File: database.elpi

package info (click to toggle)
coq-hierarchy-builder 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,988 kB
  • sloc: makefile: 109
file content (462 lines) | stat: -rw-r--r-- 16,907 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/*        Hierarchy Builder: algebraic hierarchies made easy
    This software is released under the terms of the MIT license              */

shorten coq.{ term->gref, subst-fun, safe-dest-app, mk-app, mk-eta, subst-prod }.

%%%%%%%%% HB database %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pred from_factory i:prop, o:factoryname.
from_factory (from X _ _) X.

pred from_mixin i:prop, o:mixinname.
from_mixin (from _ X _) X.

pred from_builder i:prop, o:term.
from_builder (from _ _ X) (global X).

pred mixin-src_mixin i:prop, o:mixinname.
mixin-src_mixin (mixin-src _ M _) M.

pred mixin-src_src i:prop, o:term.
mixin-src_src (mixin-src _ _ S) S.

pred local-canonical-gref i:prop, o:constant.
local-canonical-gref (local-canonical C) C.

pred class_name i:class, o:classname.
class_name (class N _ _) N.

pred class_structure i:class, o:structure.
class_structure (class _ S _) S.

pred class-def_name i:prop, o:classname.
class-def_name (class-def (class N _ _)) N.

pred mixin-class_class i:prop, o:classname.
mixin-class_class (mixin-class _ C) C.

pred mixin-class_mixin i:prop, o:mixinname.
mixin-class_mixin (mixin-class M _) M.

pred classname->def i:classname, o:class.
classname->def CN (class CN S ML) :- class-def (class CN S ML).

pred classname->mixins i:classname, o:mixins.
classname->mixins CN MLwP :- class-def (class CN _ MLwP).

pred module-to-export_module i:prop, o:modpath.
module-to-export_module (module-to-export _ _ M) M.

pred module-to-export_module-nice i:prop, o:id.
module-to-export_module-nice (module-to-export _ M _) M.

pred instance-to-export_instance i:prop, o:constant.
instance-to-export_instance (instance-to-export _ _ M) M.

pred instance-to-export_instance-nice i:prop, o:id.
instance-to-export_instance-nice (instance-to-export _ M _) M.

pred abbrev-to-export_name i:prop, o:id.
abbrev-to-export_name (abbrev-to-export _ N _) N.
pred abbrev-to-export_body i:prop, o:term.
abbrev-to-export_body (abbrev-to-export _ _ B) (global B).

pred clause-to-export_clause i:prop, o:prop.
clause-to-export_clause (clause-to-export _ C) C.

pred extract-builder i:prop, o:builder.
extract-builder (builder-decl B) B.

pred leq-builder i:builder, i:builder.
leq-builder (builder N _ _ _) (builder M _ _ _) :- N =< M.

pred sub-class? i:class, i:class.
sub-class? (class C1 _ ML1P) (class C2 _ ML2P) :-
  not (C1 = C2),
  list-w-params_list ML1P ML1,
  list-w-params_list ML2P ML2,
  std.forall ML2 (m2\ std.exists ML1 (m1\ m1 = m2)).

% [factory-provides F MLwP] computes the mixins MLwP generated by F
pred factory-provides i:factoryname, o:mixins.
factory-provides FactoryAlias MLwP :- std.do! [
  std.assert-ok! (factory-alias->gref FactoryAlias Factory) "HB",
  gref-deps Factory RMLwP,
  w-params.map RMLwP (factory-provides.base Factory) MLwP
].

pred mixin->factories i:mixinname, o:list factoryname.
mixin->factories M FL :- std.do! [
  std.findall (from F_ M B_) AllF,
  std.map AllF from_factory FL
].

pred factory-provides.base i:factoryname, i:list term, i: term,
  i:list (w-args mixinname), o:list (w-args mixinname).
factory-provides.base Factory Params T _RMLwP MLwP :- std.do! [
  std.findall (from Factory T_ F_) All,
  std.map All from_mixin ML,
  std.map All from_builder BL,
  std.map2 BL ML (factory-provides.one Params T) MLwP,
].

