1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
|
Require Import ssreflect ssrfun ssrbool ssrfun ssrbool.
(******************************************************************************)
(* This file develops a basic theory of sets under classical axiomatization *)
(* and is imported from math-comp/analysis *)
(* *)
(* --> A decidable equality is defined for any type. It is thus possible to *)
(* define an eqType structure for any type using the mixin gen_eqMixin. *)
(* --> This file adds the possibility to define a choiceType structure for *)
(* any type thanks to an axiom gen_choiceMixin giving a choice mixin. *)
(* --> We chose to have generic mixins and no global instances of the eqType *)
(* and choiceType structures to let the user choose which definition of *)
(* equality to use and to avoid conflict with already declared instances. *)
(* *)
(* * Sets: *)
(* set A == type of sets on A. *)
(* (x \in P) == boolean membership predicate from ssrbool *)
(* for set P, available thanks to a canonical *)
(* predType T structure on sets on T. *)
(* [set x : T | P] == set of points x : T such that P holds. *)
(* [set x | P] == same as before with T left implicit. *)
(* [set E | x in A] == set defined by the expression E for x in *)
(* set A. *)
(* [set E | x in A & y in B] == same as before for E depending on 2 *)
(* variables x and y in sets A and B. *)
(* setT == full set. *)
(* set0 == empty set. *)
(* [set of F] == set defined by the expression F x for any *)
(* x. *)
(* [set a] == set containing only a. *)
(* [set a : T] == same as before with the type of a made *)
(* explicit. *)
(* A `|` B == union of A and B. *)
(* a |` A == A extended with a. *)
(* [set a1; a2; ..; an] == set containing only the n elements ai. *)
(* A `&` B == intersection of A and B. *)
(* A `*` B == product of A and B, i.e. set of pairs (a,b) *)
(* such that A a and B b. *)
(* A.`1 == set of points a such that there exists b so *)
(* that A (a, b). *)
(* A.`2 == set of points a such that there exists b so *)
(* that A (b, a). *)
(* ~` A == complement of A. *)
(* [set ~ a] == complement of [set a]. *)
(* A `\` B == complement of B in A. *)
(* A `\ a == A deprived of a. *)
(* \bigcup_(i in P) F == union of the elements of the family F whose *)
(* index satisfies P. *)
(* \bigcup_(i : T) F == union of the family F indexed on T. *)
(* \bigcup_i F == same as before with T left implicit. *)
(* \bigcap_(i in P) F == intersection of the elements of the family *)
(* F whose index satisfies P. *)
(* \bigcap_(i : T) F == union of the family F indexed on T. *)
(* \bigcap_i F == same as before with T left implicit. *)
(* A `<=` B <-> A is included in B. *)
(* A `<=>` B <-> double inclusion A `<=` B and B `<=` A. *)
(* f @^-1` A == preimage of A by f. *)
(* f @` A == image of A by f. *)
(* A !=set0 := exists x, A x. *)
(* is_singleton X <-> X contains only 1 element. *)
(* is_fun f <-> for each a, f a contains only 1 element. *)
(* is_total f <-> for each a, f a is non empty. *)
(* is_totalfun f <-> conjunction of is_fun and is_total. *)
(* xget x0 P == point x in P if it exists, x0 otherwise; *)
(* P must be a set on a choiceType. *)
(* fun_of_graph f0 f == function that maps x to an element of f x *)
(* if there is one, to f0 x otherwise. *)
(* *)
(* --> Thanks to this basic set theory, we proved Zorn's Lemma, which states *)
(* that any ordered set such that every totally ordered subset admits an *)
(* upper bound has a maximal element. We also proved an analogous version *)
(* for preorders, where maximal is replaced with premaximal: t is *)
(* premaximal if whenever t < s we also have s < t. *)
(******************************************************************************)
(* -------------------------------------------------------------------- *)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope box_scope.
Declare Scope quant_scope.
(* Copy of the ssrbool shim to ensure compatibility with MathComp v1.8.0. *)
Definition PredType : forall T pT, (pT -> pred T) -> predType T.
exact PredType || exact mkPredType.
Defined.
Arguments PredType [T pT] toP.
Local Notation predOfType T := (pred_of_simpl (@pred_of_argType T)).
(* -------------------------------------------------------------------- *)
Axiom functional_extensionality_dep :
forall (A : Type) (B : A -> Type) (f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g.
Axiom propositional_extensionality :
forall P Q : Prop, P <-> Q -> P = Q.
Axiom constructive_indefinite_description :
forall (A : Type) (P : A -> Prop),
(exists x : A, P x) -> {x : A | P x}.
Notation cid := constructive_indefinite_description.
(* -------------------------------------------------------------------- *)
Record mextentionality := {
_ : forall (P Q : Prop), (P <-> Q) -> (P = Q);
_ : forall {T U : Type} (f g : T -> U),
(forall x, f x = g x) -> f = g;
}.
Fact extentionality : mextentionality.
Proof.
split.
- exact: propositional_extensionality.
- by move=> T U f g; apply: functional_extensionality_dep.
Qed.
Lemma propext (P Q : Prop) : (P <-> Q) -> (P = Q).
Proof. by have [propext _] := extentionality; apply: propext. Qed.
Lemma funext {T U : Type} (f g : T -> U) : (f =1 g) -> f = g.
Proof. by case: extentionality=> _; apply. Qed.
Lemma propeqE (P Q : Prop) : (P = Q) = (P <-> Q).
Proof. by apply: propext; split=> [->|/propext]. Qed.
Lemma funeqE {T U : Type} (f g : T -> U) : (f = g) = (f =1 g).
Proof. by rewrite propeqE; split=> [->//|/funext]. Qed.
Lemma funeq2E {T U V : Type} (f g : T -> U -> V) : (f = g) = (f =2 g).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite funeqE.
Qed.
Lemma funeq3E {T U V W : Type} (f g : T -> U -> V -> W) :
(f = g) = (forall x y z, f x y z = g x y z).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> x y; rewrite funeqE.
Qed.
Lemma predeqE {T} (P Q : T -> Prop) : (P = Q) = (forall x, P x <-> Q x).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite propeqE.
Qed.
Lemma predeq2E {T U} (P Q : T -> U -> Prop) :
(P = Q) = (forall x y, P x y <-> Q x y).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> ??; rewrite propeqE.
Qed.
Lemma predeq3E {T U V} (P Q : T -> U -> V -> Prop) :
(P = Q) = (forall x y z, P x y z <-> Q x y z).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq3E=> ???; rewrite propeqE.
Qed.
Lemma propT (P : Prop) : P -> P = True.
Proof. by move=> p; rewrite propeqE; tauto. Qed.
Lemma Prop_irrelevance (P : Prop) (x y : P) : x = y.
Proof. by move: x (x) y => /propT-> [] []. Qed.
Lemma choice X Y (P : X -> Y -> Prop) :
(forall x, exists y, P x y) -> {f & forall x, P x (f x)}.
Proof. by move=> /(_ _)/constructive_indefinite_description -/all_tag. Qed.
(* Diaconescu Theorem *)
Theorem EM P : P \/ ~ P.
Proof.
pose U val := fun Q : bool => Q = val \/ P.
have Uex val : exists b, U val b by exists val; left.
pose f val := projT1 (cid (Uex val)).
pose Uf val : U val (f val) := projT2 (cid (Uex val)).
have : f true <> f false \/ P.
have [] := (Uf true, Uf false); rewrite /U.
by move=> [->|?] [->|?] ; do ?[by right]; left.
move=> [fTFN|]; [right=> p|by left]; apply: fTFN.
have UTF : U true = U false by rewrite predeqE /U => b; split=> _; right.
rewrite /f; move: (Uex true) (Uex false); rewrite UTF => p1 p2.
by congr (projT1 (cid _)); apply: Prop_irrelevance.
