File: cat.v

package info (click to toggle)
coq-hierarchy-builder 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,988 kB
  • sloc: makefile: 109
file content (993 lines) | stat: -rw-r--r-- 36,549 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
Require Import ssreflect ssrfun.
From HB Require Import structures.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Add Search Blacklist "__canonical__".

Declare Scope algebra_scope.
Delimit Scope algebra_scope with A.
Local Open Scope algebra_scope.

Declare Scope cat_scope.
Delimit Scope cat_scope with cat.
Local Open Scope cat_scope.

(* we assume a few axioms to make life easier *)
Axiom funext : forall {T : Type} {U : T -> Type} [f g : forall t, U t],
  (forall t, f t = g t) -> f = g.
Axiom propext : forall P Q : Prop, P <-> Q -> P = Q.
Axiom Prop_irrelevance : forall (P : Prop) (x y : P), x = y.

(* Shortcut *)
Notation U := Type.

(* Base definition : raw categories = quivers *)
HB.mixin Record IsQuiver C := { hom : C -> C -> U }.
Unset Universe Checking.
#[short(type="quiver")]
HB.structure Definition Quiver : Set := { C of IsQuiver C }.
Set Universe Checking.

Bind Scope cat_scope with quiver.
Bind Scope cat_scope with hom.
Arguments hom {C} : rename.
Notation homs T := (@hom T _ _).
Notation "a ~> b" := (hom a b)
   (at level 99, b at level 200, format "a  ~>  b") : cat_scope.
Notation "a ~>_ C b" := (@hom C a b)
  (at level 99, C at level 0, only parsing) : cat_scope.

(* precategories are quivers + id and comp *)
HB.mixin Record Quiver_IsPreCat C of Quiver C := {
  idmap : forall (a : C), a ~> a;
  comp : forall (a b c : C), (a ~> b) -> (b ~> c) -> (a ~> c);
}.

HB.factory Record IsPreCat C := {
  hom : C -> C -> U;
  idmap : forall (a : C), hom a a;
  comp : forall (a b c : C), hom a b -> hom b c -> hom a c;
}.
HB.builders Context C of IsPreCat C.
  HB.instance Definition _ := IsQuiver.Build C hom.
  HB.instance Definition _ := Quiver_IsPreCat.Build C idmap comp.
HB.end.

Unset Universe Checking.
#[short(type="precat")]
HB.structure Definition PreCat : Set := { C of IsPreCat C }.
Set Universe Checking.

Bind Scope cat_scope with precat.
Arguments idmap {C} {a} : rename.
Arguments comp {C} {a b c} : rename.
Notation "f \o g" := (comp g f) : cat_scope.
Notation "f \; g :> T" := (@comp T _ _ _ f g)
  (at level 60, g, T at level 60, format "f  \;  g  :>  T", only parsing) : cat_scope.
Notation "f \; g" := (comp f g) : cat_scope.
Notation "\idmap_ a" := (@idmap _ a) (only parsing, at level 0) : cat_scope.

(* categories are precategories + laws *)
HB.mixin Record PreCat_IsCat C of PreCat C := {
  comp1o : forall (a b : C) (f : a ~> b), idmap \; f = f;
  compo1 : forall (a b : C) (f : a ~> b), f \; idmap = f;
  compoA : forall (a b c d : C) (f : a ~> b) (g : b ~> c) (h : c ~> d),
    f \; (g \; h) = (f \; g) \; h
}.
Unset Universe Checking.
#[short(type="cat")]
HB.structure Definition Cat : Set := { C of PreCat_IsCat C & IsPreCat C }.
Set Universe Checking.

Bind Scope cat_scope with cat.
Arguments compo1 {C a b} : rename.
Arguments comp1o {C a b} : rename.
Arguments compoA {C a b c d} : rename.

(* the discrete category on a type cannot be the default, we make an alias *)
Definition discrete (T : U) := T.
HB.instance Definition _ T := @IsPreCat.Build (discrete T) (fun x y => x = y)
  (fun=> erefl) (@etrans _).
Lemma etransA T (a b c d : discrete T) (f : a ~> b) (g : b ~> c) (h : c ~> d) :
    f \; (g \; h) = (f \; g) \; h.
Proof. by rewrite /idmap/comp/=; case: _ / h; case: _ / g. Qed.
HB.instance Definition _ T := PreCat_IsCat.Build (discrete T) (@etrans_id _)
   (fun _ _ _ => erefl) (@etransA _).

(* the category of the unit type is the discrete one *)
HB.instance Definition _ := Cat.copy unit (discrete unit).

HB.instance Definition _ := @IsPreCat.Build U (fun A B => A -> B)
  (fun a => idfun) (fun a b c (f : a -> b) (g : b -> c) => (g \o f)%FUN).
HB.instance Definition _ := PreCat_IsCat.Build U (fun _ _ _ => erefl)
  (fun _ _ _ => erefl) (fun _ _ _ _ _ _ _ => erefl).


Lemma Ucomp (X Y Z : U) (f : X ~> Y) (g : Y ~> Z) : f \; g = (g \o f)%FUN.
Proof. by []. Qed.
Lemma Ucompx (X Y Z : U) (f : X ~> Y) (g : Y ~> Z) x : (f \; g) x = g (f x).
Proof. by []. Qed.
Lemma U1 (X : U) : \idmap_X = idfun.
Proof. by []. Qed.
Lemma U1x (X : U) x : \idmap_X x = x.
Proof. by []. Qed.

(* a prefunctor is a functor without laws *)
HB.mixin Record IsPreFunctor (C D : quiver) (F : C -> D) := {
   Fhom : forall (a b : C), (a ~> b) -> (F a ~> F b)
}.

Unset Universe Checking.
HB.structure Definition PreFunctor (C D : quiver) : Set :=
  { F of IsPreFunctor C D F }.
Set Universe Checking.
HB.instance Definition _ := IsQuiver.Build quiver PreFunctor.type.

Notation "F ^$" := (@Fhom _ _ F _ _)
   (at level 1, format "F ^$") : cat_scope.
Notation "F <$> f" := (@Fhom _ _ F _ _ f)
   (at level 58, format "F  <$>  f", right associativity) : cat_scope.