pred factory-provides.one i:list term, i:term, i:term, i:mixinname, o:w-args mixinname.
factory-provides.one Params T B M (triple M PL T) :- std.do! [
  std.assert-ok! (coq.typecheck B Ty) "Builder illtyped",
  subst-prod [T] {subst-prod Params Ty} TyParams,
  std.assert! (extract-conclusion-params T TyParams PL) "The conclusion of a builder is a mixin whose parameters depend on other mixins",
].

pred extract-conclusion-params i:term, i:term, o:list term.
extract-conclusion-params TheType (prod _ S T) R :- !,
  @pi-decl _ S x\ extract-conclusion-params TheType (T x) R.
extract-conclusion-params TheType (app [global GR|Args]) R :- !, std.do! [
  std.assert-ok! (factory-alias->gref GR Factory) "HB",
  factory-nparams Factory NP,
  std.map Args (copy-pack-holes TheType TheType) NewArgs,
  std.take NP NewArgs R].
extract-conclusion-params TheType T R :- whd1 T T1, !, extract-conclusion-params TheType T1 R.


% [factories-provide FL ML] computes the mixins ML generated by all F in FL
%
%  cons tp p\ nil t\ [pr f1 [p,t]]
%    f1 p t = m1 t, m2 p t
%  cons tp p\ nil t\ [pr m1 [t], pr m2 [p,t]]
pred factories-provide i:list-w-params factoryname, o:mixins.
factories-provide FLwP MLwP :- std.do! [
  list-w-params.flatten-map FLwP factory-provides UnsortedMLwP,
  w-params.map UnsortedMLwP (p\t\ toposort-mixins) MLwP,
].

pred undup-grefs  i:list gref, o:list gref.
undup-grefs  L UL :- std.do! [
  coq.gref.list->set L S,
  coq.gref.set.elements S UL,
].

pred undup-sorts i:list sort, o:list sort.
undup-sorts L R :- std.do! [

  if (std.mem L prop) (R1 = [prop]) (R1 = []),
  if (std.mem L sprop) (R2 = [sprop]) (R2 = []),
  if (std.mem L (typ _)) (R3 = [typ _]) (R3 = []),

  std.flatten [R1, R2, R3] R,
].

% also prunes cs-default
pred undup-cs-patterns  i:list cs-pattern, o:list cs-pattern.
undup-cs-patterns L R :- std.do! [
  std.map-filter L (x\r\ x = cs-gref r) LGR,
  undup-grefs LGR ULGR,
  std.map ULGR (x\r\ r = cs-gref x) R1,

  std.map-filter L (x\r\ x = cs-sort r) LS,
  undup-sorts LS ULS,
  std.map ULS (x\r\ r = cs-sort x) R2,

  if (std.mem L cs-prod) (R3 = [cs-prod]) (R3 = []),

  std.flatten [R1, R2, R3] R,
].

% Mixins can be topologically sorted according to their dependencies
pred toposort-mixins i:list (w-args mixinname), o:list (w-args mixinname).
toposort-mixins In Out :- std.do! [
  std.map In triple_1 ML,
  std.map ML (m\r\sigma D D1\ gref-deps m D1, list-w-params_list D1 D, std.map D (d\r\r = pr d m) r) ES2,
  std.flatten ES2 ES,
  toposort-proj triple_1 ES In Out,
].

pred toposort-proj i:(A -> gref -> prop), i:list (pair gref gref), i:list A, o:list A.
toposort-proj Proj ES In Out :- !, toposort-proj.acc Proj ES [] In Out.
pred topo-find i:B, o:A.
pred toposort-proj.acc i:(A -> gref -> prop), i:list (pair gref gref), i:list gref, i:list A, o:list A.
toposort-proj.acc _ ES Acc [] Out :- !,
  std.map {std.gref.toposort ES Acc} topo-find Out.
toposort-proj.acc Proj ES Acc [A|In] Out :- std.do![
  Proj A B,
  topo-find B A => toposort-proj.acc Proj ES [B|Acc] In Out
].

