1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
From Coq Require Import ssreflect ssrfun ssrbool ZArith QArith Qcanon.
From HB Require Import structures.
Require Import classical.
Declare Scope hb_scope.
Delimit Scope hb_scope with G.
Local Open Scope classical_set_scope.
Local Open Scope hb_scope.
Module Stage11.
HB.mixin Record AddAG_of_TYPE A := {
zero : A;
add : A -> A -> A;
opp : A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
addNr : left_inverse zero opp add;
}.
HB.structure Definition AddAG := { A of AddAG_of_TYPE A }.
(* TODO: command hb.module_export which creates a module,
exports it immediatly and remembers that it should be
added to the final Theory module created at file closure *)
Notation "0" := zero : hb_scope.
Infix "+" := (@add _) : hb_scope.
Notation "- x" := (@opp _ x) : hb_scope.
Notation "x - y" := (x + - y) : hb_scope.
(* Theory *)
Section AddAGTheory.
Variable A : AddAG.type.
Implicit Type (x : A).
Lemma addr0 : right_id (@zero A) add.
Proof. by move=> x; rewrite addrC add0r. Qed.
Lemma addrN : right_inverse (@zero A) opp add.
Proof. by move=> x; rewrite addrC addNr. Qed.
Lemma subrr x : x - x = 0.
Proof. by rewrite addrN. Qed.
Lemma addrK : right_loop (@opp A) (@add A).
Proof. by move=> x y; rewrite -addrA subrr addr0. Qed.
Lemma addKr : left_loop (@opp A) (@add A).
Proof. by move=> x y; rewrite addrA addNr add0r. Qed.
Lemma addrNK : rev_right_loop (@opp A) (@add A).
Proof. by move=> y x; rewrite -addrA addNr addr0. Qed.
Lemma addNKr : rev_left_loop (@opp A) (@add A).
Proof. by move=> x y; rewrite addrA subrr add0r. Qed.
Lemma addrAC : right_commutative (@add A).
Proof. by move=> x y z; rewrite -!addrA [y + z]addrC. Qed.
Lemma addrCA : left_commutative (@add A).
Proof. by move=> x y z; rewrite !addrA [x + y]addrC. Qed.
Lemma addrACA : interchange (@add A) add.
Proof. by move=> x y z t; rewrite !addrA [x + y + z]addrAC. Qed.
Lemma opprK : involutive (@opp A).
Proof. by move=> x; apply: (can_inj (addrK (- x))); rewrite addNr addrN. Qed.
Lemma opprD x y : - (x + y) = - x - y.
Proof.
apply: (can_inj (addKr (x + y))).
by rewrite subrr addrACA !subrr addr0.
Qed.
Lemma opprB x y : - (x - y) = y - x.
Proof. by rewrite opprD opprK addrC. Qed.
End AddAGTheory.
HB.mixin Record Ring_of_AddAG A of AddAG A := {
one : A;
mul : A -> A -> A;
mulrA : associative mul;
mulr1 : left_id one mul;
mul1r : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
HB.factory Record Ring_of_TYPE A := {
zero : A;
one : A;
add : A -> A -> A;
opp : A -> A;
mul : A -> A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
addNr : left_inverse zero opp add;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
HB.builders Context A (a : Ring_of_TYPE A).
HB.instance
Definition to_AddAG := AddAG_of_TYPE.Build A
_ _ _ addrA addrC add0r addNr.
HB.instance
Definition to_Ring := Ring_of_AddAG.Build A
_ _ mulrA mul1r mulr1 mulrDl mulrDr.
HB.end.
HB.structure Definition Ring := { A of Ring_of_TYPE A }.
Notation "1" := one : hb_scope.
Infix "*" := (@mul _) : hb_scope.
HB.mixin Record Topological T := {
open : (T -> Prop) -> Prop;
open_setT : open setT;
open_bigcup : forall {I} (D : set I) (F : I -> set T),
(forall i, D i -> open (F i)) -> open (\bigcup_(i in D) F i);
open_setI : forall X Y : set T, open X -> open Y -> open (setI X Y);
}.
HB.structure Definition TopologicalSpace := { A of Topological A }.
#[export] Hint Extern 0 (open setT) => now apply: open_setT : core.
HB.factory Record TopologicalBase T := {
open_base : set (set T);
open_base_covers : setT `<=` \bigcup_(X in open_base) X;
open_base_cup : forall X Y : set T, open_base X -> open_base Y ->
forall z, (X `&` Y) z -> exists2 Z, open_base Z & Z z /\ Z `<=` X `&` Y
}.
HB.builders Context T (a : TopologicalBase T).
Definition open_of :=
[set A | exists2 D, D `<=` open_base & A = \bigcup_(X in D) X].
Lemma open_of_setT : open_of setT.
Proof.
exists open_base; rewrite // predeqE => x; split=> // _.
by apply: open_base_covers.
Qed.
Lemma open_of_bigcup {I} (D : set I) (F : I -> set T) :
(forall i, D i -> open_of (F i)) -> open_of (\bigcup_(i in D) F i).
Proof. Admitted.