Qed.
Lemma pselect (P : Prop): {P} + {~P}.
Proof.
have : exists b, if b then P else ~ P.
by case: (EM P); [exists true|exists false].
by move=> /cid [[]]; [left|right].
Qed.
Lemma pdegen (P : Prop): P = True \/ P = False.
Proof. by have [p|Np] := pselect P; [left|right]; rewrite propeqE. Qed.
Lemma lem (P : Prop): P \/ ~P.
Proof. by case: (pselect P); tauto. Qed.
(* -------------------------------------------------------------------- *)
Lemma trueE : true = True :> Prop.
Proof. by rewrite propeqE; split. Qed.
Lemma falseE : false = False :> Prop.
Proof. by rewrite propeqE; split. Qed.
Lemma propF (P : Prop) : ~ P -> P = False.
Proof. by move=> p; rewrite propeqE; tauto. Qed.
Lemma eq_forall T (U V : T -> Prop) :
(forall x : T, U x = V x) -> (forall x, U x) = (forall x, V x).
Proof. by move=> e; rewrite propeqE; split=> ??; rewrite (e,=^~e). Qed.
Lemma eq_exists T (U V : T -> Prop) :
(forall x : T, U x = V x) -> (exists x, U x) = (exists x, V x).
Proof.
by move=> e; rewrite propeqE; split=> - [] x ?; exists x; rewrite (e,=^~e).
Qed.
Lemma reflect_eq (P : Prop) (b : bool) : reflect P b -> P = b.
Proof. by rewrite propeqE; exact: rwP. Qed.
Definition asbool (P : Prop) :=
if pselect P then true else false.
Notation "`[< P >]" := (asbool P) : bool_scope.
Lemma asboolE (P : Prop) : `[<P>] = P :> Prop.
Proof. by rewrite propeqE /asbool; case: pselect; split. Qed.
Lemma asboolP (P : Prop) : reflect P `[<P>].
Proof. by apply: (equivP idP); rewrite asboolE. Qed.
Lemma asboolPn (P : Prop) : reflect (~ P) (~~ `[<P>]).
Proof. by rewrite /asbool; case: pselect=> h; constructor. Qed.
Lemma asboolW (P : Prop) : `[<P>] -> P.
Proof. by case: asboolP. Qed.
(* Shall this be a coercion ?*)
Lemma asboolT (P : Prop) : P -> `[<P>].
Proof. by case: asboolP. Qed.
Lemma asboolF (P : Prop) : ~ P -> `[<P>] = false.
Proof. by apply/introF/asboolP. Qed.
Lemma is_true_inj : injective is_true.
Proof. by move=> [] []; rewrite ?(trueE, falseE) ?propeqE; tauto. Qed.
(* -------------------------------------------------------------------- *)
Lemma asbool_equiv_eq {P Q : Prop} : (P <-> Q) -> `[<P>] = `[<Q>].
Proof. by rewrite -propeqE => ->. Qed.
Lemma asbool_equiv_eqP {P Q : Prop} QQ : reflect Q QQ -> (P <-> Q) -> `[<P>] = QQ.
Proof.
move=> Q_QQ [hPQ hQP]; apply/idP/Q_QQ=> [/asboolP//|].
by move=> hQ; apply/asboolP/hQP.
Qed.
Lemma asbool_equiv {P Q : Prop} : (P <-> Q) -> (`[<P>] <-> `[<Q>]).
Proof. by move/asbool_equiv_eq->. Qed.
Lemma asbool_eq_equiv {P Q : Prop} : `[<P>] = `[<Q>] -> (P <-> Q).
Proof.
by move=> eq; split=> /asboolP; rewrite (eq, =^~ eq) => /asboolP.
Qed.
(* -------------------------------------------------------------------- *)
Lemma and_asboolP (P Q : Prop) : reflect (P /\ Q) (`[<P>] && `[<Q>]).
Proof.
apply: (iffP idP); first by case/andP=> /asboolP hP /asboolP hQ.
by case=> /asboolP-> /asboolP->.
Qed.
Lemma or_asboolP (P Q : Prop) : reflect (P \/ Q) (`[<P>] || `[<Q>]).
Proof.
apply: (iffP idP); first by case/orP=> /asboolP; [left | right].
by case=> /asboolP-> //=; rewrite orbT.
Qed.
Lemma asbool_neg {P : Prop} : `[<~ P>] = ~~ `[<P>].
Proof. by apply/idP/asboolPn=> [/asboolP|/asboolT]. Qed.
Lemma asbool_or {P Q : Prop} : `[<P \/ Q>] = `[<P>] || `[<Q>].
Proof. exact: (asbool_equiv_eqP (or_asboolP _ _)). Qed.
Lemma asbool_and {P Q : Prop} : `[<P /\ Q>] = `[<P>] && `[<Q>].
Proof. exact: (asbool_equiv_eqP (and_asboolP _ _)). Qed.
(* -------------------------------------------------------------------- *)
Lemma imply_asboolP {P Q : Prop} : reflect (P -> Q) (`[<P>] ==> `[<Q>]).
Proof.
apply: (iffP implyP)=> [PQb /asboolP/PQb/asboolW //|].
by move=> PQ /asboolP/PQ/asboolT.
Qed.
Lemma asbool_imply {P Q : Prop} : `[<P -> Q>] = `[<P>] ==> `[<Q>].
Proof. exact: (asbool_equiv_eqP imply_asboolP). Qed.
Lemma imply_asboolPn (P Q : Prop) : reflect (P /\ ~ Q) (~~ `[<P -> Q>]).
Proof.
apply: (iffP idP).
by rewrite asbool_imply negb_imply -asbool_neg => /and_asboolP.
by move/and_asboolP; rewrite asbool_neg -negb_imply asbool_imply.
Qed.
(* -------------------------------------------------------------------- *)
Lemma forall_asboolP {T : Type} (P : T -> Prop) :
reflect (forall x, `[<P x>]) (`[<forall x, P x>]).
Proof.
apply: (iffP idP); first by move/asboolP=> Px x; apply/asboolP.
by move=> Px; apply/asboolP=> x; apply/asboolP.
Qed.
Lemma exists_asboolP {T : Type} (P : T -> Prop) :
reflect (exists x, `[<P x>]) (`[<exists x, P x>]).
Proof.
apply: (iffP idP); first by case/asboolP=> x Px; exists x; apply/asboolP.
by case=> x bPx; apply/asboolP; exists x; apply/asboolP.
Qed.
(* -------------------------------------------------------------------- *)
Lemma contrap (Q P : Prop) : (Q -> P) -> ~ P -> ~ Q.
Proof.
move=> cb /asboolPn nb; apply/asboolPn.
by apply: contra nb => /asboolP /cb /asboolP.
Qed.
Definition contrapNN := contra.
Lemma contrapL (Q P : Prop) : (Q -> ~ P) -> P -> ~ Q.
Proof.
move=> cb /asboolP hb; apply/asboolPn.
by apply: contraL hb => /asboolP /cb /asboolPn.
Qed.
Definition contrapTN := contrapL.
Lemma contrapR (Q P : Prop) : (~ Q -> P) -> ~ P -> Q.
Proof.
move=> cb /asboolPn nb; apply/asboolP.
by apply: contraR nb => /asboolP /cb /asboolP.
Qed.
Definition contrapNT := contrapR.
Lemma contrapLR (Q P : Prop) : (~ Q -> ~ P) -> P -> Q.
