap, idmap))
  (fun a b c (f : a ~> b) (g : b ~> c) => (f.1 \; g.1, f.2 \; g.2)).
End precat_prod.

Section cat_prod.
Context {C D : cat}.
Local Notation type := (C * D)%type.
Lemma prod_is_cat : PreCat_IsCat type.
Proof.
split=> [[a1 a2] [b1 b2] [f1 f2]|[a1 a2] [b1 b2] [f1 f2]|
  [a1 a2] [b1 b2] [c1 c2] [d1 d2] [f1 f2] [g1 g2] [h1 h2]]; congr (_, _) => //=;
by [exact: comp1o | exact: compo1 | exact: compoA].
Qed.
HB.instance Definition _ := prod_is_cat.
End cat_prod.

HB.mixin Record IsNatural (C D : precat) (F G : C :~>: D :> homType)
     (n : forall c, F c ~> G c) := {
   natural : forall (a b : C) (f : a ~> b), F <$> f \; n b = n a \; G <$> f
}.
Unset Universe Checking.
HB.structure Definition Natural (C D : precat)
    (F G : C :~>: D :> homType) : Set :=
  { n of @IsNatural C D F G n }.
Set Universe Checking.
HB.instance Definition _  (C D : precat) :=
  HasHom.Build (PreFunctor.type C D) (@Natural.type C D).
HB.instance Definition _  (C D : precat) :=
  HasHom.Build (Functor.type C D) (@Natural.type C D).
Arguments natural {C D F G} n [a b] f : rename.

Lemma naturalx (C : precat) (D : ConcretePreCat.type)
  (F G : C :~>: D :> homType) (n : F ~> G)  (a b : C) (f : a ~> b) g :
    (concrete <$> n b) ((concrete <$> F <$> f) g) =
    (concrete <$> G <$> f) ((concrete <$> n a) g).
Proof.
have /(congr1 (fun h  => (concrete <$> h) g)) := natural n f.
by rewrite !Fcomp.
Qed.
Arguments naturalx {C D F G} n [a b] f.

Lemma naturalU (C : precat) (F G : C :~>: U :> homType) (n : F ~> G)
   (a b : C) (f : a ~> b) g :  n b (F^$ f g) = G^$ f (n a g).
Proof. exact: (naturalx n). Qed.

Lemma natP (C D : precat) (F G : C :~>: D :> homType) (n m : F ~> G) :
  Natural.sort n = Natural.sort m -> n = m.
Proof.
case: n m => [/= n nP] [/= m mP] enm.
elim: _ / enm in mP *; congr Natural.Pack.
case: nP mP => [[?]] [[?]]; congr Natural.Class.
congr IsNatural.Axioms_.
exact: Prop_irrelevance.
Qed.

Notation "F ~~> G" :=
   ((F : _ -> _) ~> (G : _ -> _) :> (_ :~>: _ :> homType))
  (at level 99, G at level 200, format "F  ~~>  G").
Notation "F ~~> G :> C ~> D" :=
   ((F : _ -> _) ~> (G : _ -> _) :> (C :~>: D :> homType))
  (at level 99, G at level 200, C, D at level 0, format "F  ~~>  G  :>  C  ~>  D").

Section hom_repr.
Context {C : cat} (F : C ~> U :> cat).

Definition homF (c : C) : U := hom c ~~> F.

Section nat.
Context (x y : C) (xy : x ~> y) (n : hom x ~~> F).
Definition homFhom_subdef c : hom y c ~> F c := fun g => n _ (xy \; g).
Arguments homFhom_subdef / : clear implicits.

Lemma homFhom_natural_subdef : IsNatural _ _ _ _ homFhom_subdef.
Proof.
by split=> a b f /=; apply/funext => g /=; rewrite !Ucompx/= !naturalU/= Fcomp.
Qed.
HB.instance Definition _ := homFhom_natural_subdef.
Definition homFhom_subdef_nat : hom y ~~> F := [the _ ~~> _ of homFhom_subdef].
End nat.
Arguments homFhom_subdef / : clear implicits.


HB.instance Definition _ := IsPreFunctor.Build _ _ homF homFhom_subdef_nat.
Lemma homF_functor_subproof : PreFunctor_IsFunctor _ _ homF.
Proof.
split=> [a|a b c f g].
  apply/funext => -[/= f natf].
  apply: natP => //=; apply: funext => b; apply: funext => g/=.
  by rewrite comp1o.
apply/funext => -[/= h natf].
apply: natP => //=; apply: funext => d; apply: funext => k/=.
by rewrite compoA.
Qed.
HB.instance Definition _ := homF_functor_subproof.

