1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
From HB Require Import structures.
Require Import ssreflect ssrfun ssrbool.
(* ******************************************************************* *)
(* *********************** Hierarchy design ************************** *)
(* ******************************************************************* *)
Module BadInheritance.
HB.mixin Record HasMul T := {
mul : T -> T -> T;
}.
HB.structure Definition Mul := { T of HasMul T }.
HB.mixin Record HasSq T := {
sq : T -> T;
}.
HB.structure Definition Sq := { T of HasSq T }.
(* We need a functorial construction (a container)
which preserves both structures. The simplest one is the option type. *)
Definition option_mul {T : Mul.type} (o1 o2 : option T) : option T :=
match o1, o2 with
| Some n, Some m => Some (mul n m)
| _, _ => None
end.
HB.instance Definition _ (T : Mul.type) := HasMul.Build (option T) option_mul.
Definition option_square {T : Sq.type} (o : option T) : option T :=
match o with
| Some n => Some (sq n)
| None => None
end.
HB.instance Definition _ (T : Sq.type) := HasSq.Build (option T) option_square.
(* Now we mix the two unrelated structures by building Sq out of Mul.
*** This breaks Non Forgetful Inheritance ***
https://math-comp.github.io/competing-inheritance-paths-in-dependent-type-theory/
*)
#[non_forgetful_inheritance]
HB.instance Definition _ (T : Mul.type) := HasSq.Build T (fun x => mul x x).
(* As we expect we can proved this (by reflexivity) *)
Lemma sq_mul (V : Mul.type) (v : V) : sq v = mul v v.
Proof. by reflexivity. Qed.
Lemma problem (W : Mul.type) (w : option W) : sq w = mul w w.
Proof.
Fail reflexivity. (* What? It used to work! *)
Fail rewrite sq_mul. (* Lemmas don't cross the container either! *)
(* Let's investigate *)
rewrite /mul/= /sq/=.
(* As we expect, we are on the option type. In the LHS it is the Sq built using
the NFI instance
option_square w = option_mul w w
*)
rewrite /option_mul/=.
rewrite /option_square/sq/=.
congr (match w with Some n => _ | None => None end).
(* The branches for Some differ, since w is a variable,
they don't compare as equal
(fun n : W => Some (mul n n)) =
(fun n : W => match w with
| Some m => Some (mul n m)
| None => None
end)
*)
Abort.
End BadInheritance.
Module GoodInheritance.
HB.mixin Record HasMul T := {
mul : T -> T -> T;
}.
HB.structure Definition Mul := { T of HasMul T }.
HB.mixin Record HasSq T of Mul T := {
sq : T -> T;
sq_mul : forall x, sq x = mul x x;
}.
HB.structure Definition Sq := { T of HasSq T & Mul T }.
Definition option_mul {T : Mul.type} (o1 o2 : option T) : option T :=
match o1, o2 with
| Some n, Some m => Some (mul n m)
| _, _ => None
end.
HB.instance Definition _ (T : Mul.type) := HasMul.Build (option T) option_mul.
Definition option_square {T : Sq.type} (o : option T) : option T :=
match o with
| Some n => Some (sq n)
| None => None
end.
Lemma option_sq_mul {T : Sq.type} (o : option T) : option_square o = mul o o.
Proof. by rewrite /option_square; case: o => [x|//]; rewrite sq_mul. Qed.
HB.instance Definition _ (T : Sq.type) := HasSq.Build (option T) option_square option_sq_mul.
Lemma problem (W : Sq.type) (w : option W) : sq w = mul w w.
Proof. by rewrite sq_mul. Qed.
End GoodInheritance.
(* ******************************************************************* *)
(* ********************** Feather factories *********************** *)
(* ******************************************************************* *)
(*
HB comes with a concept of factory, a virtual interface that is compiled
down to the real ones.
When the contents of a factory are just one lemma, the following trick
may come handy.
We define a type "link" which is convertible to a new type T but
carries, as a dummy argument, a proof that T is linked to some known
type xT. We can then use "link" to transfer (copy) structure instances
across the link.
*)
Module Feather.