Proof.
move=> cb /asboolP hb; apply/asboolP.
by apply: contraLR hb => /asboolP /cb /asboolPn.
Qed.
Definition contrapTT := contrapLR.
Lemma contrapT P : ~ ~ P -> P.
Proof.
by move/asboolPn=> nnb; apply/asboolP; apply: contraR nnb => /asboolPn /asboolP.
Qed.
Lemma wlog_neg P : (~ P -> P) -> P.
Proof. by move=> ?; case: (pselect P). Qed.
Lemma notT (P : Prop) : P = False -> ~ P. Proof. by move->. Qed.
Lemma notTE (P : Prop) : (~ P) -> P = False. Proof. by case: (pdegen P)=> ->. Qed.
Lemma notFE (P : Prop) : (~ P) = False -> P.
Proof. move/notT; exact: contrapT. Qed.
Lemma notK : involutive not.
Proof.
move=> P; case: (pdegen P)=> ->; last by apply: notTE; intuition.
by rewrite [~ True]notTE //; case: (pdegen (~ False)) => // /notFE.
Qed.
Lemma not_inj : injective not. Proof. exact: can_inj notK. Qed.
Lemma notLR P Q : (P = ~ Q) -> (~ P) = Q. Proof. exact: canLR notK. Qed.
Lemma notRL P Q : (~ P) = Q -> P = ~ Q. Proof. exact: canRL notK. Qed.
(* -------------------------------------------------------------------- *)
(* assia : let's see if we need the simplpred machinery. In any case, we sould
first try definitions + appropriate Arguments setting to see whether these
can replace the canonical structures machinery. *)
Definition predp T := T -> Prop.
Identity Coercion fun_of_pred : predp >-> Funclass.
Definition relp T := T -> predp T.
Identity Coercion fun_of_rel : rel >-> Funclass.
Notation xpredp0 := (fun _ => False).
Notation xpredpT := (fun _ => True).
Notation xpredpI := (fun (p1 p2 : predp _) x => p1 x /\ p2 x).
Notation xpredpU := (fun (p1 p2 : predp _) x => p1 x \/ p2 x).
Notation xpredpC := (fun (p : predp _) x => ~ p x).
Notation xpredpD := (fun (p1 p2 : predp _) x => ~ p2 x /\ p1 x).
Notation xpreimp := (fun f (p : predp _) x => p (f x)).
Notation xrelpU := (fun (r1 r2 : relp _) x y => r1 x y \/ r2 x y).
(* -------------------------------------------------------------------- *)
Definition pred0p (T : Type) (P : predp T) : bool := `[<P =1 xpredp0>].
Prenex Implicits pred0p.
Lemma pred0pP (T : Type) (P : predp T) : reflect (P =1 xpredp0) (pred0p P).
Proof. by apply: (iffP (asboolP _)). Qed.
(* -------------------------------------------------------------------- *)
Module BoolQuant.
Inductive box := Box of bool.
Bind Scope box_scope with box.
Delimit Scope box_scope with P.
Definition idbox {T : Type} (B : box) := fun (x : T) => B.
Definition unbox {T : Type} (B : T -> box) : bool :=
asbool (forall x : T, let: Box b := B x in b).
Notation "F ^*" := (Box F) (at level 2).
Notation "F ^~" := (~~ F) (at level 2).
Section Definitions.
Variable T : Type.
Implicit Types (B : box) (x y : T).
Definition quant0p Bp := pred0p (fun x : T => let: F^* := Bp x x in F).
(* The first redundant argument protects the notation from Coq's K-term *)
(* display kludge; the second protects it from simpl and /=. *)
Definition ex B x y := B.
(* Binding the predicate value rather than projecting it prevents spurious *)
(* unfolding of the boolean connectives by unification. *)
Definition all B x y := let: F^* := B in F^~^*.
Definition all_in C B x y := let: F^* := B in (C ==> F)^~^*.
Definition ex_in C B x y := let: F^* := B in (C && F)^*.
End Definitions.
Notation "`[ x | B ]" := (quant0p (fun x => B x)) (at level 0, x name).
Notation "`[ x : T | B ]" := (quant0p (fun x : T => B x)) (at level 0, x name).
Module Exports.
Delimit Scope quant_scope with Q. (* Bogus, only used to declare scope. *)
Bind Scope quant_scope with box.
Notation ", F" := F^* (at level 200, format ", '/ ' F") : quant_scope.
Notation "`[ 'forall' x B ]" := `[x | all B]
(at level 0, x at level 99, B at level 200,
format "`[ '[hv' 'forall' x B ] ']'") : bool_scope.
Notation "`[ 'forall' x : T B ]" := `[x : T | all B]
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation "`[ 'forall' ( x | C ) B ]" := `[x | all_in C B]
(at level 0, x at level 99, B at level 200,
format "`[ '[hv' '[' 'forall' ( x '/ ' | C ) ']' B ] ']'") : bool_scope.
Notation "`[ 'forall' ( x : T | C ) B ]" := `[x : T | all_in C B]
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation "`[ 'forall' x 'in' A B ]" := `[x | all_in (x \in A) B]
(at level 0, x at level 99, B at level 200,
format "`[ '[hv' '[' 'forall' x '/ ' 'in' A ']' B ] ']'") : bool_scope.
Notation "`[ 'forall' x : T 'in' A B ]" := `[x : T | all_in (x \in A) B]
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation ", 'forall' x B" := `[x | all B]^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' 'forall' x B") : quant_scope.
Notation ", 'forall' x : T B" := `[x : T | all B]^*
(at level 200, x at level 99, B at level 200, only parsing) : quant_scope.
Notation ", 'forall' ( x | C ) B" := `[x | all_in C B]^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' '[' 'forall' ( x '/ ' | C ) ']' B") : quant_scope.
Notation ", 'forall' ( x : T | C ) B" := `[x : T | all_in C B]^*
(at level 200, x at level 99, B at level 200, only parsing) : quant_scope.
Notation ", 'forall' x 'in' A B" := `[x | all_in (x \in A) B]^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' '[' 'forall' x '/ ' 'in' A ']' B") : bool_scope.
Notation ", 'forall' x : T 'in' A B" := `[x : T | all_in (x \in A) B]^*
(at level 200, x at level 99, B at level 200, only parsing) : bool_scope.
Notation "`[ 'exists' x B ]" := `[x | ex B]^~
(at level 0, x at level 99, B at level 200,
format "`[ '[hv' 'exists' x B ] ']'") : bool_scope.
Notation "`[ 'exists' x : T B ]" := `[x : T | ex B]^~
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation "`[ 'exists' ( x | C ) B ]" := `[x | ex_in C B]^~
(at level 0, x at level 99, B at level 200,
format "`[ '[hv' '[' 'exists' ( x '/ ' | C ) ']' B ] ']'") : bool_scope.
Notation "`[ 'exists' ( x : T | C ) B ]" := `[x : T | ex_in C B]^~
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation "`[ 'exists' x 'in' A B ]" := `[x | ex_in (x \in A) B]^~
(at level 0, x at level 99, B at level 200,
format "`[ '[hv' '[' 'exists' x '/ ' 'in' A ']' B ] ']'") : bool_scope.
Notation "`[ 'exists' x : T 'in' A B ]" := `[x : T | ex_in (x \in A) B]^~
(at level 0, x at level 99, B at level 200, only parsing) : bool_scope.
Notation ", 'exists' x B" := `[x | ex B]^~^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' 'exists' x B") : quant_scope.
Notation ", 'exists' x : T B" := `[x : T | ex B]^~^*
(at level 200, x at level 99, B at level 200, only parsing) : quant_scope.