(* prefunctors are equal if their object and hom part are respectively equal *)
Lemma prefunctorP (C D : quiver) (F G : C ~> D) (eqFG : F =1 G) :
   let homF a b F := F a ~> F b in
   (forall a b f, eq_rect _ (homF a b) (F <$> f) _ (funext eqFG) = G <$> f) ->
  F = G.
Proof.
move: F G => [F [[/= Fhom]]] [G [[/= Ghom]]] in eqFG *.
case: _ / (funext eqFG) => /= in Ghom * => eqFGhom.
congr PreFunctor.Pack; congr PreFunctor.Class; congr IsPreFunctor.Axioms_.
by do 3!apply: funext=> ?.
Qed.

(* a functor is a prefunctor + laws for id and comp *)
HB.mixin Record PreFunctor_IsFunctor (C D : precat) (F : C -> D)
     of @PreFunctor C D F := {
   F1 : forall (a : C), F <$> \idmap_a = idmap;
   Fcomp : forall (a b c : C) (f : a ~> b) (g : b ~> c),
      F <$> (f \; g) = F <$> f \; F <$> g;
}.
Unset Universe Checking.

(* precat and cat have a quiver structure *)
HB.structure Definition Functor (C D : precat) : Set :=
  { F of IsPreFunctor C D F & PreFunctor_IsFunctor C D F }.
Set Universe Checking.
HB.instance Definition _ := IsQuiver.Build precat Functor.type.
HB.instance Definition _ := IsQuiver.Build cat Functor.type.

(* functor equality is the same as prefunctor because of PI *)
Lemma functorP (C D : precat) (F G : C ~> D) (eqFG : F =1 G) :
   let homF a b F := F a ~> F b in
   (forall a b f, eq_rect _ (homF a b) (F^$ f) _ (funext eqFG) = G^$ f) ->
  F = G.
Proof.
move=> /= /prefunctorP {eqFG}.
case: F G => [F [/= Fm Fm']] [G [/= Gm Gm']]//=.
move=> [_] /EqdepFacts.eq_sigT_iff_eq_dep eqFG.
case: _ / eqFG in Gm' *.
congr Functor.Pack; congr Functor.Class.
case: Fm' Gm' => [F1 Fc] [G1 Gc].
by congr PreFunctor_IsFunctor.Axioms_; apply: Prop_irrelevance.
Qed.

(* the identity function is a functor *)
HB.instance Definition _ (C : quiver) :=
  IsPreFunctor.Build C C idfun (fun a b => idfun).
HB.instance Definition _ (C : precat) :=
  PreFunctor_IsFunctor.Build C C idfun (fun=> erefl) (fun _ _ _ _ _ => erefl).

(* the composition of prefunctors *)
Section comp_prefunctor.
Context {C D E : quiver} {F : C ~> D} {G : D ~> E}.

HB.instance Definition _ := IsPreFunctor.Build C E (G \o F)%FUN
   (fun a b f => G <$> F <$> f).
Lemma comp_Fun (a b : C) (f : a ~> b) : (G \o F)%FUN <$> f = G <$> (F <$> f).
Proof. by []. Qed.
End comp_prefunctor.

Section comp_functor.
Context {C D E : precat} {F : C ~> D} {G : D ~> E}.
Lemma comp_F1 (a : C) : (G \o F)%FUN <$> \idmap_a = idmap.
Proof. by rewrite !comp_Fun !F1. Qed.
Lemma comp_Fcomp  (a b c : C) (f : a ~> b) (g : b ~> c) :
  (G \o F)%FUN <$> (f \; g) = (G \o F)%FUN <$> f \; (G \o F)%FUN <$> g.
Proof. by rewrite !comp_Fun !Fcomp. Qed.
HB.instance Definition _ := PreFunctor_IsFunctor.Build C E (G \o F)%FUN
   comp_F1 comp_Fcomp.
End comp_functor.

(* precat and cat have a precategory structure *)
HB.instance Definition _ := Quiver_IsPreCat.Build precat
  (fun=> idfun) (fun C D E (F : C ~> D) (G : D ~> E) => (G \o F)%FUN).
HB.instance Definition _ := Quiver_IsPreCat.Build cat
  (fun=> idfun) (fun C D E (F : C ~> D) (G : D ~> E) => (G \o F)%FUN).

Lemma funext_frefl A B (f : A -> B) : funext (frefl f) = erefl.
Proof. exact: Prop_irrelevance. Qed.

(* precategories and categories form a category *)
Definition precat_cat : PreCat_IsCat precat.
Proof.
by split=> [C D F|C D F|C D C' D' F G H];
   apply/functorP => a b f /=; rewrite funext_frefl.
Qed.
HB.instance Definition _ := precat_cat.
Definition cat_cat : PreCat_IsCat cat.
Proof.
by split=> [C D F|C D F|C D C' D' F G H];
   apply/functorP => a b f /=; rewrite funext_frefl.
Qed.
HB.instance Definition _ := cat_cat.

Check (cat : cat).

(* concrete categories *)
HB.mixin Record Quiver_IsPreConcrete T of Quiver T := {
  concrete : T -> U;
  concrete_fun : forall (a b : T), (a ~> b) -> concrete a -> concrete b;
}.
Unset Universe Checking.
#[short(type="preconcrete_quiver")]
HB.structure Definition PreConcreteQuiver : Set :=
  { C of Quiver_IsPreConcrete C & IsQuiver C }.
Set Universe Checking.
Coercion concrete : PreConcreteQuiver.sort >-> Sortclass.

HB.mixin Record PreConcrete_IsConcrete T of PreConcreteQuiver T := {
  concrete_fun_inj : forall (a b : T), injective (concrete_fun a b)
}.
Unset Universe Checking.
#[short(type="concrete_quiver")]
HB.structure Definition ConcreteQuiver : Set :=
  { C of PreConcreteQuiver C & PreConcrete_IsConcrete C }.
Set Universe Checking.

HB.instance Definition _ (C : ConcreteQuiver.type) :=
  IsPreFunctor.Build _ _ (concrete : C -> U) concrete_fun.