% Classes can be topologically sorted according to the subclass relation
pred toposort-classes.mk-class-edge i:prop, o:pair classname classname.
toposort-classes.mk-class-edge (sub-class C1 C2 _ _) (pr C2 C1).
pred toposort-classes i:list classname, o:list classname.
toposort-classes In Out :- std.do! [
  std.findall (sub-class C1_ C2_ _ _) SubClasses,
  std.map SubClasses toposort-classes.mk-class-edge ES,
  std.gref.toposort ES In Out,
].

pred findall-classes o:list class.
findall-classes CLSortedDef :- std.do! [
  std.findall (class-def C_) All,
  std.map All class-def_name CL,
  toposort-classes CL CLSorted,
  std.map CLSorted classname->def CLSortedDef,
].

pred findall-classes-for.unsorted
  i:list mixinname, i:list classname, o:list classname.
findall-classes-for.unsorted [] CL CL :- !.
findall-classes-for.unsorted [M|ML] CLAcc Out :- std.do! [
  std.findall (mixin-class M C_) All,
  std.map All mixin-class_class CL,
  findall-classes-for.unsorted ML {std.append CL CLAcc} Out
].

pred findall-classes-for i:list mixinname, o:list class.
findall-classes-for ML CLSortedDef :- std.do! [
  findall-classes-for.unsorted ML [] CL,
  toposort-classes CL CLSorted,
  std.map CLSorted classname->def CLSortedDef,
].

pred findall-builders o:list builder.
findall-builders LFIL :-
  std.map {std.findall (builder-decl B_)} extract-builder LFILunsorted,
  std.bubblesort LFILunsorted leq-builder LFIL.

pred findall-has-mixin-instance i:cs-pattern,  o:list prop.
findall-has-mixin-instance P CL :-
   std.findall (has-mixin-instance P _ _) CL.

pred has-mixin-instance_key i:prop, o:cs-pattern.
has-mixin-instance_key (has-mixin-instance P _ _) P.

pred findall-mixin-src i:term, o:list mixinname.
findall-mixin-src T ML :-
  std.map {std.findall (mixin-src T M_ V_)} mixin-src_mixin ML.

pred findall-local-canonical o:list constant.
findall-local-canonical CL :-
  std.map {std.findall (local-canonical C_)} local-canonical-gref CL.

% [distinct-pairs-below C AllSuper C1 C2] finds C1 and C2 in
% AllSuper (all super classes of C) such that C1 != C2
% and for which there is no join C3.
% If there exists a join C3 of C1 and C2 then C is a subclass
% of C3 (otherwise C should have been declared before C3)
%
%        / --- /-- C1
%    C -- no C3    !=
%        \ --- \-- C2
%
% [findall-newjoins C AllSuper] finds all C1 and C2 such that C is a (new) join for
% them
pred distinct-pairs-below i:class, i:list class, o:class, o:class.
distinct-pairs-below CurrentClass AllSuper C1 C2 :-
  std.mem AllSuper C1, std.mem AllSuper C2,
  % no cut until here, since we don't know which C1 and C2 to pick
  std.do! [
    cmp_term C1 C2 lt,
    C1 = class C1n _ _,
    C2 = class C2n _ _ ,
    not(sub-class? C1 C2),
    not(sub-class? C2 C1),
    if (join C1n C2n C3n)
       (assert-building-bottom-up CurrentClass C3n C1n C2n, fail) % a join, not a valid pair
       true, % no join, valid pair
  ].

pred assert-building-bottom-up i:class, i:classname, i:classname, i:classname.
assert-building-bottom-up CurrentClass C3n C1n C2n :-
  class-def (class C3n X Y),
  CurrentClass = class CC _ _,
  if (not (sub-class? CurrentClass (class C3n X Y)))
     (gref->modname CC 1 "." Before, gref->modname_short C3n "." After,
      gref->modname_short C1n "." C1nS, gref->modname_short C2n "." C2nS,
      Msg1 is "- declare structure " ^ Before ^ " before structure " ^ After ^ " if " ^ After ^ " inherits from it;",
      Msg2 is "- declare an additional structure that inherits from both "
        ^ C1nS ^ " and " ^ C2nS
        ^ " and from which " ^ Before ^ " and/or " ^ After ^ " inherit.",
      coq.error "You must declare the hierarchy bottom-up or add a missing join."
       "There are two ways out:"
       Msg1
       Msg2)
     true.