Notation ", 'exists' ( x | C ) B" := `[x | ex_in C B]^~^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' '[' 'exists' ( x '/ ' | C ) ']' B") : quant_scope.
Notation ", 'exists' ( x : T | C ) B" := `[x : T | ex_in C B]^~^*
(at level 200, x at level 99, B at level 200, only parsing) : quant_scope.
Notation ", 'exists' x 'in' A B" := `[x | ex_in (x \in A) B]^~^*
(at level 200, x at level 99, B at level 200,
format ", '/ ' '[' 'exists' x '/ ' 'in' A ']' B") : bool_scope.
Notation ", 'exists' x : T 'in' A B" := `[x : T | ex_in (x \in A) B]^~^*
(at level 200, x at level 99, B at level 200, only parsing) : bool_scope.
End Exports.
End BoolQuant.
Export BoolQuant.Exports.
Open Scope quant_scope.
(* -------------------------------------------------------------------- *)
Section QuantifierCombinators.
Variables (T : Type) (P : pred T) (PP : predp T).
Hypothesis viewP : forall x, reflect (PP x) (P x).
Lemma existsPP : reflect (exists x, PP x) `[exists x, P x].
Proof.
apply: (iffP idP).
move/asboolP; (* oops notation! *) apply: contrapR => nh x /=; apply: notTE.
by apply: contrap nh => /viewP Px; exists x.
case=> x PPx; apply/asboolP=> /(_ x) /notT /=; rewrite -/(not (~ P x)) notK.
exact/viewP.
Qed.
Lemma forallPP : reflect (forall x, PP x) `[forall x, P x].
Proof.
apply: (iffP idP).
by move/asboolP=> h x; move/notT: (h x)=> /= /negP; rewrite negbK => /viewP.
move=> h; apply/asboolP=> x; apply/notTE/negP; rewrite negbK; exact/viewP.
Qed.
End QuantifierCombinators.
Section PredQuantifierCombinators.
Variables (T : Type) (P : pred T).
Lemma existsbP : reflect (exists x, P x) `[exists x, P x].
Proof. exact: existsPP (fun x => @idP (P x)). Qed.
Lemma existsbE : `[exists x, P x] = `[<exists x, P x>].
Proof.
apply/esym/is_true_inj; rewrite asboolE propeqE; apply: rwP; exact: existsbP.
Qed.
Lemma forallbP : reflect (forall x, P x) `[forall x, P x].
Proof. exact: forallPP (fun x => @idP (P x)). Qed.
Lemma forallbE : `[forall x, P x] = `[<forall x, P x>].
Proof.
apply/esym/is_true_inj; rewrite asboolE propeqE; apply: rwP; exact: forallbP.
Qed.
End PredQuantifierCombinators.
(* -------------------------------------------------------------------- *)
Lemma existsp_asboolP {T} {P : T -> Prop} :
reflect (exists x : T, P x) `[exists x : T, `[<P x>]].
Proof. exact: existsPP (fun x => @asboolP (P x)). Qed.
Lemma forallp_asboolP {T} {P : T -> Prop} :
reflect (forall x : T, P x) `[forall x : T, `[<P x>]].
Proof. exact: forallPP (fun x => @asboolP (P x)). Qed.
Lemma forallp_asboolPn {T} {P : T -> Prop} :
reflect (forall x : T, ~ P x) (~~ `[<exists x : T, P x>]).
Proof.
apply: (iffP idP)=> [/asboolPn NP x Px|NP].
by apply/NP; exists x. by apply/asboolP=> -[x]; apply/NP.
Qed.
Lemma existsp_asboolPn {T} {P : T -> Prop} :
reflect (exists x : T, ~ P x) (~~ `[<forall x : T, P x>]).
Proof.
apply: (iffP idP); last by case=> x NPx; apply/asboolPn=> /(_ x).
move/asboolPn=> NP; apply/asboolP/negbNE/asboolPn=> h.
by apply/NP=> x; apply/asboolP/negbNE/asboolPn=> NPx; apply/h; exists x.
Qed.
Lemma asbool_forallNb {T : Type} (P : pred T) :
`[< forall x : T, ~~ (P x) >] = ~~ `[< exists x : T, P x >].
Proof.
apply: (asbool_equiv_eqP forallp_asboolPn);
by split=> h x; apply/negP/h.
Qed.
Lemma asbool_existsNb {T : Type} (P : pred T) :
`[< exists x : T, ~~ (P x) >] = ~~ `[< forall x : T, P x >].
Proof.
apply: (asbool_equiv_eqP existsp_asboolPn);
by split=> -[x h]; exists x; apply/negP.
Qed.
Reserved Notation "[ 'set' x : T | P ]"
(at level 0, x at level 99).
Reserved Notation "[ 'set' x | P ]"
(at level 0, x, P at level 99, format "[ 'set' x | P ]").
Reserved Notation "[ 'set' E | x 'in' A ]" (at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x 'in' A ] ']'").
Reserved Notation "[ 'set' E | x 'in' A & y 'in' B ]"
(at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x 'in' A & y 'in' B ] ']'").
Reserved Notation "[ 'set' 'of' F ]" (at level 0, format "[ 'set' 'of' F ]").
Reserved Notation "[ 'set' a ]"
(at level 0, a at level 99, format "[ 'set' a ]").
Reserved Notation "[ 'set' a : T ]"
(at level 0, a at level 99, format "[ 'set' a : T ]").
Reserved Notation "A `|` B" (at level 52, left associativity).
Reserved Notation "a |` A" (at level 52, left associativity).
Reserved Notation "[ 'set' a1 ; a2 ; .. ; an ]"
(at level 0, a1 at level 99, format "[ 'set' a1 ; a2 ; .. ; an ]").
Reserved Notation "A `&` B" (at level 48, left associativity).
Reserved Notation "A `*` B" (at level 46, left associativity).
Reserved Notation "A .`1" (at level 2, left associativity, format "A .`1").
Reserved Notation "A .`2" (at level 2, left associativity, format "A .`2").
Reserved Notation "~` A" (at level 35, right associativity).
Reserved Notation "[ 'set' ~ a ]" (at level 0, format "[ 'set' ~ a ]").
Reserved Notation "A `\` B" (at level 50, left associativity).
Reserved Notation "A `\ b" (at level 50, left associativity).
(*
Reserved Notation "A `+` B" (at level 54, left associativity).
Reserved Notation "A +` B" (at level 54, left associativity).
*)
Reserved Notation "\bigcup_ ( i 'in' P ) F"
(at level 41, F at level 41, i, P at level 50,
format "'[' \bigcup_ ( i 'in' P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i : T ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcup_ ( i : T ) '/ ' F ']'").
Reserved Notation "\bigcup_ i F"
(at level 41, F at level 41, i at level 0,
format "'[' \bigcup_ i '/ ' F ']'").
Reserved Notation "\bigcap_ ( i 'in' P ) F"
(at level 41, F at level 41, i, P at level 50,
format "'[' \bigcap_ ( i 'in' P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i : T ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcap_ ( i : T ) '/ ' F ']'").
Reserved Notation "\bigcap_ i F"
(at level 41, F at level 41, i at level 0,
format "'[' \bigcap_ i '/ ' F ']'").
Reserved Notation "A `<=` B" (at level 70, no associativity).
Reserved Notation "A `<=>` B" (at level 70, no associativity).
Reserved Notation "f @^-1` A" (at level 24).
Reserved Notation "f @` A" (at level 24).
Reserved Notation "A !=set0" (at level 80).
Definition set A := A -> Prop.
Definition in_set T (P : set T) : pred T := [pred x | `[<P x>]].