HB.mixin Record PreCat_IsConcrete T of ConcreteQuiver T & PreCat T := {
  concrete1 : forall (a : T), concrete <$> \idmap_a = idfun;
  concrete_comp : forall (a b c : T) (f : a ~> b) (g : b ~> c),
    concrete <$> (f \; g) = ((concrete <$> g) \o (concrete <$> f))%FUN;
}.
Unset Universe Checking.
#[short(type="concrete_precat")]
HB.structure Definition ConcretePreCat : Set :=
  { C of PreCat C & ConcreteQuiver C & PreCat_IsConcrete C }.
#[short(type="concrete_cat")]
HB.structure Definition ConcreteCat : Set :=
  { C of Cat C & ConcreteQuiver C & PreCat_IsConcrete C }.
Set Universe Checking.

HB.instance Definition _ (C : concrete_precat) :=
  PreFunctor_IsFunctor.Build C U concrete (@concrete1 _) (@concrete_comp _).
HB.instance Definition _ (C : ConcreteCat.type) :=
  PreFunctor_IsFunctor.Build C U concrete (@concrete1 _) (@concrete_comp _).

HB.instance Definition _ := Quiver_IsPreConcrete.Build U (fun _ _ => id).
HB.instance Definition _ := PreConcrete_IsConcrete.Build U (fun _ _ _ _ => id).
HB.instance Definition _ := PreCat_IsConcrete.Build U
   (fun=> erefl) (fun _ _ _ _ _ => erefl).

Unset Universe Checking.
HB.instance Definition _ := Quiver_IsPreConcrete.Build quiver (fun _ _ => id).
HB.instance Definition _ := Quiver_IsPreConcrete.Build precat (fun _ _ => id).
HB.instance Definition _ := Quiver_IsPreConcrete.Build cat (fun _ _ => id).
Lemma quiver_concrete_subproof : PreConcrete_IsConcrete quiver.
Proof.
constructor=> C D F G FG; apply: prefunctorP.
  by move=> x; congr (_ x); apply: FG.
by move=> *; apply: Prop_irrelevance.
Qed.
HB.instance Definition _ := quiver_concrete_subproof.

Lemma precat_concrete_subproof : PreConcrete_IsConcrete precat.
Proof.
constructor=> C D F G FG; apply: functorP.
  by move=> x; congr (_ x); apply: FG.
by move=> *; apply: Prop_irrelevance.
Qed.
HB.instance Definition _ := precat_concrete_subproof.

Lemma cat_concrete_subproof : PreConcrete_IsConcrete cat.
Proof.
constructor=> C D F G FG; apply: functorP.
  by move=> x; congr (_ x); apply: FG.
by move=> *; apply: Prop_irrelevance.
Qed.
HB.instance Definition _ := cat_concrete_subproof.
HB.instance Definition _ := PreCat_IsConcrete.Build precat
   (fun=> erefl) (fun _ _ _ _ _ => erefl).
HB.instance Definition _ := PreCat_IsConcrete.Build cat
   (fun=> erefl) (fun _ _ _ _ _ => erefl).
Set Universe Checking.

(* constant functor *)
Definition cst (C D : quiver) (c : C) := fun of D => c.
Arguments cst {C} D c.
HB.instance Definition _ {C D : precat} (c : C) :=
  IsPreFunctor.Build D C (cst D c) (fun _ _ _ => idmap).
HB.instance Definition _ {C D : cat} (c : C) :=
  PreFunctor_IsFunctor.Build D C (cst D c) (fun=> erefl)
    (fun _ _ _ _ _ => esym (compo1 idmap)).

(* opposite category *)
Definition catop (C : U) : U := C.
Notation "C ^op" := (catop C) (at level 10, format "C ^op") : cat_scope.
HB.instance Definition _ (C : quiver) :=
  IsQuiver.Build (C^op) (fun a b => hom b a).
HB.instance Definition _ (C : precat) :=
  Quiver_IsPreCat.Build (C^op) (fun=> idmap) (fun _ _ _ f g => g \; f).
HB.instance Definition _ (C : cat) := PreCat_IsCat.Build (C^op)
   (fun _ _ _ => compo1 _) (fun _ _ _ => comp1o _)
   (fun _ _ _ _ _ _ _ => esym (compoA _ _ _)).

HB.instance Definition _ {C : precat} {c : C} :=
  IsPreFunctor.Build C _ (hom c) (fun a b f g => g \; f).
Lemma hom_Fhom_subproof (C : cat) (x : C) :
  PreFunctor_IsFunctor _ _ (hom x).
Proof. by split=> *; apply/funext => h; [apply: compo1 | apply: compoA]. Qed.
HB.instance Definition _ {C : cat} {c : C} := hom_Fhom_subproof c.

Check fun (C : cat) (x : C) => hom x : C ~>_cat U.

Lemma hom_op {C : quiver} (c : C^op) : hom c = (@hom C)^~ c.
Proof. reflexivity. Qed.

Lemma homFhomx {C : precat} (a b c : C) (f : a ~> b) (g : c ~> a) :
  (hom c <$> f) g = g \; f.
Proof. reflexivity. Qed.

(* nary product of categories *)
Definition dprod {I : U} (C : I -> U) := forall i, C i.

Section hom_dprod.
Context {I : U} (C : I -> quiver).
Definition dprod_hom_subdef (a b : dprod C) := forall i, a i ~> b i.
HB.instance Definition _ := IsQuiver.Build (dprod C) dprod_hom_subdef.
End hom_dprod.
Arguments dprod_hom_subdef /.

Section precat_dprod.
Context {I : U} (C : I -> precat).
Definition dprod_idmap_subdef (a : dprod C) : a ~> a := fun=> idmap.
Definition dprod_comp_subdef (a b c : dprod C) (f : a ~> b) (g : b ~> c) : a ~> c :=
  fun i => f i \; g i.
HB.instance Definition _ := IsPreCat.Build (dprod C)
   dprod_idmap_subdef dprod_comp_subdef.
End precat_dprod.
Arguments dprod_idmap_subdef /.
Arguments dprod_comp_subdef /.

Section cat_dprod.
Context {I : U} (C : I -> cat).
Local Notation type := (dprod C).
Lemma dprod_is_cat : PreCat_IsCat type.
Proof.
split=> [a b f|a b f|a b c d f g h]; apply/funext => i;
[exact: comp1o | exact: compo1 | exact: compoA].
Qed.
HB.instance Definition _ := dprod_is_cat.
End cat_dprod.

