1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
|
Require Import ssreflect ssrfun.
From HB Require Import structures.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Add Search Blacklist "__canonical__".
Declare Scope algebra_scope.
Delimit Scope algebra_scope with A.
Local Open Scope algebra_scope.
Declare Scope cat_scope.
Delimit Scope cat_scope with cat.
Local Open Scope cat_scope.
(* we assume a few axioms to make life easier *)
Axiom funext : forall {T : Type} {U : T -> Type} [f g : forall t, U t],
(forall t, f t = g t) -> f = g.
Axiom propext : forall P Q : Prop, P <-> Q -> P = Q.
Axiom Prop_irrelevance : forall (P : Prop) (x y : P), x = y.
(* Shortcut *)
Notation U := Type.
(* Base definition : raw categories = quivers *)
HB.mixin Record IsQuiver C := { hom : C -> C -> U }.
Unset Universe Checking.
#[short(type="quiver")]
HB.structure Definition Quiver : Set := { C of IsQuiver C }.
Set Universe Checking.
Bind Scope cat_scope with quiver.
Bind Scope cat_scope with hom.
Arguments hom {C} : rename.
Notation homs T := (@hom T _ _).
Notation "a ~> b" := (hom a b)
(at level 99, b at level 200, format "a ~> b") : cat_scope.
Notation "a ~>_ C b" := (@hom C a b)
(at level 99, C at level 0, only parsing) : cat_scope.
(* precategories are quivers + id and comp *)
HB.mixin Record Quiver_IsPreCat C of Quiver C := {
idmap : forall (a : C), a ~> a;
comp : forall (a b c : C), (a ~> b) -> (b ~> c) -> (a ~> c);
}.
HB.factory Record IsPreCat C := {
hom : C -> C -> U;
idmap : forall (a : C), hom a a;
comp : forall (a b c : C), hom a b -> hom b c -> hom a c;
}.
HB.builders Context C of IsPreCat C.
HB.instance Definition _ := IsQuiver.Build C hom.
HB.instance Definition _ := Quiver_IsPreCat.Build C idmap comp.
HB.end.
Unset Universe Checking.
#[short(type="precat")]
HB.structure Definition PreCat : Set := { C of IsPreCat C }.
Set Universe Checking.
Bind Scope cat_scope with precat.
Arguments idmap {C} {a} : rename.
Arguments comp {C} {a b c} : rename.
Notation "f \o g" := (comp g f) : cat_scope.
Notation "f \; g :> T" := (@comp T _ _ _ f g)
(at level 60, g, T at level 60, format "f \; g :> T", only parsing) : cat_scope.
Notation "f \; g" := (comp f g) : cat_scope.
Notation "\idmap_ a" := (@idmap _ a) (only parsing, at level 0) : cat_scope.
(* categories are precategories + laws *)
HB.mixin Record PreCat_IsCat C of PreCat C := {
comp1o : forall (a b : C) (f : a ~> b), idmap \; f = f;
compo1 : forall (a b : C) (f : a ~> b), f \; idmap = f;
compoA : forall (a b c d : C) (f : a ~> b) (g : b ~> c) (h : c ~> d),
f \; (g \; h) = (f \; g) \; h
}.
Unset Universe Checking.
#[short(type="cat")]
HB.structure Definition Cat : Set := { C of PreCat_IsCat C & IsPreCat C }.
Set Universe Checking.
Bind Scope cat_scope with cat.
Arguments compo1 {C a b} : rename.
Arguments comp1o {C a b} : rename.
Arguments compoA {C a b c d} : rename.
(* the discrete category on a type cannot be the default, we make an alias *)
Definition discrete (T : U) := T.
HB.instance Definition _ T := @IsPreCat.Build (discrete T) (fun x y => x = y)
(fun=> erefl) (@etrans _).
Lemma etransA T (a b c d : discrete T) (f : a ~> b) (g : b ~> c) (h : c ~> d) :
f \; (g \; h) = (f \; g) \; h.
Proof. by rewrite /idmap/comp/=; case: _ / h; case: _ / g. Qed.
HB.instance Definition _ T := PreCat_IsCat.Build (discrete T) (@etrans_id _)
(fun _ _ _ => erefl) (@etransA _).
(* the category of the unit type is the discrete one *)
HB.instance Definition _ := Cat.copy unit (discrete unit).
HB.instance Definition _ := @IsPreCat.Build U (fun A B => A -> B)
(fun a => idfun) (fun a b c (f : a -> b) (g : b -> c) => (g \o f)%FUN).
HB.instance Definition _ := PreCat_IsCat.Build U (fun _ _ _ => erefl)
(fun _ _ _ => erefl) (fun _ _ _ _ _ _ _ => erefl).
Lemma Ucomp (X Y Z : U) (f : X ~> Y) (g : Y ~> Z) : f \; g = (g \o f)%FUN.
Proof. by []. Qed.
Lemma Ucompx (X Y Z : U) (f : X ~> Y) (g : Y ~> Z) x : (f \; g) x = g (f x).
Proof. by []. Qed.
Lemma U1 (X : U) : \idmap_X = idfun.
Proof. by []. Qed.
Lemma U1x (X : U) x : \idmap_X x = x.
Proof. by []. Qed.
(* a prefunctor is a functor without laws *)
HB.mixin Record IsPreFunctor (C D : quiver) (F : C -> D) := {
Fhom : forall (a b : C), (a ~> b) -> (F a ~> F b)
}.
Unset Universe Checking.
HB.structure Definition PreFunctor (C D : quiver) : Set :=
{ F of IsPreFunctor C D F }.
Set Universe Checking.
HB.instance Definition _ := IsQuiver.Build quiver PreFunctor.type.
Notation "F ^$" := (@Fhom _ _ F _ _)
(at level 1, format "F ^$") : cat_scope.
Notation "F <$> f" := (@Fhom _ _ F _ _ f)
(at level 58, format "F <$> f", right associativity) : cat_scope.