Canonical set_predType T := @PredType T (set T) (@in_set T).
Lemma in_setE T (P : set T) x : x \in P = P x :> Prop.
Proof. by rewrite propeqE; split => [] /asboolP. Qed.
Declare Scope classical_set_scope.
Bind Scope classical_set_scope with set.
Local Open Scope classical_set_scope.
Delimit Scope classical_set_scope with classic.
Definition mkset {T} (A : T -> Prop) : set T := A.
Notation "[ 'set' x : T | P ]" := (mkset (fun x : T => P)) : classical_set_scope.
Notation "[ 'set' x | P ]" := [set x : _ | P] : classical_set_scope.
Notation "[ 'set' E | x 'in' A ]" :=
[set y | exists2 x, A x & E = y] : classical_set_scope.
Notation "[ 'set' E | x 'in' A & y 'in' B ]" :=
[set z | exists2 x, A x & exists2 y, B y & E = z] : classical_set_scope.
Definition image {A B} (f : A -> B) (X : set A) : set B :=
[set f a | a in X].
Definition preimage {A B} (f : A -> B) (X : set B) : set A := [set a | X (f a)].
Arguments preimage A B f X / a.
Definition setT {A} := [set _ : A | True].
Definition set0 {A} := [set _ : A | False].
Definition set1 {A} (x : A) := [set a : A | x = a].
Definition setI {A} (X Y : set A) := [set a | X a /\ Y a].
Definition setU {A} (X Y : set A) := [set a | X a \/ Y a].
Definition setV {A B} (X : set A) (Y : set B) :=
[set a : A + B | sum_rect _ X Y a].
Definition settt : set unit := setT.
Definition nonempty {A} (X : set A) := exists x, X x.
Definition setC {A} (X : set A) := [set a | ~ X a].
Definition setD {A} (X Y : set A) := [set a | X a /\ ~ Y a].
Definition setM {A B} (X : set A) (Y : set B) := [set x | X x.1 /\ Y x.2].
Definition fst_set {A B} (X : set (A * B)) := [set x | exists y, X (x, y)].
Definition snd_set {A B} (X : set (A * B)) := [set y | exists x, X (x, y)].
Notation "[ 'set' 'of' F ]" := [set F i | i in setT] : classical_set_scope.
Notation "[ 'set' a ]" := (set1 a) : classical_set_scope.
Notation "[ 'set' a : T ]" := [set (a : T)] : classical_set_scope.
Notation "A `|` B" := (setU A B) : classical_set_scope.
Notation "a |` A" := ([set a] `|` A) : classical_set_scope.
Notation "[ 'set' a1 ; a2 ; .. ; an ]" :=
(setU .. (a1 |` [set a2]) .. [set an]) : classical_set_scope.
Notation "A `&` B" := (setI A B) : classical_set_scope.
Notation "A `*` B" := (setM A B) : classical_set_scope.
Notation "A .`1" := (fst_set A) : classical_set_scope.
Notation "A .`2" := (snd_set A) : classical_set_scope.
Notation "~` A" := (setC A) : classical_set_scope.
Notation "[ 'set' ~ a ]" := (~` [set a]) : classical_set_scope.
Notation "A `\` B" := (setD A B) : classical_set_scope.
Notation "A `\ a" := (A `\` [set a]) : classical_set_scope.
Definition bigsetI A I (P : set I) (X : I -> set A) :=
[set a | forall i, P i -> X i a].
Definition bigsetU A I (P : set I) (X : I -> set A) :=
[set a | exists2 i, P i & X i a].
Notation "\bigcup_ ( i 'in' P ) F" :=
(bigsetU P (fun i => F)) : classical_set_scope.
Notation "\bigcup_ ( i : T ) F" :=
(\bigcup_(i in @setT T) F) : classical_set_scope.
Notation "\bigcup_ i F" := (\bigcup_(i : _) F) : classical_set_scope.
Notation "\bigcap_ ( i 'in' P ) F" :=
(bigsetI P (fun i => F)) : classical_set_scope.
Notation "\bigcap_ ( i : T ) F" :=
(\bigcap_(i in @setT T) F) : classical_set_scope.
Notation "\bigcap_ i F" := (\bigcap_(i : _) F) : classical_set_scope.
Definition subset {A} (X Y : set A) := forall a, X a -> Y a.
Notation "A `<=` B" := (subset A B) : classical_set_scope.
Notation "A `<=>` B" := ((A `<=` B) /\ (B `<=` A)) : classical_set_scope.
Notation "f @^-1` A" := (preimage f A) : classical_set_scope.
Notation "f @` A" := (image f A) : classical_set_scope.
Notation "A !=set0" := (nonempty A) : classical_set_scope.
Definition graph_sym {T T'} (A : set (T * T')) : set (T' * T) :=
[set xy | A (xy.2, xy.1)].
Definition graph_comp {T' T T''} (A : set (T * T')) (B : set (T' * T'')) :
set (T * T'') := [set xz | exists2 y, A (xz.1, y) & B (y, xz.2)].
Lemma eqEsubset T (F G : set T) : F `<=` G -> G `<=` F -> F = G.
Proof. by move=> H K; rewrite funeqE=> s; rewrite propeqE; split=> [/H|/K]. Qed.
Lemma sub0set T (X : set T) : set0 `<=` X.
Proof. by []. Qed.
Lemma subset0 T (X : set T) : (X `<=` set0) = (X = set0).
Proof. rewrite propeqE; split => [?|-> //]; exact/eqEsubset. Qed.
Lemma set0P T (X : set T) : (X <> set0) <-> (X !=set0).
Proof.
split=> [X_neq0|[t tX] X_eq0]; last by rewrite X_eq0 in tX.
apply: contrapT => /asboolPn/forallp_asboolPn X0.
by apply/X_neq0/eqEsubset.
Qed.
Lemma imageP {A B} (f : A -> B) (X : set A) a : X a -> (f @` X) (f a).
Proof. by exists a. Qed.
Lemma sub_image_setI {A B} (f : A -> B) (X Y : set A) :
f @` (X `&` Y) `<=` f @` X `&` f @` Y.
Proof. by move=> b [x [Xa Ya <-]]; split; apply: imageP. Qed.
Arguments sub_image_setI {A B f X Y} a _.
Lemma nonempty_image {A B} (f : A -> B) (X : set A) :
f @` X !=set0 -> X !=set0.
Proof. by case=> b [a]; exists a. Qed.
Lemma nonempty_preimage {A B} (f : A -> B) (X : set B) :
f @^-1` X !=set0 -> X !=set0.
Proof. by case=> [a ?]; exists (f a). Qed.
Lemma preimage_image A B (f : A -> B) (X : set A) : X `<=` f@^-1` (f @` X).
Proof. by move=> a Xa; exists a. Qed.
Lemma image_preimage A B (f : A -> B) (X : set B) :
f @` setT = setT -> f @` (f @^-1` X) = X.
Proof.
move=> fsurj; rewrite predeqE => x; split; first by move=> [?? <-].
move=> Xx; have : setT x by []; rewrite -fsurj => -[y _ fy_eqx].
by exists y => //; rewrite /preimage/mkset fy_eqx.
Qed.
Lemma preimage_setC A B (f : A -> B) (X : set B) :
~` (f @^-1` X) = f @^-1` (~` X).
Proof. by rewrite predeqE => a; split=> nXfa ?; apply: nXfa. Qed.
Lemma subset_empty {A} (X Y : set A) : X `<=` Y -> X !=set0 -> Y !=set0.
Proof. by move=> sXY [x Xx]; exists x; apply: sXY. Qed.