(* binary product *)
Section hom_prod.
Context {C D : quiver}.
Definition prod_hom_subdef (a b : C * D) := ((a.1 ~> b.1) * (a.2 ~> b.2))%type.
HB.instance Definition _ := IsQuiver.Build (C * D)%type prod_hom_subdef.
End hom_prod.

Section precat_prod.
Context {C D : precat}.
HB.instance Definition _ := IsPreCat.Build (C * D)%type (fun=> (idmap, idmap))
  (fun a b c (f : a ~> b) (g : b ~> c) => (f.1 \; g.1, f.2 \; g.2)).
End precat_prod.

Section cat_prod.
Context {C D : cat}.
Local Notation type := (C * D)%type.
Lemma prod_is_cat : PreCat_IsCat type.
Proof.
split=> [[a1 a2] [b1 b2] [f1 f2]|[a1 a2] [b1 b2] [f1 f2]|
  [a1 a2] [b1 b2] [c1 c2] [d1 d2] [f1 f2] [g1 g2] [h1 h2]]; congr (_, _) => //=;
by [exact: comp1o | exact: compo1 | exact: compoA].
Qed.
HB.instance Definition _ := prod_is_cat.
End cat_prod.

(* naturality *)
HB.mixin Record IsNatural (C D : precat) (F G : C ~>_quiver D)
     (n : forall c, F c ~> G c) := {
   natural : forall (a b : C) (f : a ~> b),
     F <$> f \; n b = n a \; G <$> f
}.
Unset Universe Checking.
HB.structure Definition Natural (C D : precat)
   (F G : C ~>_quiver D) : Set :=
  { n of @IsNatural C D F G n }.
Set Universe Checking.
HB.instance Definition _  (C D : precat) :=
  IsQuiver.Build (PreFunctor.type C D) (@Natural.type C D).
HB.instance Definition _  (C D : cat) :=
  IsQuiver.Build (Functor.type C D) (@Natural.type C D).
Arguments natural {C D F G} n [a b] f : rename.

Check fun (C D : cat) (F G : C ~> D) => F ~>_(C ~>_cat D) G.

Lemma naturalx (C : precat) (D : concrete_precat)
  (F G : C ~>_quiver D) (n : F ~> G)  (a b : C) (f : a ~> b) g :
    (concrete <$> n b) ((concrete <$> F <$> f) g) =
    (concrete <$> G <$> f) ((concrete <$> n a) g).
Proof.
have /(congr1 (fun h  => (concrete <$> h) g)) := natural n f.
by rewrite !Fcomp.
Qed.
Arguments naturalx {C D F G} n [a b] f.

Lemma naturalU (C : precat) (F G : C ~>_quiver U) (n : F ~> G)
   (a b : C) (f : a ~> b) g :  n b (F^$ f g) = G^$ f (n a g).
Proof. exact: (naturalx n). Qed.

Lemma natP (C D : precat) (F G : C ~>_quiver D) (n m : F ~> G) :
  Natural.sort n = Natural.sort m -> n = m.
Proof.
case: n m => [/= n nP] [/= m mP] enm.
elim: _ / enm in mP *; congr Natural.Pack.
case: nP mP => [[?]] [[?]]; congr Natural.Class.
congr IsNatural.Axioms_.
exact: Prop_irrelevance.
Qed.

Notation "F ~~> G" := (F ~>_(homs quiver) G)
  (at level 99, G at level 200, format "F  ~~>  G").
Notation "F ~~> G :> C ~> D" := (F ~> G :> (C ~>_quiver D))
  (at level 99, G at level 200, C, D at level 0,
   format "F  ~~>  G  :>  C  ~>  D").

Definition natural_id {C D : precat} (F : C ~>_quiver D) (a : C) := \idmap_(F a).
Definition natural_id_natural (C D : cat) (F : C ~>_quiver D) :
  IsNatural C D F F (natural_id F).
Proof. by constructor=> a b f; rewrite /natural_id/= compo1 comp1o. Qed.
HB.instance Definition _ C D F := @natural_id_natural C D F.

Check fun {C D : cat} (F : C ~>_quiver D) => natural_id F : F ~> F.

Definition natural_comp {C D : precat} (F G H : C ~>_quiver D)
   (m : F ~> G) (n : G ~> H) (a : C) := m a \; n a.
Definition natural_comp_natural (C D : cat) (F G H : C ~>_quiver D) m n :
  IsNatural C D F H (@natural_comp C D F G H m n).
Proof.
constructor=> a b f; rewrite /natural_comp/=.
by rewrite compoA natural -compoA natural compoA.
Qed.
HB.instance Definition _ C D F G H m n := @natural_comp_natural C D F G H m n.

HB.instance Definition _ {C D : cat} :=
  Quiver_IsPreCat.Build (PreFunctor.type C D) natural_id natural_comp.
HB.instance Definition _ {C D : cat} :=
  Quiver_IsPreCat.Build (Functor.type C D) natural_id natural_comp.

Lemma prefunctor_cat {C D : cat} : PreCat_IsCat (PreFunctor.type C D).
Proof.
constructor => [F G f|F G f|F G H J f g h].
- by apply/natP/funext => a; rewrite /= /natural_comp comp1o.
- by apply/natP/funext => a; rewrite /= /natural_comp compo1.
- by apply/natP/funext => a; rewrite /= /natural_comp compoA.
Qed.
HB.instance Definition _ C D := @prefunctor_cat C D.

Lemma functor_cat {C D : cat} : PreCat_IsCat (Functor.type C D).
Proof.
constructor => [F G f|F G f|F G H J f g h].
- by apply/natP/funext => a; rewrite /= /natural_comp comp1o.
- by apply/natP/funext => a; rewrite /= /natural_comp compo1.
- by apply/natP/funext => a; rewrite /= /natural_comp compoA.
Qed.
HB.instance Definition _ C D := @functor_cat C D.

Section nat_map_left.
Context {C D E : precat} {F G : C ~> D}.

Definition nat_lmap (H : D ~>_quiver E) (n : forall c, F c ~> G c) :
  forall c, (H \o F)%FUN c ~> (H \o G)%FUN c := fun c => H <$> n c.

