File: hierarchy_2.v

package info (click to toggle)
coq-hierarchy-builder 1.4.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,632 kB
  • sloc: ml: 159; makefile: 104
file content (82 lines) | stat: -rw-r--r-- 2,363 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
From Coq Require Import ssreflect ssrfun.
From HB Require Import structures.

HB.mixin Record MulMonoid_of_Type A := {
  one : A;
  mul : A -> A -> A;
  mulrA : associative mul;
  mul1r : left_id one mul;
  mulr1 : right_id one mul;
}.
HB.structure Definition MulMonoid := { A of MulMonoid_of_Type A }.

HB.mixin Record AddMonoid_of_Type A := {
  zero : A;
  add : A -> A -> A;
  addrA : associative add;
  add0r : left_id zero add;
  addr0 : right_id zero add;
}.
HB.structure Definition AddMonoid := { A of AddMonoid_of_Type A }.

HB.mixin Record AbGroup_of_AddMonoid A of AddMonoid A := {
  opp : A -> A;
  addrC : commutative (add : A -> A -> A);
  addNr : left_inverse zero opp add;
}.
HB.structure Definition AbGroup := { A of AddMonoid A & AbGroup_of_AddMonoid A }.

HB.mixin Record Ring_of_AbGroupMulMonoid A of MulMonoid A & AbGroup A := {
  mulrDl : left_distributive mul (add : A -> A -> A);
  mulrDr : right_distributive mul (add : A -> A -> A);
}.
HB.structure Definition Ring := { A of MulMonoid A & AbGroup A & Ring_of_AbGroupMulMonoid A }.

HB.factory Record Ring_of_AddMulMonoid A of MulMonoid A & AddMonoid A := {
  opp : A -> A;
  addrC : commutative (add : A -> A -> A);
  addNr : left_inverse zero opp add;
  mulrDl : left_distributive mul (add : A -> A -> A);
  mulrDr : right_distributive mul (add : A -> A -> A);
}.

HB.builders Context A (a : Ring_of_AddMulMonoid A).

  HB.instance
  Definition to_AbGroup_of_AddMonoid :=
    AbGroup_of_AddMonoid.Build A opp addrC addNr.

  HB.instance
  Definition to_Ring_of_AbGroupMulMonoid :=
    Ring_of_AbGroupMulMonoid.Build A mulrDl mulrDr.

HB.end.

HB.factory Record Ring_of_MulMonoid A of MulMonoid A := {
  zero : A;
  add : A -> A -> A;
  addrA : associative add;
  add0r : left_id zero add;
  addr0 : right_id zero add;
  opp : A -> A;
  addrC : commutative (add : A -> A -> A);
  addNr : left_inverse zero opp add;
  mulrDl : left_distributive mul add;
  mulrDr : right_distributive mul add;
}.

HB.builders Context A (a : Ring_of_MulMonoid A).

  HB.instance
  Definition to_AddMonoid_of_Type :=
    AddMonoid_of_Type.Build A zero add addrA add0r addr0.

  HB.instance
  Definition to_AbGroup_of_AddMonoid :=
    AbGroup_of_AddMonoid.Build A opp addrC addNr.

  HB.instance
  Definition to_Ring_of_AddMulMonoid :=
    Ring_of_AddMulMonoid.Build A opp addrC addNr mulrDl mulrDr.

HB.end.