(* prefunctors are equal if their object and hom part are respectively equal *)
Lemma prefunctorP (C D : quiver) (F G : C ~> D) (eqFG : F =1 G) :
let homF a b F := F a ~> F b in
(forall a b f, eq_rect _ (homF a b) (F <$> f) _ (funext eqFG) = G <$> f) ->
F = G.
Proof.
move: F G => [F [[/= Fhom]]] [G [[/= Ghom]]] in eqFG *.
case: _ / (funext eqFG) => /= in Ghom * => eqFGhom.
congr PreFunctor.Pack; congr PreFunctor.Class; congr IsPreFunctor.Axioms_.
by do 3!apply: funext=> ?.
Qed.
(* a functor is a prefunctor + laws for id and comp *)
HB.mixin Record PreFunctor_IsFunctor (C D : precat) (F : C -> D)
of @PreFunctor C D F := {
F1 : forall (a : C), F <$> \idmap_a = idmap;
Fcomp : forall (a b c : C) (f : a ~> b) (g : b ~> c),
F <$> (f \; g) = F <$> f \; F <$> g;
}.
Unset Universe Checking.
(* precat and cat have a quiver structure *)
HB.structure Definition Functor (C D : precat) : Set :=
{ F of IsPreFunctor C D F & PreFunctor_IsFunctor C D F }.
Set Universe Checking.
HB.instance Definition _ := IsQuiver.Build precat Functor.type.
HB.instance Definition _ := IsQuiver.Build cat Functor.type.
(* functor equality is the same as prefunctor because of PI *)
Lemma functorP (C D : precat) (F G : C ~> D) (eqFG : F =1 G) :
let homF a b F := F a ~> F b in
(forall a b f, eq_rect _ (homF a b) (F^$ f) _ (funext eqFG) = G^$ f) ->
F = G.
Proof.
move=> /= /prefunctorP {eqFG}.
case: F G => [F [/= Fm Fm']] [G [/= Gm Gm']]//=.
move=> [_] /EqdepFacts.eq_sigT_iff_eq_dep eqFG.
case: _ / eqFG in Gm' *.
congr Functor.Pack; congr Functor.Class.
case: Fm' Gm' => [F1 Fc] [G1 Gc].
by congr PreFunctor_IsFunctor.Axioms_; apply: Prop_irrelevance.
Qed.
(* the identity function is a functor *)
HB.instance Definition _ (C : quiver) :=
IsPreFunctor.Build C C idfun (fun a b => idfun).
HB.instance Definition _ (C : precat) :=
PreFunctor_IsFunctor.Build C C idfun (fun=> erefl) (fun _ _ _ _ _ => erefl).
(* the composition of prefunctors *)
Section comp_prefunctor.
Context {C D E : quiver} {F : C ~> D} {G : D ~> E}.
HB.instance Definition _ := IsPreFunctor.Build C E (G \o F)%FUN
(fun a b f => G <$> F <$> f).
Lemma comp_Fun (a b : C) (f : a ~> b) : (G \o F)%FUN <$> f = G <$> (F <$> f).
Proof. by []. Qed.
End comp_prefunctor.
Section comp_functor.
Context {C D E : precat} {F : C ~> D} {G : D ~> E}.
Lemma comp_F1 (a : C) : (G \o F)%FUN <$> \idmap_a = idmap.
Proof. by rewrite !comp_Fun !F1. Qed.
Lemma comp_Fcomp (a b c : C) (f : a ~> b) (g : b ~> c) :
(G \o F)%FUN <$> (f \; g) = (G \o F)%FUN <$> f \; (G \o F)%FUN <$> g.
Proof. by rewrite !comp_Fun !Fcomp. Qed.
HB.instance Definition _ := PreFunctor_IsFunctor.Build C E (G \o F)%FUN
comp_F1 comp_Fcomp.
End comp_functor.
(* precat and cat have a precategory structure *)
HB.instance Definition _ := Quiver_IsPreCat.Build precat
(fun=> idfun) (fun C D E (F : C ~> D) (G : D ~> E) => (G \o F)%FUN).
HB.instance Definition _ := Quiver_IsPreCat.Build cat
(fun=> idfun) (fun C D E (F : C ~> D) (G : D ~> E) => (G \o F)%FUN).
Lemma funext_frefl A B (f : A -> B) : funext (frefl f) = erefl.
Proof. exact: Prop_irrelevance. Qed.
(* precategories and categories form a category *)
Definition precat_cat : PreCat_IsCat precat.
Proof.
by split=> [C D F|C D F|C D C' D' F G H];
apply/functorP => a b f /=; rewrite funext_frefl.
Qed.
HB.instance Definition _ := precat_cat.
Definition cat_cat : PreCat_IsCat cat.
Proof.
by split=> [C D F|C D F|C D C' D' F G H];
apply/functorP => a b f /=; rewrite funext_frefl.
Qed.
HB.instance Definition _ := cat_cat.
Check (cat : cat).
(* concrete categories *)
HB.mixin Record Quiver_IsPreConcrete T of Quiver T := {
concrete : T -> U;
concrete_fun : forall (a b : T), (a ~> b) -> concrete a -> concrete b;
}.
Unset Universe Checking.
#[short(type="preconcrete_quiver")]
HB.structure Definition PreConcreteQuiver : Set :=
{ C of Quiver_IsPreConcrete C & IsQuiver C }.
Set Universe Checking.
Coercion concrete : PreConcreteQuiver.sort >-> Sortclass.
HB.mixin Record PreConcrete_IsConcrete T of PreConcreteQuiver T := {
concrete_fun_inj : forall (a b : T), injective (concrete_fun a b)
}.
Unset Universe Checking.
#[short(type="concrete_quiver")]
HB.structure Definition ConcreteQuiver : Set :=
{ C of PreConcreteQuiver C & PreConcrete_IsConcrete C }.
Set Universe Checking.
HB.instance Definition _ (C : ConcreteQuiver.type) :=
IsPreFunctor.Build _ _ (concrete : C -> U) concrete_fun.
HB.mixin Record PreCat_IsConcrete T of ConcreteQuiver T & PreCat T := {
concrete1 : forall (a : T), concrete <$> \idmap_a = idfun;
concrete_comp : forall (a b c : T) (f : a ~> b) (g : b ~> c),
concrete <$> (f \; g) = ((concrete <$> g) \o (concrete <$> f))%FUN;
}.