Fail Check fun (H : D ~> E) (n : F ~~> G) => nat_lmap H n : H \o F ~~> H \o G.

Lemma nat_lmap_is_natural (H : D ~> E) (n : F ~~> G) :
  IsNatural C E (H \o F) (H \o G) (nat_lmap H n).
Proof. by constructor=> a b f; rewrite /nat_lmap/= -!Fcomp natural. Qed.
HB.instance Definition _ H n := nat_lmap_is_natural H n.

Check fun (H : D ~> E) (n : F ~~> G) => nat_lmap H n : H \o F ~~> H \o G.

End nat_map_left.

Notation "F <o$> n" := (nat_lmap F n)
   (at level 58, format "F  <o$>  n", right associativity) : cat_scope.

Section nat_map_right.
Context {C D E : precat} {F G : C ~> D}.

Definition nat_rmap (H : E -> C) (n : forall c, F c ~> G c) :
  forall c, (F \o H)%FUN c ~> (G \o H)%FUN c := fun c => n (H c).
Lemma nat_rmap_is_natural (H : E ~> C :> quiver) (n : F ~~> G) :
  IsNatural E D (F \o H)%FUN (G \o H)%FUN (nat_rmap H n).
Proof. by constructor=> a b f; rewrite /nat_lmap/= natural. Qed.
HB.instance Definition _ H n := nat_rmap_is_natural H n.

End nat_map_right.

Notation "F <$o> n" := (nat_rmap F n)
   (at level 58, format "F  <$o>  n", right associativity) : cat_scope.

Definition delta (C D : cat) : C -> (D ~> C) := cst D.
Arguments delta C D : clear implicits.

Definition map_delta {C D : cat} (a b : C) (f : a ~> b) :
  delta C D a ~> delta C D b.
Proof.
apply: (@Natural.Pack _ _ (cst D a) (cst D b) (fun x => f)).
apply: Natural.Class; apply: (IsNatural.Build _ _ _ _ _).
by move=> a' b' ?; rewrite compo1 comp1o.
Defined.

HB.instance Definition _ {C D : cat} :=
  IsPreFunctor.Build C (D ~> C) (delta C D) (@map_delta C D).

Lemma delta_functor {C D : cat} : PreFunctor_IsFunctor _ _ (delta C D).
Proof. by constructor=> [a|a b c f g]; exact/natP. Qed.
HB.instance Definition _ C D := @delta_functor C D.

HB.mixin Record IsMonad (C : precat) (M : C -> C) of @PreFunctor C C M := {
  unit : idfun ~~> M;
  join : (M \o M)%FUN ~~> M;
  bind : forall (a b : C), (a ~> M b) -> (M a ~> M b);
  bindE : forall a b (f : a ~> M b), bind a b f = M <$> f \; join b;
  unit_join : forall a, (M <$> unit a) \; join _ = idmap;
  join_unit : forall a, join _ \; (M <$> unit a) = idmap;
  join_square : forall a, M <$> join a \; join _ = join _ \; join _
}.

#[short(type="premonad")]
HB.structure Definition PreMonad (C : precat) :=
   {M of @PreFunctor C C M & IsMonad C M}.
#[short(type="monad")]
HB.structure Definition Monad (C : precat) :=
   {M of @Functor C C M & IsMonad C M}.

HB.factory Record IsJoinMonad (C : precat) (M : C -> C) of @PreFunctor C C M := {
  unit : idfun ~~> M;
  join : (M \o M)%FUN ~~> M;
  unit_join : forall a, (M <$> unit a) \; join _ = idmap;
  join_unit : forall a, join _ \; (M <$> unit a) = idmap;
  join_square : forall a, M <$> join a \; join _ = join _ \; join _
}.
HB.builders Context C M of IsJoinMonad C M.
  HB.instance Definition _ := IsMonad.Build C M
    (fun a b f => erefl) unit_join join_unit join_square.
HB.end.

HB.mixin Record IsCoMonad (C : precat) (M : C -> C) of @IsPreFunctor C C M := {
  counit : M ~~> idfun;
  cojoin : M ~~> (M \o M)%FUN;
  cobind : forall (a b : C), (M a ~> b) -> (M a ~> M b);
  cobindE : forall a b (f : M a ~> b), cobind a b f = cojoin _ \; M <$> f;
  unit_cojoin : forall a, (M <$> counit a) \; cojoin _ = idmap;
  join_counit : forall a, cojoin _ \; (M <$> counit a) = idmap;
  cojoin_square : forall a, cojoin _ \; M <$> cojoin a = cojoin _ \; cojoin _
}.
#[short(type="precomonad")]
HB.structure Definition PreCoMonad (C : precat) :=
   {M of @PreFunctor C C M & IsCoMonad C M}.
#[short(type="comonad")]
HB.structure Definition CoMonad (C : precat) :=
   {M of @Functor C C M & IsCoMonad C M}.

HB.factory Record IsJoinCoMonad (C : precat) (M : C -> C) of @IsPreFunctor C C M := {
  counit : M ~~> idfun;
  cojoin : M ~~> (M \o M)%FUN;
  unit_cojoin : forall a, (M <$> counit a) \; cojoin _ = idmap;
  join_counit : forall a, cojoin _ \; (M <$> counit a) = idmap;
  cojoin_square : forall a, cojoin _ \; M <$> cojoin a = cojoin _ \; cojoin _
}.
HB.builders Context C M of IsJoinCoMonad C M.
  HB.instance Definition _ := IsCoMonad.Build C M
    (fun a b f => erefl) unit_cojoin join_counit cojoin_square.
HB.end.

Lemma idFmap (C : cat) (a b : C) (f : a ~> b) : idfun <$> f = f.
Proof. by []. Qed.

Lemma compFmap (C D E : cat) (F : C ~> D) (G : D ~> E) (a b : C) (f : a ~> b) :
  (G \o F) <$> f = G <$> F <$> f.
Proof. by []. Qed.

(* yoneda *)
Section hom_repr.
Context {C : cat} (F : C ~>_cat U).

Definition homF : C -> U := fun c => hom c ~~> F.

Section nat.
Context (x y : C) (xy : x ~> y).