Lemma subset_trans {A} (Y X Z : set A) : X `<=` Y -> Y `<=` Z -> X `<=` Z.
Proof. by move=> sXY sYZ ? ?; apply/sYZ/sXY. Qed.
Lemma nonempty_preimage_setI {A B} (f : A -> B) (X Y : set B) :
(f @^-1` (X `&` Y)) !=set0 <-> (f @^-1` X `&` f @^-1` Y) !=set0.
Proof. by split; case=> x ?; exists x. Qed.
Lemma subsetC {A} (X Y : set A) : X `<=` Y -> ~` Y `<=` ~` X.
Proof. by move=> sXY ? nYa ?; apply/nYa/sXY. Qed.
Lemma subsetU {A} (X Y Z : set A) : X `<=` Z -> Y `<=` Z -> X `|` Y `<=` Z.
Proof. by move=> sXZ sYZ a; apply: or_ind; [apply: sXZ|apply: sYZ]. Qed.
Lemma subUset T (X Y Z : set T) : (Y `|` Z `<=` X) = ((Y `<=` X) /\ (Z `<=` X)).
Proof.
rewrite propeqE; split => [|[YX ZX] x]; last by case; [exact: YX | exact: ZX].
by move=> sYZ_X; split=> x ?; apply sYZ_X; [left | right].
Qed.
Lemma subsetI A (X Y Z : set A) : (X `<=` Y `&` Z) = ((X `<=` Y) /\ (X `<=` Z)).
Proof.
rewrite propeqE; split=> [H|[y z ??]]; split; by [move=> ?/H[]|apply y|apply z].
Qed.
Lemma subIset {A} (X Y Z : set A) : X `<=` Z \/ Y `<=` Z -> X `&` Y `<=` Z.
Proof. case => H a; by [move=> [/H] | move=> [_ /H]]. Qed.
Lemma setD_eq0 A (X Y : set A) : (X `\` Y = set0) = (X `<=` Y).
Proof.
rewrite propeqE; split=> [XDY0 a|sXY].
by apply: contrapTT => nYa xA; rewrite -[False]/(set0 a) -XDY0.
by rewrite predeqE => ?; split=> // - [?]; apply; apply: sXY.
Qed.
Lemma setDE {A} (X Y : set A) : X `\` Y = X `&` ~` Y.
Proof. by []. Qed.
Lemma setIid {A} (X : set A) : X `&` X = X.
Proof. by rewrite predeqE => ?; split=> [[]|]. Qed.
Lemma setIC {A} (X Y : set A) : X `&` Y = Y `&` X.
Proof. by rewrite predeqE => ?; split=> [[]|[]]. Qed.
Lemma setIT {A} (X : set A) : X `&` setT = X.
Proof. by rewrite predeqE => ?; split=> [[]|]. Qed.
Lemma setI0 {A} (X : set A) : X `&` set0 = set0.
Proof. by rewrite predeqE => ?; split=> [[]|]. Qed.
Lemma set0I A (Y : set A) : set0 `&` Y = set0.
Proof. by rewrite setIC setI0. Qed.
Lemma setIA {A} (X Y Z : set A) : X `&` (Y `&` Z) = X `&` Y `&` Z.
Proof. by rewrite predeqE => ?; split=> [[? []]|[[]]]. Qed.
Lemma setICA {A} (X Y Z : set A) : X `&` (Y `&` Z) = Y `&` (X `&` Z).
Proof. by rewrite setIA [X `&` _]setIC -setIA. Qed.
Lemma setIAC {A} (X Y Z : set A) : X `&` Y `&` Z = X `&` Z `&` Y.
Proof. by rewrite setIC setICA setIA. Qed.
Lemma setIACA {A} (X Y Z T : set A) :
X `&` Y `&` (Z `&` T) = X `&` Z `&` (Y `&` T).
Proof. by rewrite -setIA [Y `&` _]setICA setIA. Qed.
Lemma setUA A : associative (@setU A).
Proof. by move=> p q r; rewrite /setU /mkset predeqE => a; tauto. Qed.
Lemma setUid A : idempotent (@setU A).
Proof. move=> p; rewrite /setU predeqE /mkset => a; tauto. Qed.
Lemma setUC A : commutative (@setU A).
Proof. move=> p q; rewrite /setU predeqE /mkset => a; tauto. Qed.
Lemma set0U T (X : set T) : set0 `|` X = X.
Proof. by rewrite funeqE => t; rewrite propeqE; split; [case|right]. Qed.
Lemma setU0 T (X : set T) : X `|` set0 = X.
Proof. by rewrite funeqE => t; rewrite propeqE; split; [case|left]. Qed.
Lemma setU_eq0 T (X Y : set T) : (X `|` Y = set0) = ((X = set0) /\ (Y = set0)).
Proof. by rewrite -!subset0 subUset. Qed.
Lemma setI_bigcapr A I (D : set I) (f : I -> set A) (X : set A) :
X `&` \bigcap_(i in D) f i =
\bigcap_(i in setV settt D) sum_rect (fun=> set A) (fun=> X) f i.
Proof.
rewrite predeqE => a; split; first by move=> [Xa IDfa] [[]|i]//= /IDfa.
move=> IXDfa; split; first by apply: (IXDfa (inl tt)).
by move=> i Di; apply: (IXDfa (inr i)).
Qed.
Lemma setI_bigcupl A I (D : set I) (f : I -> set A) (X : set A) :
\bigcup_(i in D) f i `&` X = \bigcup_(i in D) (f i `&` X).
Proof.
rewrite predeqE => a; split => [[[i Di] fia] Xa|[i Di [fia Xa]]].
by exists i.
by split=> //; exists i.
Qed.
Lemma setI_bigcupr A I (D : set I) (f : I -> set A) (X : set A) :
X `&` \bigcup_(i in D) f i = \bigcup_(i in D) (X `&` f i).
Proof.
rewrite setIC setI_bigcupl; congr bigsetU.
by rewrite funeqE => i; rewrite setIC.
Qed.
Lemma setU_bigcapl A I (D : set I) (f : I -> set A) (X : set A) :
\bigcap_(i in D) f i `|` X = \bigcap_(i in D) (f i `|` X).
Proof.
rewrite predeqE => a; split => [|fI].
by move=> [fI|] i Di; [left; apply: fI|right].
by have [Xa|Xna] := asboolP (X a); [right |left => i /fI[]].
Qed.
Lemma setU_bigcapr A I (D : set I) (f : I -> set A) (X : set A) :
X `|` \bigcap_(i in D) f i = \bigcap_(i in D) (X `|` f i).
Proof.
rewrite setUC setU_bigcapl; congr bigsetI.
by rewrite funeqE => i; rewrite setUC.
Qed.
Lemma bigcup_set1 {A I} (D : set I) (f : I -> set A) :
\bigcup_(i in D) [set f i] = [set f i | i in D].
Proof. by []. Qed.
Lemma bigcup_map {A I J} (D : set I) (h : I -> J) (f : J -> set A) :
\bigcup_(i in D) f (h i) = \bigcup_(j in [set h i | i in D]) f j.
Proof.
rewrite predeqE => a; split=> [[i Di]|[_ [i Di <-]]] fhia; last by exists i.
by exists (h i) => //; exists i.
Qed.
Lemma bigcup_bigcup {A I J}
(DI : set I) (DJ : I -> set J) (f : J -> set A) :
\bigcup_(j in \bigcup_(i in DI) DJ i) f j =
\bigcup_(i in DI) \bigcup_(j in DJ i) f j.
Proof.
rewrite predeqE=> a; split => [[j [i Di Dij fja]]|[i Di [j Dij fja]]].
by exists i => //; exists j.
by exists j => //; exists i.