Unset Universe Checking.
#[short(type="concrete_precat")]
HB.structure Definition ConcretePreCat : Set :=
{ C of PreCat C & ConcreteQuiver C & PreCat_IsConcrete C }.
#[short(type="concrete_cat")]
HB.structure Definition ConcreteCat : Set :=
{ C of Cat C & ConcreteQuiver C & PreCat_IsConcrete C }.
Set Universe Checking.
HB.instance Definition _ (C : concrete_precat) :=
PreFunctor_IsFunctor.Build C U concrete (@concrete1 _) (@concrete_comp _).
HB.instance Definition _ (C : ConcreteCat.type) :=
PreFunctor_IsFunctor.Build C U concrete (@concrete1 _) (@concrete_comp _).
HB.instance Definition _ := Quiver_IsPreConcrete.Build U (fun _ _ => id).
HB.instance Definition _ := PreConcrete_IsConcrete.Build U (fun _ _ _ _ => id).
HB.instance Definition _ := PreCat_IsConcrete.Build U
(fun=> erefl) (fun _ _ _ _ _ => erefl).
Unset Universe Checking.
HB.instance Definition _ := Quiver_IsPreConcrete.Build quiver (fun _ _ => id).
HB.instance Definition _ := Quiver_IsPreConcrete.Build precat (fun _ _ => id).
HB.instance Definition _ := Quiver_IsPreConcrete.Build cat (fun _ _ => id).
Lemma quiver_concrete_subproof : PreConcrete_IsConcrete quiver.
Proof.
constructor=> C D F G FG; apply: prefunctorP.
by move=> x; congr (_ x); apply: FG.
by move=> *; apply: Prop_irrelevance.
Qed.
HB.instance Definition _ := quiver_concrete_subproof.
Lemma precat_concrete_subproof : PreConcrete_IsConcrete precat.
Proof.
constructor=> C D F G FG; apply: functorP.
by move=> x; congr (_ x); apply: FG.
by move=> *; apply: Prop_irrelevance.
Qed.
HB.instance Definition _ := precat_concrete_subproof.
Lemma cat_concrete_subproof : PreConcrete_IsConcrete cat.
Proof.
constructor=> C D F G FG; apply: functorP.
by move=> x; congr (_ x); apply: FG.
by move=> *; apply: Prop_irrelevance.
Qed.
HB.instance Definition _ := cat_concrete_subproof.
HB.instance Definition _ := PreCat_IsConcrete.Build precat
(fun=> erefl) (fun _ _ _ _ _ => erefl).
HB.instance Definition _ := PreCat_IsConcrete.Build cat
(fun=> erefl) (fun _ _ _ _ _ => erefl).
Set Universe Checking.
(* constant functor *)
Definition cst (C D : quiver) (c : C) := fun of D => c.
Arguments cst {C} D c.
HB.instance Definition _ {C D : precat} (c : C) :=
IsPreFunctor.Build D C (cst D c) (fun _ _ _ => idmap).
HB.instance Definition _ {C D : cat} (c : C) :=
PreFunctor_IsFunctor.Build D C (cst D c) (fun=> erefl)
(fun _ _ _ _ _ => esym (compo1 idmap)).
(* opposite category *)
Definition catop (C : U) : U := C.
Notation "C ^op" := (catop C) (at level 10, format "C ^op") : cat_scope.
HB.instance Definition _ (C : quiver) :=
IsQuiver.Build (C^op) (fun a b => hom b a).
HB.instance Definition _ (C : precat) :=
Quiver_IsPreCat.Build (C^op) (fun=> idmap) (fun _ _ _ f g => g \; f).
HB.instance Definition _ (C : cat) := PreCat_IsCat.Build (C^op)
(fun _ _ _ => compo1 _) (fun _ _ _ => comp1o _)
(fun _ _ _ _ _ _ _ => esym (compoA _ _ _)).
HB.instance Definition _ {C : precat} {c : C} :=
IsPreFunctor.Build C _ (hom c) (fun a b f g => g \; f).
Lemma hom_Fhom_subproof (C : cat) (x : C) :
PreFunctor_IsFunctor _ _ (hom x).
Proof. by split=> *; apply/funext => h; [apply: compo1 | apply: compoA]. Qed.
HB.instance Definition _ {C : cat} {c : C} := hom_Fhom_subproof c.
Check fun (C : cat) (x : C) => hom x : C ~>_cat U.
Lemma hom_op {C : quiver} (c : C^op) : hom c = (@hom C)^~ c.
Proof. reflexivity. Qed.
Lemma homFhomx {C : precat} (a b c : C) (f : a ~> b) (g : c ~> a) :
(hom c <$> f) g = g \; f.
Proof. reflexivity. Qed.
(* nary product of categories *)
Definition dprod {I : U} (C : I -> U) := forall i, C i.
Section hom_dprod.
Context {I : U} (C : I -> quiver).
Definition dprod_hom_subdef (a b : dprod C) := forall i, a i ~> b i.
HB.instance Definition _ := IsQuiver.Build (dprod C) dprod_hom_subdef.
End hom_dprod.
Arguments dprod_hom_subdef /.
Section precat_dprod.
Context {I : U} (C : I -> precat).
Definition dprod_idmap_subdef (a : dprod C) : a ~> a := fun=> idmap.
Definition dprod_comp_subdef (a b c : dprod C) (f : a ~> b) (g : b ~> c) : a ~> c :=
fun i => f i \; g i.
HB.instance Definition _ := IsPreCat.Build (dprod C)
dprod_idmap_subdef dprod_comp_subdef.
End precat_dprod.
Arguments dprod_idmap_subdef /.
Arguments dprod_comp_subdef /.
Section cat_dprod.
Context {I : U} (C : I -> cat).
Local Notation type := (dprod C).
Lemma dprod_is_cat : PreCat_IsCat type.
Proof.
split=> [a b f|a b f|a b c d f g h]; apply/funext => i;
[exact: comp1o | exact: compo1 | exact: compoA].