(* Goal hom x ~~> F -> hom y ~~> F *)
Context (n : hom x ~~> F).
Definition homFhom c : hom y c ~> F c := fun g => n _ (xy \; g).

Lemma homFhom_natural_subdef : IsNatural C U (hom y) F homFhom.
Proof.
by split=> a b f /=; apply/funext => g /=;
   rewrite /homFhom !Ucompx/= !naturalU/= Fcomp.
Qed.
HB.instance Definition _ := homFhom_natural_subdef.
End nat.
Arguments homFhom / : clear implicits.

HB.about IsPreFunctor.Build.
Check homFhom : forall x y : C, (x ~> y) -> (homF x -> homF y).
HB.instance Definition _ := IsPreFunctor.Build _ _ homF homFhom.
Lemma homF_functor_subproof : PreFunctor_IsFunctor _ _ homF.
Proof.
split=> [a|a b c f g].
  apply/funext => -[/= f natf].
  apply: natP => //=; apply: funext => b; apply: funext => g/=.
  by rewrite comp1o.
apply/funext => -[/= h natf].
apply: natP => //=; apply: funext => d; apply: funext => k/=.
by rewrite compoA.
Qed.
HB.instance Definition _ := homF_functor_subproof.

Section pointed.
Context (c : C).
Definition hom_repr : homF c ~> F c := fun f => f _ idmap.
Arguments hom_repr /.

Definition repr_hom (fc : F c) a : hom c a ~> F a :=
  fun f => F^$ f fc.
Arguments repr_hom / : clear implicits.
Lemma repr_hom_subdef (fc : F c) : IsNatural _ _ _ _ (repr_hom fc).
Proof. by split=> a b f /=; apply/funext=> x; rewrite !Ucompx/= Fcomp. Qed.
HB.instance Definition _ {fc : F c} := repr_hom_subdef fc.

Definition repr_hom_nat : F c ~> homF c := repr_hom.

Lemma hom_reprK : cancel hom_repr repr_hom_nat.
Proof.
move=> f; apply/natP; apply/funext => a; apply/funext => g /=.
by rewrite -naturalU/=; congr (f _ _); apply: comp1o.
Qed.
Lemma repr_homK : cancel (repr_hom : F c ~> homF c) hom_repr.
Proof. by move=> fc; rewrite /= F1. Qed.
End pointed.
Arguments hom_repr /.
Arguments repr_hom /.

Lemma hom_repr_natural_subproof : IsNatural _ _ _ _ hom_repr.
Proof.
split=> a b f /=; apply/funext => n /=; rewrite !Ucompx/= compo1/=.
by rewrite -naturalU/=; congr (n _ _); apply/esym/comp1o.
Qed.
HB.instance Definition _ := hom_repr_natural_subproof.

(* show this from the previous proof *)
Lemma hom_natural_repr_subproof : IsNatural _ _ _ _ repr_hom_nat.
Proof.
split=> a b f /=; apply: funext => fa /=; rewrite !Ucompx/=.
apply: natP; apply: funext => c /=; apply: funext => d /=.
by rewrite Fcomp Ucompx/=.
Qed.
HB.instance Definition _ := hom_natural_repr_subproof.

Definition hom_repr_nat : homF ~~> F := hom_repr.
Definition repr_hom_nat_nat : F ~~> homF := repr_hom_nat.

End hom_repr.

(* comma categories *)
Module comma.
Section homcomma.
Context {C D E : precat} (F : C ~> E) (G : D ~> E).

Definition type := { x : C * D & F x.1 ~> G x.2 }.
Definition hom_subdef (a b : type) := {
    f : tag a ~> tag b & F <$> f.1 \; tagged b = tagged a \; G <$> f.2
  }.
HB.instance Definition _ := IsQuiver.Build type hom_subdef.
End homcomma.
Arguments hom_subdef /.
Section comma.
Context {C D E : cat} (F : C ~> E) (G : D ~> E).
Notation type := (type F G).

Program Definition idmap_subdef (a : type) : a ~> a := @Tagged _ idmap _ _.
Next Obligation. by rewrite !F1 comp1o compo1. Qed.
Program Definition comp_subdef (a b c : type)
  (f : a ~> b) (g : b ~> c) : a ~> c :=
  @Tagged _ (tag f \; tag g) _ _.
Next Obligation. by rewrite !Fcomp -compoA (tagged g) compoA (tagged f) compoA. Qed.
HB.instance Definition _ := IsPreCat.Build type idmap_subdef comp_subdef.
Arguments idmap_subdef /.
Arguments comp_subdef /.

Lemma comma_homeqP (a b : type) (f g : a ~> b) : projT1 f = projT1 g -> f = g.
Proof.
case: f g => [f fP] [g +]/= eqfg; case: _ / eqfg => gP.
by congr existT; apply: Prop_irrelevance.
Qed.

Lemma comma_is_cat : PreCat_IsCat type.
Proof.
by split=> [[a fa] [b fb] [*]|[a fa] [b fb] [*]|*];
   apply/comma_homeqP; rewrite /= ?(comp1o, compo1, compoA).
Qed.
HB.instance Definition _ := comma_is_cat.
End comma.
End comma.
Notation "F `/` G" := (@comma.type _ _ _ F G)
  (at level 40, G at level 40, format "F `/` G") : cat_scope.
Notation "a /` G" := (cst unit a `/` G)
  (at level 40, G at level 40, format "a /` G") : cat_scope.
Notation "F `/ b" := (F `/` cst unit b)
  (at level 40, b at level 40, format "F `/ b") : cat_scope.
Notation "a / b" := (cst unit a `/ b) : cat_scope.