Qed.
Lemma bigcap_bigcup {A I J}
(DI : set I) (DJ : I -> set J) (f : J -> set A) :
\bigcap_(j in \bigcup_(i in DI) DJ i) f j =
\bigcap_(i in DI) \bigcap_(j in DJ i) f j.
Proof.
rewrite predeqE=> a; split=> [UUfa i Di j Dij|UUfa j [i Di Dij]].
by apply: UUfa; exists i.
exact: UUfa Dij.
Qed.
Lemma bigcupM {I J A} (DI : set I) (DJ : set J) (f : I -> J -> set A) :
\bigcup_(i in DI `*` DJ) f i.1 i.2 =
\bigcup_(i in DI) \bigcup_(j in DJ) f i j.
Proof.
rewrite predeqE => i /=.
split=> [[[a b] [/=Da Db] fabj]|[a Da [b Db fabi]]]; last by exists (a, b).
by exists a => //; exists b => //.
Qed.
Definition is_singleton {A} (X : set A) := forall x y, X x -> X y -> x = y.
Definition is_fun {A B} (f : A -> B -> Prop) := all (is_singleton \o f).
Definition is_total {A B} (f : A -> B -> Prop) := all (nonempty \o f).
Definition is_totalfun {A B} (f : A -> B -> Prop) :=
forall x, nonempty (f x) /\ is_singleton (f x).
Record is_filter {T} (F : set (set T)) := IsFilter {
filterT : F setT ;
filterI : forall P Q : set T, F P -> F Q -> F (setI P Q) ;
filterS : forall P Q : set T, P `<=` Q -> F P -> F Q;
filter_not_empty : not (F (fun _ => False)) ;
}.
Definition xget {T} x0 (P : set T) : T :=
if pselect (exists x : T, `[<P x>]) isn't left exP then x0
else projT1 (cid exP).
Unset Auto Template Polymorphism.
CoInductive xget_spec {T} x0 (P : set T) : T -> Prop -> Type :=
| XGetSome x of x = xget x0 P & P x : xget_spec x0 P x True
| XGetNone of (forall x, ~ P x) : xget_spec x0 P x0 False.
Lemma xgetP {T} x0 (P : set T) : xget_spec x0 P (xget x0 P) (P (xget x0 P)).
Proof.
move: (erefl (xget x0 P)); set y := {2}(xget x0 P).
rewrite /xget; case: pselect => /= [?|neqP _].
by case: cid => x /= /asboolP Px; rewrite [P x]propT //; constructor.
suff NP x : ~ P x by rewrite [P x0]propF //; constructor.
by apply: contrap neqP => Px; exists x; apply/asboolP.
Qed.
Lemma xgetPex {T} x0 (P : set T) : (exists x, P x) -> P (xget x0 P).
Proof. by case: xgetP=> // NP [x /NP]. Qed.
Lemma xgetI {T} x0 (P : set T) (x : T): P x -> P (xget x0 P).
Proof. by move=> Px; apply: xgetPex; exists x. Qed.
Lemma xget_prop {T : nonPropType} x0 (P : set T) (x : T) :
P x -> is_singleton P -> xget x0 P = x.
Proof. by move=> Px /(_ _ _ (xgetI x0 Px) Px). Qed.
Lemma xget_unique {T} x0 (P : set T) (x : T) :
P x -> (forall y, P y -> y = x) -> xget x0 P = x.
Proof. by move=> /xget_prop gPx eqx; apply: gPx=> y z /eqx-> /eqx. Qed.
Lemma xgetPN {T} x0 (P : set T) : (forall x, ~ P x) -> xget x0 P = x0.
Proof. by case: xgetP => // x _ Px /(_ x). Qed.
Definition fun_of_graph {A} {B} (f0 : A -> B) (f : A -> B -> Prop) :=
fun x => xget (f0 x) (f x).
Lemma fun_of_graphP {A} {B } (f : A -> B -> Prop) (f0 : A -> B) a :
nonempty (f a) -> f a (fun_of_graph f0 f a).
Proof. by move=> [b fab]; rewrite /fun_of_graph; apply: xgetI fab. Qed.
Lemma fun_of_graph_uniq {A} {B } (f : A -> B -> Prop) (f0 : A -> B) a :
is_singleton (f a) -> forall b, f a b -> fun_of_graph f0 f a = b.
Proof. by move=> fa_prop b /xget_prop xgeteq; rewrite /fun_of_graph xgeteq. Qed.
Definition total_on T (A : set T) (R : T -> T -> Prop) :=
forall s t, A s -> A t -> R s t \/ R t s.
Section ZL.
Variable (T : Type) (t0 : T) (R : T -> T -> Prop).
Hypothesis (Rrefl : forall t, R t t).
Hypothesis (Rtrans : forall r s t, R r s -> R s t -> R r t).
Hypothesis (Rantisym : forall s t, R s t -> R t s -> s = t).
Hypothesis (tot_lub : forall A : set T, total_on A R -> exists t,
(forall s, A s -> R s t) /\ forall r, (forall s, A s -> R s r) -> R t r).
Hypothesis (Rsucc : forall s, exists t, R s t /\ s <> t /\
forall r, R s r -> R r t -> r = s \/ r = t).
Notation get := (xget t0).
Notation getPex := (xgetPex t0).
Let lub := fun A : {A : set T | total_on A R} =>
get (fun t : T => (forall s, sval A s -> R s t) /\
forall r, (forall s, sval A s -> R s r) -> R t r).
Let succ := fun s => get (fun t : T => R s t /\ s <> t /\
forall r, R s r -> R r t -> r = s \/ r = t).
Inductive tower : set T :=
| Lub : forall A, sval A `<=` tower -> tower (lub A)
| Succ : forall t, tower t -> tower (succ t).
Lemma ZL' : False.
Proof.
have lub_ub (A : {A : set T | total_on A R}) :
forall s, sval A s -> R s (lub A).
suff /getPex [] : exists t : T, (forall s, sval A s -> R s t) /\
forall r, (forall s, sval A s -> R s r) -> R t r by [].
by apply: tot_lub; apply: (svalP A).
have lub_lub (A : {A : set T | total_on A R}) :
forall t, (forall s, sval A s -> R s t) -> R (lub A) t.
suff /getPex [] : exists t : T, (forall s, sval A s -> R s t) /\
forall r, (forall s, sval A s -> R s r) -> R t r by [].
by apply: tot_lub; apply: (svalP A).
have RS s : R s (succ s) /\ s <> succ s.
by have /getPex [? []] : exists t : T, R s t /\ s <> t /\
forall r, R s r -> R r t -> r = s \/ r = t by apply: Rsucc.
have succS s : forall t, R s t -> R t (succ s) -> t = s \/ t = succ s.
by have /getPex [? []] : exists t : T, R s t /\ s <> t /\
forall r, R s r -> R r t -> r = s \/ r = t by apply: Rsucc.
suff Twtot : total_on tower R.
have [R_S] := RS (lub (exist _ tower Twtot)); apply.
by apply/Rantisym => //; apply/lub_ub/Succ/Lub.
move=> s t Tws; elim: Tws t => {s} [A sATw ihA|s Tws ihs] t Twt.
case: (pselect (forall s, sval A s -> R s t)).
by move=> ?; left; apply: lub_lub.
move/asboolP; rewrite asbool_neg => /existsp_asboolPn [s /asboolP].
rewrite asbool_neg => /imply_asboolPn [As nRst]; right.
by have /lub_ub := As; apply: Rtrans; have [] := ihA _ As _ Twt.
suff /(_ _ Twt) [Rts|RSst] : forall r, tower r -> R r s \/ R (succ s) r.
by right; apply: Rtrans Rts _; have [] := RS s.
by left.
move=> r; elim=> {r} [A sATw ihA|r Twr ihr].
case: (pselect (forall r, sval A r -> R r s)).
by move=> ?; left; apply: lub_lub.
move/asboolP; rewrite asbool_neg => /existsp_asboolPn [r /asboolP].
rewrite asbool_neg => /imply_asboolPn [Ar nRrs]; right.
by have /lub_ub := Ar; apply: Rtrans; have /ihA [] := Ar.
have [Rrs|RSsr] := ihr; last by right; apply: Rtrans RSsr _; have [] := RS r.
have : tower (succ r) by apply: Succ.
move=> /ihs [RsSr|]; last by left.
by have [->| ->] := succS _ _ Rrs RsSr; [right|left]; apply: Rrefl.