Section pointed.
Context (c : C).
Definition hom_repr : homF c ~> F c := fun f => f _ idmap.
Arguments hom_repr /.

Definition repr_hom (fc : F c) a :
   [the C :~>: U :> homType of hom c] a ~> F a := fun f => F^$ f fc.
Arguments repr_hom / : clear implicits.
Lemma repr_hom_subdef (fc : F c) : IsNatural _ _ _ _ (repr_hom fc).
Proof. by split=> a b f /=; apply/funext=> x; rewrite !Ucompx/= Fcomp. Qed.
HB.instance Definition _ {fc : F c} := repr_hom_subdef fc.

Definition repr_hom_nat : F c ~> homF c := fun fc =>
   [the hom c ~~> F of repr_hom fc].

Lemma hom_reprK : cancel hom_repr repr_hom_nat.
Proof.
move=> f; apply/natP; apply/funext => a; apply/funext => g /=.
by rewrite -naturalU/=; congr (f _ _); apply: comp1o.
Qed.
Lemma repr_homK : cancel repr_hom_nat hom_repr.
Proof. by move=> fc; rewrite /= F1. Qed.
End pointed.
Arguments hom_repr /.
Arguments repr_hom /.

Lemma hom_repr_natural_subproof : IsNatural _ _ _ _ hom_repr.
Proof.
split=> a b f /=; apply/funext => n /=; rewrite !Ucompx/= compo1/=.
by rewrite -naturalU/=; congr (n _ _); apply/esym/comp1o.
Qed.

HB.instance Definition _ := hom_repr_natural_subproof.
Lemma hom_natural_repr_subproof : IsNatural _ _ _ _ repr_hom_nat.
Proof.
split=> a b f /=; apply: funext => fa /=; rewrite !Ucompx/=.
apply: natP; apply: funext => c /=; apply: funext => d /=.
by rewrite Fcomp Ucompx/=.
Qed.
HB.instance Definition _ := hom_natural_repr_subproof.

Definition hom_repr_nat := [the homF ~~> F of hom_repr].
Definition repr_hom_nat_nat := [the F ~~> homF of repr_hom_nat].

End hom_repr.

Module comma.
Section homcomma.
Context {C D E : precat} (F : C ~> E) (G : D ~> E).

Definition type := { x : C * D & F x.1 ~> G x.2 }.
Definition hom_subdef (a b : type) := {
    f : tag a ~> tag b & F^$ f.1 \; tagged b = tagged a \; G^$ f.2
  }.
HB.instance Definition _ := HasHom.Build type hom_subdef.
End homcomma.
Arguments hom_subdef /.
Section comma.
Context {C D E : cat} (F : C ~> E) (G : D ~> E).
Notation type := (type F G).

Program Definition idmap_subdef (a : type) : a ~> a := @Tagged _ idmap _ _.
Next Obligation. by rewrite !F1 comp1o compo1. Qed.
Program Definition comp_subdef (a b c : type) (f : a ~> b) (g : b ~> c) : a ~> c :=
  @Tagged _ (tag f \; tag g) _ _.
Next Obligation. by rewrite !Fcomp -compoA (tagged g) compoA (tagged f) compoA. Qed.
HB.instance Definition _ := IsPreCat.Build type idmap_subdef comp_subdef.
Arguments idmap_subdef /.
Arguments comp_subdef /.

Lemma comma_homeqP (a b : type) (f g : a ~> b) : projT1 f = projT1 g -> f = g.
Proof.
case: f g => [f fP] [g +]/= eqfg; case: _ / eqfg => gP.
by congr existT; apply: Prop_irrelevance.
Qed.

Lemma comma_is_cat : PreCat_IsCat type.
Proof.
by split=> [[a fa] [b fb] [*]|[a fa] [b fb] [*]|*];
   apply/comma_homeqP; rewrite /= ?(comp1o, compo1, compoA).
Qed.
HB.instance Definition _ := comma_is_cat.
End comma.
End comma.
Notation "F `/` G" := (@comma.type _ _ _ F G)
  (at level 40, G at level 40, format "F `/` G") : cat_scope.
Notation "a /` G" := (cst unit a `/` G)
  (at level 40, G at level 40, format "a /` G") : cat_scope.
Notation "F `/ b" := (F `/` cst unit b)
  (at level 40, b at level 40, format "F `/ b") : cat_scope.
Notation "a / b" := (cst unit a `/ b) : cat_scope.