(* (* Not working yet *) *)
(* HB.mixin Record IsInitial {C : quiver} (i : C) := { *)
(*   to : forall c, i ~> c; *)
(*   to_unique : forall c (f : i ~> c), f = to c *)
(* }. *)
(* #[short(type="initial")] *)
(* HB.structure Definition Initial {C : quiver} := {i of IsInitial C i}. *)

(* HB.mixin Record IsTerminal {C : quiver} (t : C) := { *)
(*   from : forall c, c ~> t; *)
(*   from_unique : forall c (f : c ~> t), f = from c *)
(* }. *)
(* #[short(type="terminal")] *)
(* HB.structure Definition Terminal {C : quiver} := {t of IsTerminal C t}. *)
(* #[short(type="universal")] *)
(* HB.structure Definition Universal {C : quiver} := *)
(*   {u of Initial C u & Terminal C u}. *)

(* Definition hom' {C : precat} (a b : C) := a ~> b. *)
(* (* Bug *) *)
(* Identity Coercion hom'_hom : hom' >-> hom. *)

(* HB.mixin Record IsMono {C : precat} (b c : C) (f : hom b c) := { *)
(*   monoP : forall (a : C) (g1 g2 : a ~> b), g1 \; f = g2 \; f -> g1 = g2 *)
(* }. *)
(* #[short(type="mono")] *)
(* HB.structure Definition Mono {C : precat} (a b : C) := {m of IsMono C a b m}. *)
(* Notation "a >~> b" := (mono a b) *)
(*    (at level 99, b at level 200, format "a  >~>  b") : cat_scope. *)
(* Notation "C >~>_ T D" := (@mono T C D) *)
(*   (at level 99, T at level 0, only parsing) : cat_scope. *)

(* HB.mixin Record IsEpi {C : precat} (a b : C) (f : hom a b) := { *)
(*   epiP :  forall (c : C) (g1 g2 : b ~> c), g1 \o f = g2 \o f -> g1 = g2 *)
(* }. *)
(* #[short(type="epi")] *)
(* HB.structure Definition Epi {C : precat} (a b : C) := {e of IsEpi C a b e}. *)
(* Notation "a ~>> b" := (epi a b) *)
(*    (at level 99, b at level 200, format "a  ~>>  b") : cat_scope. *)
(* Notation "C ~>>_ T D" := (@epi T C D) *)
(*   (at level 99, T at level 0, only parsing) : cat_scope. *)

(* #[short(type="iso")] *)
(* HB.structure Definition Iso {C : precat} (a b : C) := *)
(*    {i of @Mono C a b i & @Epi C a b i}. *)
(* Notation "a <~> b" := (epi a b) *)
(*    (at level 99, b at level 200, format "a  <~>  b") : cat_scope. *)
(* Notation "C <~>_ T D" := (@epi T C D) *)
(*   (at level 99, T at level 0, only parsing) : cat_scope. *)

HB.mixin Record IsRightAdjoint (D C : precat) (R : D -> C)
    of @PreFunctor D C R := {
  L_ : C ~> D;
  phi : forall c d, (L_ c ~> d) -> (c ~> R d);
  psy : forall c d, (c ~> R d) -> (L_ c ~> d);
  phi_psy c d : (phi c d \o psy c d)%FUN = @id (c ~> R d);
  psy_phi c d : (psy c d \o phi c d)%FUN = @id (L_ c ~> d)
}.
#[short(type="right_adjoint")]
HB.structure Definition RightAdjoint (D C : precat) :=
  { R of @Functor D C R & IsRightAdjoint D C R }.
Arguments L_ {_ _}.
Arguments phi {D C s} {c d}.
Arguments psy {D C s} {c d}.

HB.mixin Record PreCat_IsMonoidal C of PreCat C := {
  onec : C;
  prod : (C * C)%type ~>_precat C;
}.
#[short(type="premonoidal")]
HB.structure Definition PreMonoidal := { C of PreCat C & PreCat_IsMonoidal C }.
Notation premonoidal := premonoidal.
Arguments prod {C} : rename.
Notation "a * b" := (prod (a, b)) : cat_scope.
Reserved Notation "f <*> g"   (at level 40, g at level 40, format "f  <*>  g").
Notation "f <*> g" := (prod^$ (f, g)) (only printing) : cat_scope.
Notation "f <*> g" := (prod^$ ((f, g) : (_, _) ~> (_, _)))
  (only parsing) : cat_scope.
Notation "1" := onec : cat_scope.

Definition hom_cast {C : quiver} {a a' : C} (eqa : a = a') {b b' : C} (eqb : b = b') :
  (a ~> b) -> (a' ~> b').
Proof. now elim: _ / eqa; elim: _ / eqb. Defined.

HB.mixin Record PreFunctor_IsMonoidal (C D : premonoidal) F of
    @PreFunctor C D F := {
  fun_one : F 1 = 1;
  fun_prod : forall (x y : C), F (x * y) = F x * F y;
}.
#[short(type="monoidal_prefunctor")]
HB.structure Definition MonoidalPreFunctor C D :=
  { F of @PreFunctor_IsMonoidal C D F }.
Arguments fun_prod {C D F x y} : rename.
(* Arguments fun_prodF {C D F x x'} f {y y'} g : rename. *)
Unset Universe Checking.
HB.instance Definition _ := IsQuiver.Build premonoidal MonoidalPreFunctor.type.
Set Universe Checking.

HB.instance Definition _ (C : quiver) :=
  IsPreFunctor.Build (C * C)%type C fst
     (fun (a b : C * C) (f : a ~> b) => f.1).
HB.instance Definition _ (C : quiver) :=
  IsPreFunctor.Build (C * C)%type C snd
     (fun (a b : C * C) (f : a ~> b) => f.2).

Definition prod3l {C : premonoidal} (x : C * C * C) : C :=
  (x.1.1 * x.1.2) * x.2.
HB.instance Definition _ {C : premonoidal} :=
  IsPreFunctor.Build _ C prod3l
   (fun a b (f : a ~> b) => (f.1.1 <*> f.1.2) <*> f.2).

Definition prod3r {C : premonoidal} (x : C * C * C) : C :=
  x.1.1 * (x.1.2 * x.2).
HB.instance Definition _ {C : premonoidal} :=
  IsPreFunctor.Build _ C prod3r
   (fun a b (f : a ~> b) => f.1.1 <*> (f.1.2 <*> f.2)).

Definition prod1r {C : premonoidal} (x : C) : C := 1 * x.
HB.instance Definition _ {C : premonoidal} :=
  IsPreFunctor.Build C C prod1r
   (fun (a b : C) (f : a ~> b) => \idmap_1 <*> f).

Definition prod1l {C : premonoidal} (x : C) : C := x * 1.
HB.instance Definition _ {C : premonoidal} :=
  IsPreFunctor.Build C C prod1l
   (fun (a b : C) (f : a ~> b) => f <*> \idmap_1).