Lemma open_of_cap X Y : open_of X -> open_of Y -> open_of (X `&` Y).
Proof. Admitted.
HB.instance
Definition to_Topological :=
Topological.Build T _ open_of_setT (@open_of_bigcup) open_of_cap.
HB.end.
Section ProductTopology.
Variables (T1 T2 : TopologicalSpace.type).
Definition prod_open_base :=
[set A | exists (A1 : set T1) (A2 : set T2),
open A1 /\ open A2 /\ A = setM A1 A2].
Lemma prod_open_base_covers : setT `<=` \bigcup_(X in prod_open_base) X.
Proof.
move=> X _; exists setT => //; exists setT, setT; do ?split.
- exact: open_setT.
- exact: open_setT.
- by rewrite predeqE.
Qed.
Lemma prod_open_base_setU X Y :
prod_open_base X -> prod_open_base Y ->
forall z, (X `&` Y) z ->
exists2 Z, prod_open_base Z & Z z /\ Z `<=` X `&` Y.
Proof.
move=> [A1 [A2 [A1open [A2open ->]]]] [B1 [B2 [B1open [B2open ->]]]].
move=> [z1 z2] [[/=Az1 Az2] [/= Bz1 Bz2]].
exists ((A1 `&` B1) `*` (A2 `&` B2)).
by eexists _, _; do ?[split; last first]; apply: open_setI.
by split => // [[x1 x2] [[/=Ax1 Bx1] [/=Ax2 Bx2]]].
Qed.
HB.instance Definition prod_topology :=
TopologicalBase.Build (T1 * T2)%type _ prod_open_base_covers prod_open_base_setU.
End ProductTopology.
(* TODO: infer continuous as a morphism of Topology *)
Definition continuous {T T' : TopologicalSpace.type} (f : T -> T') :=
forall B : set T', open B -> open (f@^-1` B).
Definition continuous2 {T T' T'': TopologicalSpace.type}
(f : T -> T' -> T'') := continuous (fun xy => f xy.1 xy.2).
HB.mixin Record JoinTAddAG_wo_Uniform T of AddAG_of_TYPE T & Topological T := {
add_continuous : continuous2 (add : T -> T -> T);
opp_continuous : continuous (opp : T -> T)
}.
HB.structure Definition TAddAG_wo_Uniform :=
{ A of Topological A & AddAG_of_TYPE A & JoinTAddAG_wo_Uniform A }.
HB.mixin Record Uniform_wo_Topology U := {
entourage : set (set (U * U)) ;
filter_entourage : is_filter entourage ;
entourage_sub : forall A, entourage A -> [set xy | xy.1 = xy.2] `<=` A;
entourage_sym : forall A, entourage A -> entourage (graph_sym A) ;
entourage_split : forall A, entourage A ->
exists2 B, entourage B & graph_comp B B `<=` A ;
}.
HB.structure Definition UniformSpace_wo_Topology := { A of Uniform_wo_Topology A }.
(* TODO: have a command hb.typealias which register "typealias factories"
which turn a typealias into factories *)
Definition uniform T : Type := T.
Section Uniform_Topology.
Variable U : UniformSpace_wo_Topology.type.
Definition uniform_open : set (set (uniform U)). Admitted.
Lemma uniform_open_setT : uniform_open setT. Admitted.
Lemma uniform_open_bigcup : forall {I} (D : set I) (F : I -> set U),
(forall i, D i -> uniform_open (F i)) -> uniform_open (\bigcup_(i in D) F i).
Admitted.
Lemma uniform_open_setI : forall X Y : set U,
uniform_open X -> uniform_open Y -> uniform_open (setI X Y).
Admitted.
HB.instance Definition uniform_topology :=
Topological.Build (uniform U) _ uniform_open_setT (@uniform_open_bigcup) uniform_open_setI.
End Uniform_Topology.
HB.mixin Record Join_Uniform_Topology U of Topological U & Uniform_wo_Topology U := {
openE : open = (uniform_open _ : set (set (uniform U)))
}.
(* TODO: this factory should be replaced by type alias uniform *)
HB.factory Record Uniform_Topology U of Uniform_wo_Topology U := { }.
HB.builders Context U (f : Uniform_Topology U).
HB.instance
Definition to_Topological : Topological U := (uniform_topology _).
HB.end.
HB.structure Definition UniformSpace := { A of
Uniform_Topology A (* should be replaced by typealias uniform *)
& Uniform_wo_Topology A }. (* TODO: should be ommited *)
(* TODO: this is another typealias *)
Definition tAddAG (T : Type) := T.
Section TAddAGUniform.
Variable T : TAddAG_wo_Uniform.type.
Notation TT := (tAddAG T).
Definition TAddAG_entourage : set (set (TT * TT)).
Admitted.
Lemma filter_TAddAG_entourage : is_filter TAddAG_entourage.
Admitted.
Lemma TAddAG_entourage_sub : forall A, TAddAG_entourage A -> [set xy | xy.1 = xy.2] `<=` A.
Admitted.
Lemma TAddAG_entourage_sym : forall A, TAddAG_entourage A -> TAddAG_entourage (graph_sym A).