Qed.
HB.instance Definition _ := dprod_is_cat.
End cat_dprod.
(* binary product *)
Section hom_prod.
Context {C D : quiver}.
Definition prod_hom_subdef (a b : C * D) := ((a.1 ~> b.1) * (a.2 ~> b.2))%type.
HB.instance Definition _ := IsQuiver.Build (C * D)%type prod_hom_subdef.
End hom_prod.
Section precat_prod.
Context {C D : precat}.
HB.instance Definition _ := IsPreCat.Build (C * D)%type (fun=> (idmap, idmap))
(fun a b c (f : a ~> b) (g : b ~> c) => (f.1 \; g.1, f.2 \; g.2)).
End precat_prod.
Section cat_prod.
Context {C D : cat}.
Local Notation type := (C * D)%type.
Lemma prod_is_cat : PreCat_IsCat type.
Proof.
split=> [[a1 a2] [b1 b2] [f1 f2]|[a1 a2] [b1 b2] [f1 f2]|
[a1 a2] [b1 b2] [c1 c2] [d1 d2] [f1 f2] [g1 g2] [h1 h2]]; congr (_, _) => //=;
by [exact: comp1o | exact: compo1 | exact: compoA].
Qed.
HB.instance Definition _ := prod_is_cat.
End cat_prod.
(* naturality *)
HB.mixin Record IsNatural (C D : precat) (F G : C ~>_quiver D)
(n : forall c, F c ~> G c) := {
natural : forall (a b : C) (f : a ~> b),
F <$> f \; n b = n a \; G <$> f
}.
Unset Universe Checking.
HB.structure Definition Natural (C D : precat)
(F G : C ~>_quiver D) : Set :=
{ n of @IsNatural C D F G n }.
Set Universe Checking.
HB.instance Definition _ (C D : precat) :=
IsQuiver.Build (PreFunctor.type C D) (@Natural.type C D).
HB.instance Definition _ (C D : cat) :=
IsQuiver.Build (Functor.type C D) (@Natural.type C D).
Arguments natural {C D F G} n [a b] f : rename.
Check fun (C D : cat) (F G : C ~> D) => F ~>_(C ~>_cat D) G.
Lemma naturalx (C : precat) (D : concrete_precat)
(F G : C ~>_quiver D) (n : F ~> G) (a b : C) (f : a ~> b) g :
(concrete <$> n b) ((concrete <$> F <$> f) g) =
(concrete <$> G <$> f) ((concrete <$> n a) g).
Proof.
have /(congr1 (fun h => (concrete <$> h) g)) := natural n f.
by rewrite !Fcomp.
Qed.
Arguments naturalx {C D F G} n [a b] f.
Lemma naturalU (C : precat) (F G : C ~>_quiver U) (n : F ~> G)
(a b : C) (f : a ~> b) g : n b (F^$ f g) = G^$ f (n a g).
Proof. exact: (naturalx n). Qed.
Lemma natP (C D : precat) (F G : C ~>_quiver D) (n m : F ~> G) :
Natural.sort n = Natural.sort m -> n = m.
Proof.
case: n m => [/= n nP] [/= m mP] enm.
elim: _ / enm in mP *; congr Natural.Pack.
case: nP mP => [[?]] [[?]]; congr Natural.Class.
congr IsNatural.Axioms_.
exact: Prop_irrelevance.
Qed.
Notation "F ~~> G" := (F ~>_(homs quiver) G)
(at level 99, G at level 200, format "F ~~> G").
Notation "F ~~> G :> C ~> D" := (F ~> G :> (C ~>_quiver D))
(at level 99, G at level 200, C, D at level 0,
format "F ~~> G :> C ~> D").
Definition natural_id {C D : precat} (F : C ~>_quiver D) (a : C) := \idmap_(F a).
Definition natural_id_natural (C D : cat) (F : C ~>_quiver D) :
IsNatural C D F F (natural_id F).
Proof. by constructor=> a b f; rewrite /natural_id/= compo1 comp1o. Qed.
HB.instance Definition _ C D F := @natural_id_natural C D F.
Check fun {C D : cat} (F : C ~>_quiver D) => natural_id F : F ~> F.
Definition natural_comp {C D : precat} (F G H : C ~>_quiver D)
(m : F ~> G) (n : G ~> H) (a : C) := m a \; n a.
Definition natural_comp_natural (C D : cat) (F G H : C ~>_quiver D) m n :
IsNatural C D F H (@natural_comp C D F G H m n).
Proof.
constructor=> a b f; rewrite /natural_comp/=.
by rewrite compoA natural -compoA natural compoA.
Qed.
HB.instance Definition _ C D F G H m n := @natural_comp_natural C D F G H m n.
HB.instance Definition _ {C D : cat} :=
Quiver_IsPreCat.Build (PreFunctor.type C D) natural_id natural_comp.
HB.instance Definition _ {C D : cat} :=
Quiver_IsPreCat.Build (Functor.type C D) natural_id natural_comp.
Lemma prefunctor_cat {C D : cat} : PreCat_IsCat (PreFunctor.type C D).
Proof.
constructor => [F G f|F G f|F G H J f g h].
- by apply/natP/funext => a; rewrite /= /natural_comp comp1o.
- by apply/natP/funext => a; rewrite /= /natural_comp compo1.
- by apply/natP/funext => a; rewrite /= /natural_comp compoA.
Qed.
HB.instance Definition _ C D := @prefunctor_cat C D.
Lemma functor_cat {C D : cat} : PreCat_IsCat (Functor.type C D).
Proof.
constructor => [F G f|F G f|F G H J f g h].
- by apply/natP/funext => a; rewrite /= /natural_comp comp1o.
- by apply/natP/funext => a; rewrite /= /natural_comp compo1.
- by apply/natP/funext => a; rewrite /= /natural_comp compoA.
Qed.
HB.instance Definition _ C D := @functor_cat C D.
Section nat_map_left.
Context {C D E : precat} {F G : C ~> D}.