HB.mixin Record PreCat_IsMonoidal C of PreCat C := {
  one : C;
  prod : (C * C)%type ~> C :> precat ;
}.
HB.structure Definition PreMonoidal := { C of PreCat C & PreCat_IsMonoidal C }.
Notation premonoidal := PreMonoidal.type.
Arguments prod {C} : rename.
Notation "a * b" := (prod (a, b)) : cat_scope.
Reserved Notation "f ** g"   (at level 40, g at level 40, format "f  **  g").
Notation "f ** g" := (prod^$ (f, g)) (only printing) : cat_scope.
Notation "f ** g" := (prod^$ ((f, g) : (_, _) ~> (_, _))) (only parsing) : cat_scope.
Notation "1" := one.

Definition hom_cast {C : homType} {a a' : C} (eqa : a = a') {b b' : C} (eqb : b = b') :
  (a ~> b) -> (a' ~> b').
Proof. now elim: _ / eqa; elim: _ / eqb. Defined.


HB.mixin Record PreFunctor_IsMonoidal (C D : premonoidal) F of @PreFunctor C D F := {
  fun_one : F 1 = 1;
  fun_prod : forall (x y : C), F (x * y) = F x * F y;
  (* fun_prodF : forall (x x' : C) (f : x ~> x') (y y' : C) (g : y ~> y'), *)
  (*   hom_cast (fun_prod _ _) (fun_prod _ _) (F^$ (f ** g)) = F^$ f ** F^$ g *)
}.
HB.structure Definition MonoidalPreFunctor C D := { F of @PreFunctor_IsMonoidal C D F }.
Arguments fun_prod {C D F x y} : rename.
(* Arguments fun_prodF {C D F x x'} f {y y'} g : rename. *)
Unset Universe Checking.
HB.instance Definition _ := HasHom.Build premonoidal MonoidalPreFunctor.type.
Set Universe Checking.

(* Definition comma_is_premonoidal (C D E : premonoidal) *)
(*   (F : C ~> E) (G : D ~> E) := F. *)

HB.instance Definition _ (C : Hom.type) :=
  IsPreFunctor.Build [the homType of (C * C)%type] C fst
     (fun (a b : C * C) (f : a ~> b) => f.1).
HB.instance Definition _ (C : Hom.type) :=
  IsPreFunctor.Build [the homType of (C * C)%type] C snd
     (fun (a b : C * C) (f : a ~> b) => f.2).

Definition prod3l {C : PreMonoidal.type} (x : C * C * C) : C :=
  (x.1.1 * x.1.2) * x.2.
HB.instance Definition _ {C : PreMonoidal.type} :=
  IsPreFunctor.Build _ C prod3l
   (fun a b (f : a ~> b) => (f.1.1 ** f.1.2) ** f.2).

Definition prod3r {C : PreMonoidal.type} (x : C * C * C) : C :=
  x.1.1 * (x.1.2 * x.2).
HB.instance Definition _ {C : PreMonoidal.type} :=
  IsPreFunctor.Build _ C prod3r
   (fun a b (f : a ~> b) => f.1.1 ** (f.1.2 ** f.2)).

Definition prod1r {C : PreMonoidal.type} (x : C) : C := 1 * x.
HB.instance Definition _ {C : PreMonoidal.type} :=
  IsPreFunctor.Build [the homType of C : Type] C prod1r
   (fun (a b : C) (f : a ~> b) => \idmap_1 ** f).

Definition prod1l {C : PreMonoidal.type} (x : C) : C := x * 1.
HB.instance Definition _ {C : PreMonoidal.type} :=
  IsPreFunctor.Build [the homType of C : Type] C prod1l
   (fun (a b : C) (f : a ~> b) => f ** \idmap_1).

HB.mixin Record PreMonoidal_IsMonoidal C of PreMonoidal C := {
  prodA  : prod3l ~~> prod3r :> _ ~> C;
  prod1c : prod1r ~~> idfun :> C ~> C;
  prodc1 : prod1l ~~> idfun :> C ~> C;
  prodc1c : forall (x y : C),
      prodA (x, 1, y) \; \idmap_x ** prod1c y = prodc1 x ** \idmap_y;
  prodA4 : forall (w x y z : C),
      prodA (w * x, y, z) \; prodA (w, x, y * z) =
        prodA (w, x, y) ** \idmap_z \; prodA (w, x * y, z) \; \idmap_w ** prodA (x, y, z);
}.

Unset Universe Checking.
HB.structure Definition Monoidal : Set :=
  { C of PreMonoidal_IsMonoidal C & PreMonoidal C }.
Set Universe Checking.