Admitted.
Lemma TAddAG_entourage_split : forall A, TAddAG_entourage A ->
exists2 B, TAddAG_entourage B & graph_comp B B `<=` A.
Admitted.
HB.instance Definition TAddAG_uniform :=
Uniform_wo_Topology.Build (tAddAG T) _ filter_TAddAG_entourage TAddAG_entourage_sub
TAddAG_entourage_sym TAddAG_entourage_split.
Lemma TAddAG_uniform_topologyE :
open = (uniform_open _ : set (set (uniform TT))).
Admitted.
HB.instance Definition TAddAG_Join_Uniform_Topology :=
Join_Uniform_Topology.Build TT TAddAG_uniform_topologyE.
Lemma TAddAG_entourageE :
entourage = (TAddAG_entourage : set (set (TT * TT))).
Admitted.
End TAddAGUniform.
HB.structure Definition Uniform_TAddAG_unjoined :=
{ A of TAddAG_wo_Uniform A & Uniform_wo_Topology A }.
(* should be created automatically *)
HB.mixin Record Join_TAddAG_Uniform T of Uniform_TAddAG_unjoined T := {
entourageE :
entourage = (TAddAG_entourage _ : set (set (tAddAG T * tAddAG T)))
}.
(* TODO: should be subsumed by the type alias TAddAG *)
HB.factory Record TAddAG_Uniform U of TAddAG_wo_Uniform U := { }.
HB.builders Context U (a : TAddAG_Uniform U).
HB.instance
Definition to_Uniform_wo_Topology : Uniform_wo_Topology U :=
TAddAG_uniform _.
HB.instance
Definition to_Join_Uniform_Topology : Join_Uniform_Topology U :=
TAddAG_Join_Uniform_Topology _.
HB.instance
Definition to_Join_TAddAG_Uniform : Join_TAddAG_Uniform U :=
Join_TAddAG_Uniform.Build U (TAddAG_entourageE _).
HB.end.
HB.structure Definition TAddAG :=
{ A of TAddAG_Uniform A (* TODO: should be replaced by type alias TAddAG *)
& TAddAG_wo_Uniform A }. (* TODO: should be omitted *)
HB.factory Definition JoinTAddAG T of AddAG_of_TYPE T & Topological T :=
(JoinTAddAG_wo_Uniform T).
HB.builders Context T (a : JoinTAddAG T).
HB.instance
Definition to_JoinTAddAG_wo_Uniform : JoinTAddAG_wo_Uniform T := a.
(* TODO: Nice error message when factory builders do not depend on the source factory 'a'*)
HB.instance
Definition to_Uniform : TAddAG_Uniform T := let _ : JoinTAddAG T := a in TAddAG_Uniform.Build T.
HB.end.
(* Instance *)
HB.instance Definition Z_ring_axioms :=
Ring_of_TYPE.Build Z 0%Z 1%Z Z.add Z.opp Z.mul
Z.add_assoc Z.add_comm Z.add_0_l Z.add_opp_diag_l
Z.mul_assoc Z.mul_1_l Z.mul_1_r
Z.mul_add_distr_r Z.mul_add_distr_l.
Example test1 (m n : Z) : (m + n) - n + 0 = m.
Proof. by rewrite addrK addr0. Qed.
Import Qcanon.
Lemma Qcplus_opp_l q : - q + q = 0.
Proof. by rewrite Qcplus_comm Qcplus_opp_r. Qed.
HB.instance Definition Qc_ring_axioms :=
Ring_of_TYPE.Build Qc 0%Qc 1%Qc Qcplus Qcopp Qcmult
Qcplus_assoc Qcplus_comm Qcplus_0_l Qcplus_opp_l
Qcmult_assoc Qcmult_1_l Qcmult_1_r
Qcmult_plus_distr_l Qcmult_plus_distr_r.
Obligation Tactic := idtac.
Definition Qcopen_base : set (set Qc) :=
[set A | exists a b : Qc, forall z, A z <-> a < z /\ z < b].
Program Definition QcTopological := TopologicalBase.Build Qc Qcopen_base _ _.
Next Obligation.
move=> x _; exists [set y | x - 1 < y < x + 1].
by exists (x - 1), (x + 1).
split; rewrite Qclt_minus_iff.
by rewrite -[_ + _]/(x - (x - 1))%G opprB addrCA subrr.
by rewrite -[_ + _]/(x + 1 - x)%G addrAC subrr.
Qed.
Next Obligation.
move=> X Y [aX [bX Xeq]] [aY [bY Yeq]] z [/Xeq [aXz zbX] /Yeq [aYz zbY]].
Admitted.
HB.instance Definition _ : TopologicalBase Qc := QcTopological.
Program Definition QcJoinTAddAG := JoinTAddAG.Build Qc _ _.
Next Obligation. Admitted.
Next Obligation. Admitted.
#[verbose]
HB.instance Definition _ : JoinTAddAG Qc := QcJoinTAddAG.
Check (entourage : set (set (Qc * Qc))). (* TODO fix spill-factory-param-factories *)
End Stage11.
|