Definition nat_lmap (H : D ~>_quiver E) (n : forall c, F c ~> G c) :
forall c, (H \o F)%FUN c ~> (H \o G)%FUN c := fun c => H <$> n c.
Fail Check fun (H : D ~> E) (n : F ~~> G) => nat_lmap H n : H \o F ~~> H \o G.
Lemma nat_lmap_is_natural (H : D ~> E) (n : F ~~> G) :
IsNatural C E (H \o F) (H \o G) (nat_lmap H n).
Proof. by constructor=> a b f; rewrite /nat_lmap/= -!Fcomp natural. Qed.
HB.instance Definition _ H n := nat_lmap_is_natural H n.
Check fun (H : D ~> E) (n : F ~~> G) => nat_lmap H n : H \o F ~~> H \o G.
End nat_map_left.
Notation "F <o$> n" := (nat_lmap F n)
(at level 58, format "F <o$> n", right associativity) : cat_scope.
Section nat_map_right.
Context {C D E : precat} {F G : C ~> D}.
Definition nat_rmap (H : E -> C) (n : forall c, F c ~> G c) :
forall c, (F \o H)%FUN c ~> (G \o H)%FUN c := fun c => n (H c).
Lemma nat_rmap_is_natural (H : E ~> C :> quiver) (n : F ~~> G) :
IsNatural E D (F \o H)%FUN (G \o H)%FUN (nat_rmap H n).
Proof. by constructor=> a b f; rewrite /nat_lmap/= natural. Qed.
HB.instance Definition _ H n := nat_rmap_is_natural H n.
End nat_map_right.
Notation "F <$o> n" := (nat_rmap F n)
(at level 58, format "F <$o> n", right associativity) : cat_scope.
Definition delta (C D : cat) : C -> (D ~> C) := cst D.
Arguments delta C D : clear implicits.
Definition map_delta {C D : cat} (a b : C) (f : a ~> b) :
delta C D a ~> delta C D b.
Proof.
apply: (@Natural.Pack _ _ (cst D a) (cst D b) (fun x => f)).
apply: Natural.Class; apply: (IsNatural.Build _ _ _ _ _).
by move=> a' b' ?; rewrite compo1 comp1o.
Defined.
HB.instance Definition _ {C D : cat} :=
IsPreFunctor.Build C (D ~> C) (delta C D) (@map_delta C D).
Lemma delta_functor {C D : cat} : PreFunctor_IsFunctor _ _ (delta C D).
Proof. by constructor=> [a|a b c f g]; exact/natP. Qed.
HB.instance Definition _ C D := @delta_functor C D.
HB.mixin Record IsMonad (C : precat) (M : C -> C) of @PreFunctor C C M := {
unit : idfun ~~> M;
join : (M \o M)%FUN ~~> M;
bind : forall (a b : C), (a ~> M b) -> (M a ~> M b);
bindE : forall a b (f : a ~> M b), bind a b f = M <$> f \; join b;
unit_join : forall a, (M <$> unit a) \; join _ = idmap;
join_unit : forall a, join _ \; (M <$> unit a) = idmap;
join_square : forall a, M <$> join a \; join _ = join _ \; join _
}.
#[short(type="premonad")]
HB.structure Definition PreMonad (C : precat) :=
{M of @PreFunctor C C M & IsMonad C M}.
#[short(type="monad")]
HB.structure Definition Monad (C : precat) :=
{M of @Functor C C M & IsMonad C M}.
HB.factory Record IsJoinMonad (C : precat) (M : C -> C) of @PreFunctor C C M := {
unit : idfun ~~> M;
join : (M \o M)%FUN ~~> M;
unit_join : forall a, (M <$> unit a) \; join _ = idmap;
join_unit : forall a, join _ \; (M <$> unit a) = idmap;
join_square : forall a, M <$> join a \; join _ = join _ \; join _
}.
HB.builders Context C M of IsJoinMonad C M.
HB.instance Definition _ := IsMonad.Build C M
(fun a b f => erefl) unit_join join_unit join_square.
HB.end.
HB.mixin Record IsCoMonad (C : precat) (M : C -> C) of @IsPreFunctor C C M := {
counit : M ~~> idfun;
cojoin : M ~~> (M \o M)%FUN;
cobind : forall (a b : C), (M a ~> b) -> (M a ~> M b);
cobindE : forall a b (f : M a ~> b), cobind a b f = cojoin _ \; M <$> f;
unit_cojoin : forall a, (M <$> counit a) \; cojoin _ = idmap;
join_counit : forall a, cojoin _ \; (M <$> counit a) = idmap;
cojoin_square : forall a, cojoin _ \; M <$> cojoin a = cojoin _ \; cojoin _
}.
#[short(type="precomonad")]
HB.structure Definition PreCoMonad (C : precat) :=
{M of @PreFunctor C C M & IsCoMonad C M}.
#[short(type="comonad")]
HB.structure Definition CoMonad (C : precat) :=
{M of @Functor C C M & IsCoMonad C M}.
HB.factory Record IsJoinCoMonad (C : precat) (M : C -> C) of @IsPreFunctor C C M := {
counit : M ~~> idfun;
cojoin : M ~~> (M \o M)%FUN;
unit_cojoin : forall a, (M <$> counit a) \; cojoin _ = idmap;
join_counit : forall a, cojoin _ \; (M <$> counit a) = idmap;
cojoin_square : forall a, cojoin _ \; M <$> cojoin a = cojoin _ \; cojoin _
}.
HB.builders Context C M of IsJoinCoMonad C M.
HB.instance Definition _ := IsCoMonad.Build C M
(fun a b f => erefl) unit_cojoin join_counit cojoin_square.
HB.end.
Lemma idFmap (C : cat) (a b : C) (f : a ~> b) : idfun <$> f = f.
Proof. by []. Qed.
Lemma compFmap (C D E : cat) (F : C ~> D) (G : D ~> E) (a b : C) (f : a ~> b) :
(G \o F) <$> f = G <$> F <$> f.
Proof. by []. Qed.
(* yoneda *)
Section hom_repr.
Context {C : cat} (F : C ~>_cat U).
Definition homF : C -> U := fun c => hom c ~~> F.