pred distinct-pairs_pair i:prop, o:pair class class.
distinct-pairs_pair (distinct-pairs-below _ _ X Y) (pr X Y).

pred findall-newjoins i:class, i:list class, o:list (pair class class).
findall-newjoins CurrentClass AllSuper TodoJoins :-
  std.findall (distinct-pairs-below CurrentClass AllSuper C1_ C2_) JoinOf,
  std.map JoinOf distinct-pairs_pair TodoJoins.

pred class-coverage i:list classname, o:coq.gref.set.
class-coverage CNL CSet :-
  std.map CNL classname->mixins CMLLwP,
  std.map CMLLwP list-w-params_list CMLL,
  coq.gref.list->set {std.flatten CMLL} CSet.

pred assert-good-coverage! i:list mixinname, i:list classname.
assert-good-coverage! MLSortedRev CNL :- std.do! [
  coq.gref.list->set MLSortedRev MLSet,
  class-coverage CNL CMLSet,
  if (not(coq.gref.set.equal MLSet CMLSet))
     (coq.gref.set.diff CMLSet MLSet Extra,
      coq.error "I could not find classes covering exactly mixins:"
        {std.any->string MLSortedRev}
        "In particular the covering" CNL "also includes mixins:"
        {coq.gref.set.elements Extra}
        "This should never happen, please report a bug.")
     true
].

%%%%% Coq Database %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% [get-structure-coercion S1 S2 F] finds the coecion F from the structure S1 to S2
pred get-structure-coercion i:structure, i:structure, o:term.
get-structure-coercion S T (global F) :-
  coq.coercion.db-for (grefclass S) (grefclass T) L,
  if (L = [pr F _]) true (coq.error "No one step coercion from" S "to" T).

pred get-structure-sort-projection i:structure, o:term.
get-structure-sort-projection (indt S) Proj :- !,
  coq.env.projections S L,
  if (L = [some P, _]) true (coq.error "No canonical sort projection for" S),
  Proj = global (const P).
get-structure-sort-projection S _ :- coq.error "get-structure-sort-projection: not a structure" S.

pred get-structure-class-projection i:structure, o:term.
get-structure-class-projection (indt S) T :- !,
  coq.env.projections S L,
  if (L = [_, some P]) true (coq.error "No canonical class projection for" S),
  T = global (const P).
get-structure-class-projection S _ :- coq.error "get-structure-class-projection: not a structure" S.

pred get-constructor i:gref, o:gref.
get-constructor (indt R) (indc K) :- !,
 if (coq.env.indt R _ _ _ _ [K] _) true (coq.error "Not a record" R).
get-constructor I _ :- coq.error "get-constructor: not an inductive" I.

% finding for locally defined structures
pred get-cs-structure i:cs-instance, o:structure.
get-cs-structure (cs-instance _ _ (const Inst)) Struct :- std.do! [
  coq.env.typeof (const Inst) InstTy,
  coq.prod-tgt->gref InstTy Struct,
  is-structure Struct,
].

pred get-cs-instance i:cs-instance, o:constant.
get-cs-instance (cs-instance _ _ (const Inst)) Inst.

pred has-cs-instance i:gref, i:cs-instance.
has-cs-instance GTy (cs-instance _ (cs-gref GTy) _).


pred mixin-src->has-mixin-instance i:prop, o:prop.
mixin-src->has-mixin-instance  (mixin-src (global GR) M I) (has-mixin-instance (cs-gref GR) M IHd) :-
  term->gref I IHd.

mixin-src->has-mixin-instance (mixin-src (app [global GR|_] ) M I) (has-mixin-instance (cs-gref GR) M IHd) :-
  term->gref I IHd.

mixin-src->has-mixin-instance (mixin-src (prod _ _ _ ) M I) (has-mixin-instance cs-prod M IHd):-
  term->gref I IHd.

mixin-src->has-mixin-instance (mixin-src (sort U) M I) (has-mixin-instance (cs-sort U) M IHd):-
  term->gref I IHd.

