1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
(* Accompanying material to https://hal.inria.fr/hal-02478907 *)
From Coq Require Import ssreflect ssrfun ZArith.
From HB Require Import structures.
Declare Scope hb_scope.
Delimit Scope hb_scope with G.
Open Scope hb_scope.
(* Bottom mixin in Fig. 2. *)
HB.mixin Record Monoid_of_Type M := {
zero : M;
add : M -> M -> M;
addrA : associative add;
add0r : left_id zero add;
addr0 : right_id zero add;
}.
HB.structure Definition Monoid := { M of Monoid_of_Type M }.
Notation "0" := zero : hb_scope.
Infix "+" := (@add _) : hb_scope.
(* Bottom right mixin in Fig. 2. *)
HB.mixin Record AbelianGroup_of_Monoid A of Monoid A := {
opp : A -> A;
addrC : commutative (add : A -> A -> A);
addNr : left_inverse zero opp add;
}.
HB.structure Definition AbelianGroup :=
{ A of Monoid A & AbelianGroup_of_Monoid A }.
Notation "- x" := (@opp _ x) : hb_scope.
Notation "x - y" := (x + - y) : hb_scope.
(* Bottom left mixin in Fig. 2. *)
HB.mixin Record SemiRing_of_Monoid S of Monoid S := {
one : S;
mul : S -> S -> S;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
mul0r : left_zero zero mul;
mulr0 : right_zero zero mul;
}.
HB.structure Definition SemiRing := { S of Monoid S & SemiRing_of_Monoid S }.
Notation "1" := one : hb_scope.
Infix "*" := (@mul _) : hb_scope.
Lemma addrN {A : AbelianGroup.type} : right_inverse (zero : A) opp add.
Proof. by move=> x; rewrite addrC addNr. Qed.
(* Top right factory in Fig. 2. *)
HB.factory Record Ring_of_AbelianGroup R of AbelianGroup R := {
one : R;
mul : R -> R -> R;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
(* Builder arrow from top right to bottom left in Fig. 2. *)
HB.builders Context (R : Type) (f : Ring_of_AbelianGroup R).
Fact mul0r : left_zero zero mul.
Proof.
move=> x; rewrite -[LHS]add0r addrC.
rewrite -{2}(addNr (mul x x)) (addrC (opp _)) addrA.
by rewrite -mulrDl add0r addrC addNr.
Qed.
Fact mulr0 : right_zero zero mul.
Proof.
move=> x; rewrite -[LHS]add0r addrC.
rewrite -{2}(addNr (mul x x)) (addrC (opp _)) addrA.
by rewrite -mulrDr add0r addrC addNr.
Qed.
HB.instance
Definition to_SemiRing_of_Monoid := SemiRing_of_Monoid.Build R _ mul mulrA
mul1r mulr1 mulrDl mulrDr mul0r mulr0.
HB.end.
HB.structure Definition Ring :=
{ R of AbelianGroup R & Ring_of_AbelianGroup R }.
(* Top left factory in Fig. 2. *)
(* It is an exact copy of the bottom right mixin. *)
HB.factory Definition Ring_of_SemiRing R of SemiRing R := AbelianGroup_of_Monoid R.
(* The corresponding builder is the identity. *)
HB.builders Context (R : Type) (f : Ring_of_SemiRing R).
HB.instance
Definition to_AbelianGroup_of_Monoid : AbelianGroup_of_Monoid R := f.
HB.end.
(* Right-most factory in Fig. 2. *)
HB.factory Record Ring_of_Monoid R of Monoid R := {
one : R;
opp : R -> R;
mul : R -> R -> R;
addNr : left_inverse zero opp add;
addrN : right_inverse zero opp add;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
HB.builders Context (R : Type) (f : Ring_of_Monoid R).
Lemma addrC : commutative (add : R -> R -> R).
Proof. (* Exactly the same as in Appendix B. *)
have innerC (a b : R) : a + b + (a + b) = a + a + (b + b).
by rewrite -[a+b]mul1r -mulrDl mulrDr !mulrDl !mul1r.
have addKl (a b c : R) : a + b = a + c -> b = c.
apply: can_inj (add a) (add (opp a)) _ _ _.
by move=> x; rewrite addrA addNr add0r.
have addKr (a b c : R) : b + a = c + a -> b = c.
apply: can_inj (add ^~ a) (add ^~ (opp a)) _ _ _.
by move=> x; rewrite /= -addrA addrN addr0.
move=> x y; apply: addKl (x) _ _ _; apply: addKr (y) _ _ _.
by rewrite -!addrA [in RHS]addrA innerC !addrA.
Qed.
(* Builder to the bottom right mixin. *)
HB.instance
Definition to_AbelianGroup_of_Monoid :=
AbelianGroup_of_Monoid.Build R opp addrC addNr.
(* Builder to the top right factory, which is compiled to the bottom left mixin. *)
HB.instance
Definition to_Ring_of_AbelianGroup := Ring_of_AbelianGroup.Build R one mul
mulrA mul1r mulr1 mulrDl mulrDr.
HB.end.
(********)
(* TEST *)
(********)
Print Monoid.type.
(* Monoid.type := { sort : Type; ... } *)
Check @add.
(* add : forall M : Monoid.type, M -> M -> M *)
Check @addNr.
(* addNr : forall R : AbelianGroup.type, left_inverse 0 opp add *)
Check @addrC. (* is still an axiom of abelian groups *)
(* addrC : forall R : AbelianGroup.type, commutative add *)
HB.instance
Definition Z_Monoid_axioms : Monoid_of_Type Z :=
Monoid_of_Type.Build Z 0%Z Z.add Z.add_assoc Z.add_0_l Z.add_0_r.
HB.instance
Definition Z_Ring_axioms : Ring_of_Monoid Z :=
Ring_of_Monoid.Build Z 1%Z Z.opp Z.mul
Z.add_opp_diag_l Z.add_opp_diag_r Z.mul_assoc Z.mul_1_l Z.mul_1_r
Z.mul_add_distr_r Z.mul_add_distr_l.
Lemma exercise (m n : Z) : (n + m) - n * 1 = m.
Proof. by rewrite mulr1 (addrC n) -(addrA m) addrN addr0. Qed.
|