Section nat.
Context (x y : C) (xy : x ~> y).
(* Goal hom x ~~> F -> hom y ~~> F *)
Context (n : hom x ~~> F).
Definition homFhom c : hom y c ~> F c := fun g => n _ (xy \; g).
Lemma homFhom_natural_subdef : IsNatural C U (hom y) F homFhom.
Proof.
by split=> a b f /=; apply/funext => g /=;
rewrite /homFhom !Ucompx/= !naturalU/= Fcomp.
Qed.
HB.instance Definition _ := homFhom_natural_subdef.
End nat.
Arguments homFhom / : clear implicits.
HB.about IsPreFunctor.Build.
Check homFhom : forall x y : C, (x ~> y) -> (homF x -> homF y).
HB.instance Definition _ := IsPreFunctor.Build _ _ homF homFhom.
Lemma homF_functor_subproof : PreFunctor_IsFunctor _ _ homF.
Proof.
split=> [a|a b c f g].
apply/funext => -[/= f natf].
apply: natP => //=; apply: funext => b; apply: funext => g/=.
by rewrite comp1o.
apply/funext => -[/= h natf].
apply: natP => //=; apply: funext => d; apply: funext => k/=.
by rewrite compoA.
Qed.
HB.instance Definition _ := homF_functor_subproof.
Section pointed.
Context (c : C).
Definition hom_repr : homF c ~> F c := fun f => f _ idmap.
Arguments hom_repr /.
Definition repr_hom (fc : F c) a : hom c a ~> F a :=
fun f => F^$ f fc.
Arguments repr_hom / : clear implicits.
Lemma repr_hom_subdef (fc : F c) : IsNatural _ _ _ _ (repr_hom fc).
Proof. by split=> a b f /=; apply/funext=> x; rewrite !Ucompx/= Fcomp. Qed.
HB.instance Definition _ {fc : F c} := repr_hom_subdef fc.
Definition repr_hom_nat : F c ~> homF c := repr_hom.
Lemma hom_reprK : cancel hom_repr repr_hom_nat.
Proof.
move=> f; apply/natP; apply/funext => a; apply/funext => g /=.
by rewrite -naturalU/=; congr (f _ _); apply: comp1o.
Qed.
Lemma repr_homK : cancel (repr_hom : F c ~> homF c) hom_repr.
Proof. by move=> fc; rewrite /= F1. Qed.
End pointed.
Arguments hom_repr /.
Arguments repr_hom /.
Lemma hom_repr_natural_subproof : IsNatural _ _ _ _ hom_repr.
Proof.
split=> a b f /=; apply/funext => n /=; rewrite !Ucompx/= compo1/=.
by rewrite -naturalU/=; congr (n _ _); apply/esym/comp1o.
Qed.
HB.instance Definition _ := hom_repr_natural_subproof.
(* show this from the previous proof *)
Lemma hom_natural_repr_subproof : IsNatural _ _ _ _ repr_hom_nat.
Proof.
split=> a b f /=; apply: funext => fa /=; rewrite !Ucompx/=.
apply: natP; apply: funext => c /=; apply: funext => d /=.
by rewrite Fcomp Ucompx/=.
Qed.
HB.instance Definition _ := hom_natural_repr_subproof.
Definition hom_repr_nat : homF ~~> F := hom_repr.
Definition repr_hom_nat_nat : F ~~> homF := repr_hom_nat.
End hom_repr.
(* comma categories *)
Module comma.
Section homcomma.
Context {C D E : precat} (F : C ~> E) (G : D ~> E).
Definition type := { x : C * D & F x.1 ~> G x.2 }.
Definition hom_subdef (a b : type) := {
f : tag a ~> tag b & F <$> f.1 \; tagged b = tagged a \; G <$> f.2
}.
HB.instance Definition _ := IsQuiver.Build type hom_subdef.
End homcomma.
Arguments hom_subdef /.
Section comma.
Context {C D E : cat} (F : C ~> E) (G : D ~> E).
Notation type := (type F G).
Program Definition idmap_subdef (a : type) : a ~> a := @Tagged _ idmap _ _.
Next Obligation. by rewrite !F1 comp1o compo1. Qed.
Program Definition comp_subdef (a b c : type)
(f : a ~> b) (g : b ~> c) : a ~> c :=
@Tagged _ (tag f \; tag g) _ _.
Next Obligation. by rewrite !Fcomp -compoA (tagged g) compoA (tagged f) compoA. Qed.
HB.instance Definition _ := IsPreCat.Build type idmap_subdef comp_subdef.
Arguments idmap_subdef /.
Arguments comp_subdef /.
Lemma comma_homeqP (a b : type) (f g : a ~> b) : projT1 f = projT1 g -> f = g.
Proof.
case: f g => [f fP] [g +]/= eqfg; case: _ / eqfg => gP.
by congr existT; apply: Prop_irrelevance.
Qed.
Lemma comma_is_cat : PreCat_IsCat type.
Proof.
by split=> [[a fa] [b fb] [*]|[a fa] [b fb] [*]|*];
apply/comma_homeqP; rewrite /= ?(comp1o, compo1, compoA).
Qed.
HB.instance Definition _ := comma_is_cat.
End comma.
End comma.
Notation "F `/` G" := (@comma.type _ _ _ F G)
(at level 40, G at level 40, format "F `/` G") : cat_scope.
Notation "a /` G" := (cst unit a `/` G)
(at level 40, G at level 40, format "a /` G") : cat_scope.
Notation "F `/ b" := (F `/` cst unit b)
(at level 40, b at level 40, format "F `/ b") : cat_scope.
Notation "a / b" := (cst unit a `/ b) : cat_scope.