% this auxiliary function iterates over the list of arguments of an application,
% and create the necessary unify condition for each arguments
% and at the end returns the mixin-src clause with all the conditions
pred mixin-instance-type->mixin-src.aux
  i:list term, % list of arguments
  i:term, % head of the original application
  i:mixinname, % name of mixin
  i:term, % instance body
  i:list prop, % Cond list
  o:prop.
mixin-instance-type->mixin-src.aux [] T M I Cond (mixin-src T M I :- Cond).
mixin-instance-type->mixin-src.aux [A|Args] T M I Cond  (pi a \ C a) :-
  pi a \
  sigma Ta\
    coq.mk-app T [a] Ta,
    mixin-instance-type->mixin-src.aux Args Ta M I [coq.unify-eq A a ok|Cond] (C a).


% transforms the type of a mixin instance into a
% mixin-src clause with eventual conditions regarding its parameters
pred mixin-instance-type->mixin-src
  i:term, % type of the instance Ty
  i:mixinname, % name of mixin
  i:term, % instance body I of type Ty
  i:list prop, % Cond list
  o:prop.

mixin-instance-type->mixin-src (app _ as F) M I Cond C :-
  factory? F (triple _ _ Subject),
  safe-dest-app Subject Hd Args,
  mixin-instance-type->mixin-src.aux Args Hd M I Cond C.

mixin-instance-type->mixin-src (prod N_ _ F) M I Cond (pi a \ C a) :-
  pi a\
  sigma  Ia \
  coq.mk-app I [a] Ia,
    mixin-instance-type->mixin-src (F a) M Ia Cond (C a).

pred has-mixin-instance->mixin-src i:prop, o:prop.
has-mixin-instance->mixin-src (has-mixin-instance _ M IHd) C :- std.do![
  T = global IHd,
  coq.env.typeof IHd Ty,
  mixin-instance-type->mixin-src Ty M T [] C,
].

pred get-canonical-structures i:term, o:list structure.
get-canonical-structures TyTrm StructL :- std.do! [
  term->cs-pattern TyTrm Pat, !,
  coq.CS.db-for _ Pat DBGTyL,
  std.map-filter DBGTyL get-cs-structure StructL,
].

pred get-canonical-instances i:term, o:list constant.
get-canonical-instances TyTrm StructL :- std.do! [
  term->cs-pattern TyTrm Pat, !,
  coq.CS.db-for _ Pat DBGTyL,
  std.map-filter DBGTyL get-cs-instance StructL,
].

pred has-CS-instance? i:term, i:structure.
has-CS-instance? TyTerm (indt Struct) :- std.do! [
  term->cs-pattern TyTerm Pat,
  coq.env.projections Struct [some Proj, _],
  coq.CS.db-for (const Proj) Pat L,
  not(L = [])
].

pred structure-nparams i:structure, o:int.
structure-nparams Structure NParams :-
  class-def (class Class Structure _),
  factory-nparams Class NParams.

pred factory? i:term, o:w-args factoryname.
factory? S (triple F Params T) :-
  not (var S), !,
  safe-dest-app S (global GR) Args,
  factory-alias->gref GR F ok,
  factory-nparams F NP, !,
  std.split-at NP Args Params [T|_].

% [find-max-classes Mixins Classes] states that Classes is a list of classes
%   which contain all the mixins in Mixins.
% Although it is not strictly necessary, but desirable for debugging,
% we use a heuristic that tries to minimize the number
% of classes by assuming Mixins are reversed topologically sorted.
% Note: works with flat mixins, no params
pred find-max-classes i:list mixinname, o:list classname.
find-max-classes [] [].
find-max-classes [M|Mixins] [C|Classes] :-
  mixin-first-class M C,
  std.do! [
    class-def (class C _ MLwP),
    list-w-params_list MLwP ML,
    std.filter Mixins (x\ not (std.mem! ML x)) Mixins',
    find-max-classes Mixins' Classes
  ].
find-max-classes [M|_] _ :- coq.error "HB: cannot find a class containing mixin" M.