1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
From Coq Require Import ZArith ssreflect ssrfun.
From HB Require Import structures.
From HB Require Import demo3.hierarchy_1.
Declare Scope hb_scope.
Delimit Scope hb_scope with G.
Local Open Scope hb_scope.
Notation "0" := zero : hb_scope.
Notation "1" := one : hb_scope.
Infix "+" := (@add _) : hb_scope.
Notation "- x" := (@opp _ x) : hb_scope.
Infix "*" := (@mul _) : hb_scope.
Notation "x - y" := (x + - y) : hb_scope.
(* Theory *)
Section Theory.
Variable R : Ring.type.
Implicit Type (x : R).
(*
Lemma addr0 : right_id (@zero R) add.
Proof. by move=> x; rewrite addrC add0r. Qed.
*)
Lemma addrN : right_inverse (@zero R) opp add.
Proof. by move=> x; rewrite addrC addNr. Qed.
Lemma subrr x : x - x = 0.
Proof. by rewrite addrN. Qed.
Lemma addrNK x y : x + y - y = x.
Proof. by rewrite -addrA subrr addr0. Qed.
End Theory.
(* Instance *)
HB.instance
Definition Z_mulmonoid_axioms :=
MulMonoid_of_Type.Build Z 1%Z Z.mul Z.mul_assoc Z.mul_1_l Z.mul_1_r.
HB.instance
Definition Z_ring_axioms :=
Ring_of_MulMonoid.Build Z 0%Z Z.add
Z.add_assoc Z.add_0_l Z.add_0_r
Z.opp Z.add_comm Z.add_opp_diag_l
Z.mul_add_distr_r Z.mul_add_distr_l.
|