(* (* Not working yet *) *)
(* HB.mixin Record IsInitial {C : quiver} (i : C) := { *)
(* to : forall c, i ~> c; *)
(* to_unique : forall c (f : i ~> c), f = to c *)
(* }. *)
(* #[short(type="initial")] *)
(* HB.structure Definition Initial {C : quiver} := {i of IsInitial C i}. *)
(* HB.mixin Record IsTerminal {C : quiver} (t : C) := { *)
(* from : forall c, c ~> t; *)
(* from_unique : forall c (f : c ~> t), f = from c *)
(* }. *)
(* #[short(type="terminal")] *)
(* HB.structure Definition Terminal {C : quiver} := {t of IsTerminal C t}. *)
(* #[short(type="universal")] *)
(* HB.structure Definition Universal {C : quiver} := *)
(* {u of Initial C u & Terminal C u}. *)
(* Definition hom' {C : precat} (a b : C) := a ~> b. *)
(* (* Bug *) *)
(* Identity Coercion hom'_hom : hom' >-> hom. *)
(* HB.mixin Record IsMono {C : precat} (b c : C) (f : hom b c) := { *)
(* monoP : forall (a : C) (g1 g2 : a ~> b), g1 \; f = g2 \; f -> g1 = g2 *)
(* }. *)
(* #[short(type="mono")] *)
(* HB.structure Definition Mono {C : precat} (a b : C) := {m of IsMono C a b m}. *)
(* Notation "a >~> b" := (mono a b) *)
(* (at level 99, b at level 200, format "a >~> b") : cat_scope. *)
(* Notation "C >~>_ T D" := (@mono T C D) *)
(* (at level 99, T at level 0, only parsing) : cat_scope. *)
(* HB.mixin Record IsEpi {C : precat} (a b : C) (f : hom a b) := { *)
(* epiP : forall (c : C) (g1 g2 : b ~> c), g1 \o f = g2 \o f -> g1 = g2 *)
(* }. *)
(* #[short(type="epi")] *)
(* HB.structure Definition Epi {C : precat} (a b : C) := {e of IsEpi C a b e}. *)
(* Notation "a ~>> b" := (epi a b) *)
(* (at level 99, b at level 200, format "a ~>> b") : cat_scope. *)
(* Notation "C ~>>_ T D" := (@epi T C D) *)
(* (at level 99, T at level 0, only parsing) : cat_scope. *)
(* #[short(type="iso")] *)
(* HB.structure Definition Iso {C : precat} (a b : C) := *)
(* {i of @Mono C a b i & @Epi C a b i}. *)
(* Notation "a <~> b" := (epi a b) *)
(* (at level 99, b at level 200, format "a <~> b") : cat_scope. *)
(* Notation "C <~>_ T D" := (@epi T C D) *)
(* (at level 99, T at level 0, only parsing) : cat_scope. *)
HB.mixin Record IsRightAdjoint (D C : precat) (R : D -> C)
of @PreFunctor D C R := {
L_ : C ~> D;
phi : forall c d, (L_ c ~> d) -> (c ~> R d);
psy : forall c d, (c ~> R d) -> (L_ c ~> d);
phi_psy c d : (phi c d \o psy c d)%FUN = @id (c ~> R d);
psy_phi c d : (psy c d \o phi c d)%FUN = @id (L_ c ~> d)
}.
#[short(type="right_adjoint")]
HB.structure Definition RightAdjoint (D C : precat) :=
{ R of @Functor D C R & IsRightAdjoint D C R }.
Arguments L_ {_ _}.
Arguments phi {D C s} {c d}.
Arguments psy {D C s} {c d}.
HB.mixin Record PreCat_IsMonoidal C of PreCat C := {
onec : C;
prod : (C * C)%type ~>_precat C;
}.
#[short(type="premonoidal")]
HB.structure Definition PreMonoidal := { C of PreCat C & PreCat_IsMonoidal C }.
Notation premonoidal := premonoidal.
Arguments prod {C} : rename.
Notation "a * b" := (prod (a, b)) : cat_scope.
Reserved Notation "f <*> g" (at level 40, g at level 40, format "f <*> g").
Notation "f <*> g" := (prod^$ (f, g)) (only printing) : cat_scope.
Notation "f <*> g" := (prod^$ ((f, g) : (_, _) ~> (_, _)))
(only parsing) : cat_scope.
Notation "1" := onec : cat_scope.
Definition hom_cast {C : quiver} {a a' : C} (eqa : a = a') {b b' : C} (eqb : b = b') :
(a ~> b) -> (a' ~> b').
Proof. now elim: _ / eqa; elim: _ / eqb. Defined.
HB.mixin Record PreFunctor_IsMonoidal (C D : premonoidal) F of
@PreFunctor C D F := {
fun_one : F 1 = 1;
fun_prod : forall (x y : C), F (x * y) = F x * F y;
}.
#[short(type="monoidal_prefunctor")]
HB.structure Definition MonoidalPreFunctor C D :=
{ F of @PreFunctor_IsMonoidal C D F }.
Arguments fun_prod {C D F x y} : rename.
(* Arguments fun_prodF {C D F x x'} f {y y'} g : rename. *)
Unset Universe Checking.
HB.instance Definition _ := IsQuiver.Build premonoidal MonoidalPreFunctor.type.
Set Universe Checking.
HB.instance Definition _ (C : quiver) :=
IsPreFunctor.Build (C * C)%type C fst
(fun (a b : C * C) (f : a ~> b) => f.1).
HB.instance Definition _ (C : quiver) :=
IsPreFunctor.Build (C * C)%type C snd
(fun (a b : C * C) (f : a ~> b) => f.2).
Definition prod3l {C : premonoidal} (x : C * C * C) : C :=
(x.1.1 * x.1.2) * x.2.
HB.instance Definition _ {C : premonoidal} :=
IsPreFunctor.Build _ C prod3l
(fun a b (f : a ~> b) => (f.1.1 <*> f.1.2) <*> f.2).
Definition prod3r {C : premonoidal} (x : C * C * C) : C :=
x.1.1 * (x.1.2 * x.2).
HB.instance Definition _ {C : premonoidal} :=
IsPreFunctor.Build _ C prod3r
(fun a b (f : a ~> b) => f.1.1 <*> (f.1.2 <*> f.2)).
Definition prod1r {C : premonoidal} (x : C) : C := 1 * x.
HB.instance Definition _ {C : premonoidal} :=
IsPreFunctor.Build C C prod1r
(fun (a b : C) (f : a ~> b) => \idmap_1 <*> f).