Qed.
End ZL.
Lemma exist_congr T (P : T -> Prop) (s t : T) (p : P s) (q : P t) :
s = t -> exist P s p = exist P t q.
Proof. by move=> st; case: _ / st in q *; apply/congr1/Prop_irrelevance. Qed.
Lemma Zorn T (R : T -> T -> Prop) :
(forall t, R t t) -> (forall r s t, R r s -> R s t -> R r t) ->
(forall s t, R s t -> R t s -> s = t) ->
(forall A : set T, total_on A R -> exists t, forall s, A s -> R s t) ->
exists t, forall s, R t s -> s = t.
Proof.
move=> Rrefl Rtrans Rantisym Rtot_max.
set totR := ({A : set T | total_on A R}).
set R' := fun A B : totR => sval A `<=` sval B.
have R'refl A : R' A A by [].
have R'trans A B C : R' A B -> R' B C -> R' A C by apply: subset_trans.
have R'antisym A B : R' A B -> R' B A -> A = B.
rewrite /R'; case: A; case: B => /= B totB A totA sAB sBA.
by apply: exist_congr; rewrite predeqE=> ?; split=> [/sAB|/sBA].
have R'tot_lub A : total_on A R' -> exists t, (forall s, A s -> R' s t) /\
forall r, (forall s, A s -> R' s r) -> R' t r.
move=> Atot.
have AUtot : total_on (\bigcup_(B in A) (sval B)) R.
move=> s t [B AB Bs] [C AC Ct].
have [/(_ _ Bs) Cs|/(_ _ Ct) Bt] := Atot _ _ AB AC.
by have /(_ _ _ Cs Ct) := svalP C.
by have /(_ _ _ Bs Bt) := svalP B.
exists (exist _ (\bigcup_(B in A) sval B) AUtot); split.
by move=> B ???; exists B.
by move=> B Bub ? /= [? /Bub]; apply.
apply: contrapT => nomax.
have {}nomax t : exists s, R t s /\ s <> t.
have /asboolP := nomax; rewrite asbool_neg => /forallp_asboolPn /(_ t).
move=> /asboolP; rewrite asbool_neg => /existsp_asboolPn [s].
by move=> /asboolP; rewrite asbool_neg => /imply_asboolPn []; exists s.
have tot0 : total_on set0 R by [].
apply: (ZL' (exist _ set0 tot0)) R'tot_lub _ => // A.
have /Rtot_max [t tub] := svalP A; have [s [Rts snet]] := nomax t.
have Astot : total_on (sval A `|` [set s]) R.
move=> u v [Au|<-]; last first.
by move=> [/tub Rvt| ->]; right=> //; apply: Rtrans Rts.
move=> [Av|<-]; [apply: (svalP A)|left] => //.
by apply: Rtrans Rts; apply: tub.
exists (exist _ (sval A `|` [set s]) Astot); split; first by move=> ??; left.
split=> [AeAs|[B Btot] sAB sBAs].
case: (pselect (sval A s)); first by move=> /tub Rst; apply/snet/Rantisym.
by rewrite AeAs /=; apply; right.
case: (pselect (B s)) => [Bs|nBs].
by right; apply: exist_congr; rewrite predeqE => r; split=> [/sBAs|[/sAB| <-]].
left; case: A tub Astot sBAs sAB => A Atot /= tub Astot sBAs sAB.
apply: exist_congr; rewrite predeqE => r; split=> [Br|/sAB] //.
by have /sBAs [|ser] // := Br; rewrite -ser in Br.
Qed.
Definition premaximal T (R : T -> T -> Prop) (t : T) :=
forall s, R t s -> R s t.
Lemma ZL_preorder T (t0 : T) (R : T -> T -> Prop) :
(forall t, R t t) -> (forall r s t, R r s -> R s t -> R r t) ->
(forall A : set T, total_on A R -> exists t, forall s, A s -> R s t) ->
exists t, premaximal R t.
Proof.
move=> Rrefl Rtrans tot_max.
set eqR := fun s t => R s t /\ R t s; set ceqR := fun s => [set t | eqR s t].
have eqR_trans r s t : eqR r s -> eqR s t -> eqR r t.
by move=> [Rrs Rsr] [Rst Rts]; split; [apply: Rtrans Rst|apply: Rtrans Rsr].
have ceqR_uniq s t : eqR s t -> ceqR s = ceqR t.
by rewrite predeqE => - [Rst Rts] r; split=> [[Rr rR] | [Rr rR]]; split;
try exact: Rtrans Rr; exact: Rtrans rR _.
set ceqRs := ceqR @` setT; set quotR := sig ceqRs.
have ceqRP t : ceqRs (ceqR t) by exists t.
set lift := fun t => exist _ (ceqR t) (ceqRP t).
have lift_surj (A : quotR) : exists t : T, lift t = A.
case: A => A [t Tt ctA]; exists t; rewrite /lift; case : _ / ctA.
exact/congr1/Prop_irrelevance.
have lift_inj s t : eqR s t -> lift s = lift t.
by move=> eqRst; apply/exist_congr/ceqR_uniq.
have lift_eqR s t : lift s = lift t -> eqR s t.
move=> cst; have ceqst : ceqR s = ceqR t by have := congr1 sval cst.
by rewrite [_ s]ceqst; split; apply: Rrefl.
set repr := fun A : quotR => xget t0 [set t : T | lift t = A].
have repr_liftE t : eqR t (repr (lift t))
by apply: lift_eqR; have -> := xgetPex t0 (lift_surj (lift t)).
set R' := fun A B : quotR => R (repr A) (repr B).
have R'refl A : R' A A by apply: Rrefl.
have R'trans A B C : R' A B -> R' B C -> R' A C by apply: Rtrans.
have R'antisym A B : R' A B -> R' B A -> A = B.
move=> RAB RBA; have [t tA] := lift_surj A; have [s sB] := lift_surj B.
rewrite -tA -sB; apply: lift_inj; apply (eqR_trans _ _ _ (repr_liftE t)).
have eAB : eqR (repr A) (repr B) by [].
rewrite tA; apply: eqR_trans eAB _; rewrite -sB.
by have [] := repr_liftE s.
have [A Atot|A Amax] := Zorn R'refl R'trans R'antisym.
have /tot_max [t tmax] : total_on [set repr B | B in A] R.
by move=> ?? [B AB <-] [C AC <-]; apply: Atot.
exists (lift t) => B AB; have [Rt _] := repr_liftE t.
by apply: Rtrans Rt; apply: tmax; exists B.
exists (repr A) => t RAt.
have /Amax <- : R' A (lift t).
by have [Rt _] := repr_liftE t; apply: Rtrans Rt.
by have [] := repr_liftE t.
Qed.
|