1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
From Coq Require Import ssreflect ssrfun ssrbool ZArith QArith Qcanon.
From HB Require Import structures.
Require Import classical.
Declare Scope hb_scope.
Delimit Scope hb_scope with G.
Local Open Scope classical_set_scope.
Local Open Scope hb_scope.
Module Stage10.
HB.mixin Record AddAG_of_TYPE A := {
zero : A;
add : A -> A -> A;
opp : A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
addNr : left_inverse zero opp add;
}.
HB.structure Definition AddAG := { A of AddAG_of_TYPE A }.
Notation "0" := zero : hb_scope.
Infix "+" := (@add _) : hb_scope.
Notation "- x" := (@opp _ x) : hb_scope.
Notation "x - y" := (x + - y) : hb_scope.
(* Theory *)
Section AddAGTheory.
Variable A : AddAG.type.
Implicit Type (x : A).
Lemma addr0 : right_id (@zero A) add.
Proof. by move=> x; rewrite addrC add0r. Qed.
Lemma addrN : right_inverse (@zero A) opp add.
Proof. by move=> x; rewrite addrC addNr. Qed.
Lemma subrr x : x - x = 0.
Proof. by rewrite addrN. Qed.
Lemma addrK : right_loop (@opp A) (@add A).
Proof. by move=> x y; rewrite -addrA subrr addr0. Qed.
Lemma addKr : left_loop (@opp A) (@add A).
Proof. by move=> x y; rewrite addrA addNr add0r. Qed.
Lemma addrNK : rev_right_loop (@opp A) (@add A).
Proof. by move=> y x; rewrite -addrA addNr addr0. Qed.
Lemma addNKr : rev_left_loop (@opp A) (@add A).
Proof. by move=> x y; rewrite addrA subrr add0r. Qed.
Lemma addrAC : right_commutative (@add A).
Proof. by move=> x y z; rewrite -!addrA [y + z]addrC. Qed.
Lemma addrCA : left_commutative (@add A).
Proof. by move=> x y z; rewrite !addrA [x + y]addrC. Qed.
Lemma addrACA : interchange (@add A) add.
Proof. by move=> x y z t; rewrite !addrA [x + y + z]addrAC. Qed.
Lemma opprK : involutive (@opp A).
Proof. by move=> x; apply: (can_inj (addrK (- x))); rewrite addNr addrN. Qed.
Lemma opprD x y : - (x + y) = - x - y.
Proof.
apply: (can_inj (addKr (x + y))).
by rewrite subrr addrACA !subrr addr0.
Qed.
Lemma opprB x y : - (x - y) = y - x.
Proof. by rewrite opprD opprK addrC. Qed.
End AddAGTheory.
HB.mixin Record Ring_of_AddAG A of AddAG A := {
one : A;
mul : A -> A -> A;
mulrA : associative mul;
mulr1 : left_id one mul;
mul1r : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
HB.factory Record Ring_of_TYPE A := {
zero : A;
one : A;
add : A -> A -> A;
opp : A -> A;
mul : A -> A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
addNr : left_inverse zero opp add;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
HB.builders Context A (a : Ring_of_TYPE A).
HB.instance
Definition to_AddAG_of_TYPE := AddAG_of_TYPE.Build A
_ _ _ addrA addrC add0r addNr.
HB.instance
Definition to_Ring_of_AddAG :=
Ring_of_AddAG.Build A _ _ mulrA mul1r
mulr1 mulrDl mulrDr.
HB.end.
HB.structure Definition Ring := { A of Ring_of_TYPE A }.
Notation "1" := one : hb_scope.
Infix "*" := (@mul _) : hb_scope.
HB.mixin Record Topological T := {
open : (T -> Prop) -> Prop;
open_setT : open setT;
open_bigcup : forall {I} (D : set I) (F : I -> set T),
(forall i, D i -> open (F i)) -> open (\bigcup_(i in D) F i);
open_setI : forall X Y : set T, open X -> open Y -> open (setI X Y);
}.
HB.structure Definition TopologicalSpace := { A of Topological A }.
#[export] Hint Extern 0 (open setT) => now apply: open_setT : core.
HB.factory Record TopologicalBase T := {
open_base : set (set T);
open_base_covers : setT `<=` \bigcup_(X in open_base) X;
open_base_cup : forall X Y : set T, open_base X -> open_base Y ->
forall z, (X `&` Y) z -> exists2 Z, open_base Z & Z z /\ Z `<=` X `&` Y
}.
HB.builders Context T (a : TopologicalBase T).
Definition open_of : (T -> Prop) -> Prop :=
[set A | exists2 D, D `<=` open_base & A = \bigcup_(X in D) X].
Lemma open_of_setT : open_of setT. Proof.
exists open_base; rewrite // predeqE => x; split=> // _.
by apply: open_base_covers.
