1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
Require Import ZArith ssreflect ssrfun.
From HB Require Import structures.
HB.mixin Record is_semigroup (S : Type) := {
add : S -> S -> S;
addrA : associative add;
}.
HB.structure Definition SemiGroup := { S & is_semigroup S }.
HB.mixin Record semigroup_is_monoid M of is_semigroup M := {
zero : M;
add0r : forall x, add zero x = x;
addr0 : forall x, add x zero = x;
}.
HB.factory Record is_monoid M := {
zero : M;
add : M -> M -> M;
addrA : associative add;
add0r : forall x, add zero x = x;
addr0 : forall x, add x zero = x;
}.
HB.builders Context (M : Type) of is_monoid M.
HB.instance Definition _ := is_semigroup.Build M add addrA.
HB.instance Definition _ := semigroup_is_monoid.Build M zero add0r addr0.
HB.end.
HB.structure Definition Monoid := { M & is_monoid M }.
HB.mixin Record monoid_is_group G of is_monoid G := {
opp : G -> G;
subrr : forall x, add x (opp x) = zero;
addNr : forall x, add (opp x) x = zero;
}.
HB.factory Record is_group G := {
zero : G;
add : G -> G -> G;
opp : G -> G;
addrA : associative add;
add0r : forall x, add zero x = x;
(* addr0 : forall x, add x zero = x; (* spurious *) *)
subrr : forall x, add x (opp x) = zero;
addNr : forall x, add (opp x) x = zero;
}.
HB.builders Context G of is_group G.
Let addr0 : forall x, add x zero = x.
Proof. by move=> x; rewrite -(addNr x) addrA subrr add0r. Qed.
HB.instance Definition _ := is_monoid.Build G zero add addrA add0r addr0.
HB.instance Definition _ := monoid_is_group.Build G opp subrr addNr.
HB.end.
HB.instance Definition Z_is_group : is_group Z :=
is_group.Build Z 0%Z Z.add Z.opp
Z.add_assoc Z.add_0_l (* Z.add_0_r (*spurious *) *)
Z.sub_diag Z.add_opp_diag_l.
|