HB.mixin Record PreMonoidal_IsMonoidal C of PreMonoidal C := {
  prodA  : prod3l ~~> prod3r;
  prod1c : prod1r ~~> idfun;
  prodc1 : prod1l ~~> idfun;
  prodc1c : forall (x y : C),
      prodA (x, 1, y) \; \idmap_x <*> prod1c y = prodc1 x <*> \idmap_y;
  prodA4 : forall (w x y z : C),
      prodA (w * x, y, z) \; prodA (w, x, y * z) =
        prodA (w, x, y) <*> \idmap_z \; prodA (w, x * y, z) \; \idmap_w <*> prodA (x, y, z);
}.

Unset Universe Checking.
#[short(type="monoidal")]
HB.structure Definition Monoidal : Set :=
  { C of PreMonoidal_IsMonoidal C & PreMonoidal C }.
Set Universe Checking.

HB.mixin Record IsRing A := {
  zero : A;
  one : A;
  add : A -> A -> A;
  opp : A -> A;
  mul : A -> A -> A;
  addrA : associative add;
  addrC : commutative add;
  add0r : left_id zero add;
  addNr : left_inverse zero opp add;
  mulrA : associative mul;
  mul1r : left_id one mul;
  mulr1 : right_id one mul;
  mulrDl : left_distributive mul add;
  mulrDr : right_distributive mul add;
}.

#[short(type="ring")]
HB.structure Definition Ring := { A of IsRing A }.

Bind Scope algebra_scope with Ring.sort.
Notation "0" := zero : algebra_scope.
Notation "1" := one : algebra_scope.
Infix "+" := (@add _) : algebra_scope.
Notation "- x" := (@opp _ x) : algebra_scope.
Infix "*" := (@mul _) : algebra_scope.
Notation "x - y" := (x + - y) : algebra_scope.

Lemma addr0 (R : ring) : right_id (@zero R) add.
Proof. by move=> x; rewrite addrC add0r. Qed.

Lemma addrN (R : ring) : right_inverse (@zero R) opp add.
Proof. by move=> x; rewrite addrC addNr. Qed.

Lemma addKr (R : ring) (x : R) : cancel (add x) (add (- x)).
Proof. by move=> y; rewrite addrA addNr add0r. Qed.

Lemma addrI (R : ring) (x : R) : injective (add x).
Proof. exact: can_inj (addKr _). Qed.

Lemma opprK (R : ring) : involutive (@opp R).
Proof. by move=> x; apply: (@addrI _ (- x)); rewrite addNr addrN. Qed.

HB.mixin Record IsRingHom (A B : ring) (f : A -> B) := {
  hom1_subproof : f 1%A = 1%A;
  homB_subproof : {morph f : x y / x - y};
  homM_subproof : {morph f : x y / (x * y)%A};
}.

HB.structure Definition RingHom A B := { f of IsRingHom A B f }.

Lemma id_IsRingHom A : IsRingHom A A idfun. Proof. by []. Defined.
HB.instance Definition _ A := id_IsRingHom A.

Lemma comp_IsRingHom (A B C : ring)
    (f : RingHom.type A B) (g : RingHom.type B C) :
  IsRingHom A C (f \; g :> U).
Proof.
by constructor => [|x y|x y];
rewrite /comp/= ?hom1_subproof ?homB_subproof ?homM_subproof.
Qed.
HB.instance Definition _ A B C f g := @comp_IsRingHom A B C f g.

HB.instance Definition _ := IsQuiver.Build ring RingHom.type.
HB.instance Definition _ :=
  Quiver_IsPreCat.Build ring (fun _ => idfun) (fun _ _ _ f g => f \; g :> U).
HB.instance Definition _ := Quiver_IsPreConcrete.Build ring (fun _ _ => id).
Lemma ring_precat : PreConcrete_IsConcrete ring.
Proof.
constructor => A B [f cf] [g cg]//=; rewrite -[_ = _]/(f = g) => fg.
case: _ / fg in cg *; congr {|RingHom.sort := _ ; RingHom.class := _|}.
case: cf cg => [[? ? ?]] [[? ? ?]].
by congr RingHom.Class; congr IsRingHom.phant_Build => //=; apply: Prop_irrelevance.
Qed.
HB.instance Definition _ := ring_precat.

Lemma ring_IsCat : PreCat_IsCat ring.
Proof.
by constructor=> [A B f|A B f|A B C D f g h]; exact: concrete_fun_inj.
Qed.
HB.instance Definition _ := ring_IsCat.

Lemma hom1 (R S : ring) (f : R ~> S) : f 1%A = 1%A.
Proof. exact: hom1_subproof. Qed.
Lemma homB (R S : ring) (f : R ~> S) : {morph f : x y / x - y}.
Proof. exact: homB_subproof. Qed.
Lemma homM (R S : ring) (f : R ~> S) : {morph f : x y / (x * y)%A}.
Proof. exact: homM_subproof. Qed.
Lemma hom0 (R S : ring) (f : R ~> S) : f 0%A = 0%A.
Proof. by rewrite -(addrN 1%A) homB addrN. Qed.
Lemma homN (R S : ring) (f : R ~> S) : {morph f : x / - x}.
Proof. by move=> x; rewrite -[- x]add0r homB hom0 add0r. Qed.
Lemma homD (R S : ring) (f : R ~> S) : {morph f : x y / x + y}.
Proof. by move=> x y; rewrite -[y]opprK !homB !homN. Qed.

HB.mixin Record IsIdeal (R : ring) (I : R -> Prop) := {
  ideal0 : I 0;
  idealD : forall x y, I x -> I y -> I (x + y);
  idealM : forall x y, I y -> I (x * y)%A;
}.
HB.structure Definition Ideal (R : ring) := { I of IsIdeal R I }.

HB.mixin Record Ideal_IsPrime (R : ring) (I : R -> Prop) of IsIdeal R I := {
  ideal_prime : forall x y : R, I (x * y)%A -> I x \/ I y
}.
#[short(type="spectrum")]
HB.structure Definition PrimeIdeal (R : ring) :=
  { I of Ideal_IsPrime R I & Ideal R I }.