Qed.
Lemma open_of_bigcup {I} (D : set I) (F : I -> set T) :
(forall i, D i -> open_of (F i)) -> open_of (\bigcup_(i in D) F i).
Proof. Admitted.
Lemma open_of_cap X Y : open_of X -> open_of Y -> open_of (X `&` Y).
Proof. Admitted.
HB.instance
Definition to_Topological :=
Topological.Build T _ open_of_setT (@open_of_bigcup) open_of_cap.
HB.end.
Section ProductTopology.
Variables (T1 T2 : TopologicalSpace.type).
Definition prod_open_base :=
[set A | exists (A1 : set T1) (A2 : set T2),
open A1 /\ open A2 /\ A = setM A1 A2].
Lemma prod_open_base_covers : setT `<=` \bigcup_(X in prod_open_base) X.
Proof.
move=> X _; exists setT => //; exists setT, setT; do ?split.
- exact: open_setT.
- exact: open_setT.
- by rewrite predeqE.
Qed.
Lemma prod_open_base_setU X Y :
prod_open_base X -> prod_open_base Y ->
forall z, (X `&` Y) z ->
exists2 Z, prod_open_base Z & Z z /\ Z `<=` X `&` Y.
Proof.
move=> [A1 [A2 [A1open [A2open ->]]]] [B1 [B2 [B1open [B2open ->]]]].
move=> [z1 z2] [[/=Az1 Az2] [/= Bz1 Bz2]].
exists ((A1 `&` B1) `*` (A2 `&` B2)).
by eexists _, _; do ?[split; last first]; apply: open_setI.
by split => // [[x1 x2] [[/=Ax1 Bx1] [/=Ax2 Bx2]]].
Qed.
HB.instance Definition prod_topology :=
TopologicalBase.Build (T1 * T2)%type _ prod_open_base_covers prod_open_base_setU.
End ProductTopology.
Definition continuous {T T' : TopologicalSpace.type} (f : T -> T') :=
forall B : set T', open B -> open (f@^-1` B).
Definition continuous2 {T T' T'': TopologicalSpace.type}
(f : T -> T' -> T'') := continuous (fun xy => f xy.1 xy.2).
HB.mixin Record JoinTAddAG T of AddAG_of_TYPE T & Topological T := {
add_continuous : continuous2 (add : T -> T -> T);
opp_continuous : continuous (opp : T -> T)
}.
HB.structure Definition TAddAG := { A of Topological A & AddAG_of_TYPE A & JoinTAddAG A }.
(* Instance *)
HB.instance Definition Z_ring_axioms :=
Ring_of_TYPE.Build Z 0%Z 1%Z Z.add Z.opp Z.mul
Z.add_assoc Z.add_comm Z.add_0_l Z.add_opp_diag_l
Z.mul_assoc Z.mul_1_l Z.mul_1_r
Z.mul_add_distr_r Z.mul_add_distr_l.
Example test1 (m n : Z) : (m + n) - n + 0 = m.
Proof. by rewrite addrK addr0. Qed.
Import Qcanon.
Search _ Qc "plus" "opp".
Lemma Qcplus_opp_l q : - q + q = 0.
Proof. by rewrite Qcplus_comm Qcplus_opp_r. Qed.
HB.instance Definition Qc_ring_axioms :=
Ring_of_TYPE.Build Qc 0%Qc 1%Qc Qcplus Qcopp Qcmult
Qcplus_assoc Qcplus_comm Qcplus_0_l Qcplus_opp_l
Qcmult_assoc Qcmult_1_l Qcmult_1_r
Qcmult_plus_distr_l Qcmult_plus_distr_r.
Obligation Tactic := idtac.
Definition Qcopen_base : set (set Qc) :=
[set A | exists a b : Qc, forall z, A z <-> a < z /\ z < b].
Program Definition QcTopological := TopologicalBase.Build Qc Qcopen_base _ _.
Next Obligation.
move=> x _; exists [set y | x - 1 < y < x + 1].
by exists (x - 1), (x + 1).
split; rewrite Qclt_minus_iff.
by rewrite -[_ + _]/(x - (x - 1))%G opprB addrCA subrr.
by rewrite -[_ + _]/(x + 1 - x)%G addrAC subrr.
Qed.
Next Obligation.
move=> X Y [aX [bX Xeq]] [aY [bY Yeq]] z [/Xeq [aXz zbX] /Yeq [aYz zbY]].
Admitted.
HB.instance Definition _ : TopologicalBase Qc := QcTopological.
Program Definition QcJoinTAddAG := JoinTAddAG.Build Qc _ _.
Next Obligation. Admitted.
Next Obligation. Admitted.
HB.instance Definition _ : JoinTAddAG Qc := QcJoinTAddAG.
End Stage10.
|