File: hierarchy_1.v

package info (click to toggle)
coq-hierarchy-builder 1.8.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,988 kB
  • sloc: makefile: 109
file content (54 lines) | stat: -rw-r--r-- 1,547 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
From Coq Require Import ssreflect ssrfun.
From HB Require Import structures.

HB.mixin Record MulMonoid_of_Type A := {
  one : A;
  mul : A -> A -> A;
  mulrA : associative mul;
  mul1r : left_id one mul;
  mulr1 : right_id one mul;
}.
HB.structure Definition MulMonoid := { A of MulMonoid_of_Type A }.

HB.mixin Record AddMonoid_of_Type A := {
  zero : A;
  add : A -> A -> A;
  addrA : associative add;
  add0r : left_id zero add;
  addr0 : right_id zero add;
}.
HB.structure Definition AddMonoid := { A of AddMonoid_of_Type A }.

HB.mixin Record Ring_of_AddMulMonoid A of MulMonoid A & AddMonoid A := {
  opp : A -> A;
  addrC : commutative (add : A -> A -> A);
  addNr : left_inverse zero opp add;
  mulrDl : left_distributive mul (add : A -> A -> A);
  mulrDr : right_distributive mul (add : A -> A -> A);
}.
HB.structure Definition Ring := { A of MulMonoid A & AddMonoid A & Ring_of_AddMulMonoid A }.

HB.factory Record Ring_of_MulMonoid A of MulMonoid A := {
  zero : A;
  add : A -> A -> A;
  addrA : associative add;
  add0r : left_id zero add;
  addr0 : right_id zero add;
  opp : A -> A;
  addrC : commutative (add : A -> A -> A);
  addNr : left_inverse zero opp add;
  mulrDl : left_distributive mul add;
  mulrDr : right_distributive mul add;
}.

HB.builders Context A (a : Ring_of_MulMonoid A).

  HB.instance
  Definition to_AddMonoid_of_Type :=
    AddMonoid_of_Type.Build A zero add addrA add0r addr0.

  HB.instance
  Definition to_Ring_of_AddMulMonoid :=
    Ring_of_AddMulMonoid.Build A opp addrC addNr mulrDl mulrDr.

HB.end.