Definition prod1l {C : premonoidal} (x : C) : C := x * 1.
HB.instance Definition _ {C : premonoidal} :=
IsPreFunctor.Build C C prod1l
(fun (a b : C) (f : a ~> b) => f <*> \idmap_1).
HB.mixin Record PreMonoidal_IsMonoidal C of PreMonoidal C := {
prodA : prod3l ~~> prod3r;
prod1c : prod1r ~~> idfun;
prodc1 : prod1l ~~> idfun;
prodc1c : forall (x y : C),
prodA (x, 1, y) \; \idmap_x <*> prod1c y = prodc1 x <*> \idmap_y;
prodA4 : forall (w x y z : C),
prodA (w * x, y, z) \; prodA (w, x, y * z) =
prodA (w, x, y) <*> \idmap_z \; prodA (w, x * y, z) \; \idmap_w <*> prodA (x, y, z);
}.
Unset Universe Checking.
#[short(type="monoidal")]
HB.structure Definition Monoidal : Set :=
{ C of PreMonoidal_IsMonoidal C & PreMonoidal C }.
Set Universe Checking.
HB.mixin Record IsRing A := {
zero : A;
one : A;
add : A -> A -> A;
opp : A -> A;
mul : A -> A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
addNr : left_inverse zero opp add;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
#[short(type="ring")]
HB.structure Definition Ring := { A of IsRing A }.
Bind Scope algebra_scope with Ring.sort.
Notation "0" := zero : algebra_scope.
Notation "1" := one : algebra_scope.
Infix "+" := (@add _) : algebra_scope.
Notation "- x" := (@opp _ x) : algebra_scope.
Infix "*" := (@mul _) : algebra_scope.
Notation "x - y" := (x + - y) : algebra_scope.
Lemma addr0 (R : ring) : right_id (@zero R) add.
Proof. by move=> x; rewrite addrC add0r. Qed.
Lemma addrN (R : ring) : right_inverse (@zero R) opp add.
Proof. by move=> x; rewrite addrC addNr. Qed.
Lemma addKr (R : ring) (x : R) : cancel (add x) (add (- x)).
Proof. by move=> y; rewrite addrA addNr add0r. Qed.
Lemma addrI (R : ring) (x : R) : injective (add x).
Proof. exact: can_inj (addKr _). Qed.
Lemma opprK (R : ring) : involutive (@opp R).
Proof. by move=> x; apply: (@addrI _ (- x)); rewrite addNr addrN. Qed.
HB.mixin Record IsRingHom (A B : ring) (f : A -> B) := {
hom1_subproof : f 1%A = 1%A;
homB_subproof : {morph f : x y / x - y};
homM_subproof : {morph f : x y / (x * y)%A};
}.
HB.structure Definition RingHom A B := { f of IsRingHom A B f }.
Lemma id_IsRingHom A : IsRingHom A A idfun. Proof. by []. Defined.
HB.instance Definition _ A := id_IsRingHom A.
Lemma comp_IsRingHom (A B C : ring)
(f : RingHom.type A B) (g : RingHom.type B C) :
IsRingHom A C (f \; g :> U).
Proof.
by constructor => [|x y|x y];
rewrite /comp/= ?hom1_subproof ?homB_subproof ?homM_subproof.
Qed.
HB.instance Definition _ A B C f g := @comp_IsRingHom A B C f g.
HB.instance Definition _ := IsQuiver.Build ring RingHom.type.
HB.instance Definition _ :=
Quiver_IsPreCat.Build ring (fun _ => idfun) (fun _ _ _ f g => f \; g :> U).
HB.instance Definition _ := Quiver_IsPreConcrete.Build ring (fun _ _ => id).
Lemma ring_precat : PreConcrete_IsConcrete ring.
Proof.
constructor => A B [f cf] [g cg]//=; rewrite -[_ = _]/(f = g) => fg.
case: _ / fg in cg *; congr {|RingHom.sort := _ ; RingHom.class := _|}.
case: cf cg => [[? ? ?]] [[? ? ?]].
by congr RingHom.Class; congr IsRingHom.phant_Build => //=; apply: Prop_irrelevance.
Qed.
HB.instance Definition _ := ring_precat.
Lemma ring_IsCat : PreCat_IsCat ring.
Proof.
by constructor=> [A B f|A B f|A B C D f g h]; exact: concrete_fun_inj.
Qed.
HB.instance Definition _ := ring_IsCat.
Lemma hom1 (R S : ring) (f : R ~> S) : f 1%A = 1%A.
Proof. exact: hom1_subproof. Qed.
Lemma homB (R S : ring) (f : R ~> S) : {morph f : x y / x - y}.
Proof. exact: homB_subproof. Qed.
Lemma homM (R S : ring) (f : R ~> S) : {morph f : x y / (x * y)%A}.
Proof. exact: homM_subproof. Qed.
Lemma hom0 (R S : ring) (f : R ~> S) : f 0%A = 0%A.
Proof. by rewrite -(addrN 1%A) homB addrN. Qed.
Lemma homN (R S : ring) (f : R ~> S) : {morph f : x / - x}.
Proof. by move=> x; rewrite -[- x]add0r homB hom0 add0r. Qed.
Lemma homD (R S : ring) (f : R ~> S) : {morph f : x y / x + y}.
Proof. by move=> x y; rewrite -[y]opprK !homB !homN. Qed.
HB.mixin Record IsIdeal (R : ring) (I : R -> Prop) := {
ideal0 : I 0;
idealD : forall x y, I x -> I y -> I (x + y);
idealM : forall x y, I y -> I (x * y)%A;
}.
HB.structure Definition Ideal (R : ring) := { I of IsIdeal R I }.
HB.mixin Record Ideal_IsPrime (R : ring) (I : R -> Prop) of IsIdeal R I := {
ideal_prime : forall x y : R, I (x * y)%A -> I x \/ I y
}.
#[short(type="spectrum")]
HB.structure Definition PrimeIdeal (R : ring) :=
{ I of Ideal_IsPrime R I & Ideal R I }.
|