(* We need a hierarchy with a few structure, here we Equality -> Singleton *)
HB.mixin Record HasEqDec T := {
eqtest : T -> T -> bool;
eqOK : forall x y, reflect (x = y) (eqtest x y);
}.
HB.structure Definition Equality := { T of HasEqDec T }.
HB.mixin Record IsContractible T of HasEqDec T := {
def : T;
all_def : forall x, eqtest x def = true;
}.
HB.structure Definition Singleton := { T of IsContractible T }.
(*
This is the type which is used as a feather factory.
- xT plays the role of a rich type,
- T is a new type linked to xT by some lemma. In this case a very strong
cancellation lemma canfg
*)
Definition link {xT T : Type} {f : xT -> T} {g : T -> xT}
(canfg : forall x, f (g x) = x)
:=
T. (* (link canfg) is convertible to T *)
(* We explain HB how to transfer Equality over link *)
Section TransferEQ.
Context {eT : Equality.type} {T : Type} {f : eT -> T} {g : T -> eT}.
Context (canfg : forall x, f (g x) = x).
Definition link_eqtest (x y : T) : bool := eqtest (g x) (g y).
Lemma link_eqOK (x y : T) : reflect (x = y) (link_eqtest x y).
Proof.
rewrite /link_eqtest; case: (eqOK (g x) (g y)) => [E|abs].
by constructor; rewrite -[x]canfg -[y]canfg E canfg.
by constructor=> /(f_equal g)/abs.
Qed.
(* (link canfg) is now an Equality instance *)
HB.instance Definition link_HasEqDec :=
HasEqDec.Build (link canfg) link_eqtest link_eqOK.
End TransferEQ.
(* We explain HB how to transfer Singleton over link *)
Section TransferSingleton.
Context {eT : Singleton.type} {T : Type} {f : eT -> T} {g : T -> eT}.
Context (canfg : forall x, f (g x) = x).
Definition link_def : link canfg := f def.
Lemma link_all_def x : eqtest x link_def = true.
Proof.
rewrite /link_def; have /eqOK <- := all_def (g x).
by rewrite canfg; case: (eqOK x x).
Qed.
(* (link canfg) is now a Signleton instance *)
HB.instance Definition _ := IsContractible.Build (link canfg) link_def link_all_def.
End TransferSingleton.
(* We assume a known type B which is both an Equality and a Singleton *)
Axiom B : Type.
Axiom testB : B -> B -> bool.
Axiom testOKB : forall x y, reflect (x = y) (testB x y).
HB.instance Definition _ := HasEqDec.Build B testB testOKB.
Axiom defB : B.
Axiom all_defB : forall x, eqtest x defB = true.
HB.instance Definition _ := IsContractible.Build B defB all_defB.
(* Now we copy all instances from B to A via link *)
Axiom A : Type.
Axiom f : B -> A.
Axiom g : A -> B.
Axiom canfg : forall x, f (g x) = x.
(* We take all the instances up to Singleton on (link canfg) and we copy them
on A. Recall (link canfg) is convertible to A *)
HB.instance Definition _ := Singleton.copy A (link canfg).
HB.about A. (* both Equality and Singleton have been copied *)
End Feather.
(* ******************************************************************* *)
(* ********************** Abstraction barriers *********************** *)
(* ******************************************************************* *)
Require Import Arith.
Module SlowFailure.
(*
When building a library it is natural to stack definitions up and reuse
things you already have as much as possible.
More often that not we want to set up abstraction barriers.
For example one may define a mathematical concept using, say, lists and their
operations, provide a few lemmas about the new concept, and then expect the
user to never unfold the concept and work with lists directly.
Abstraction barriers are not only good for clients, which are granted to work
at the right abstraction level, but also for Coq itself, since it may be
tricked into unfolding definitions and manipulate huge terms.
HB.lock is a tool to easily impose abstraction barriers. It uses modules
and module signatures to seal the body of a definition, keeping access to
it via an equation.
*)
(* not a very clever construction, but a large one. Bare with us. *)
Definition new_concept := 999999.
Lemma test x : new_concept ^ x ^ new_concept = x ^ new_concept ^ new_concept.
Proof.
(* this goal is not trivial, and maybe even false, but you may call
some automation on it anyway *)
Time Fail reflexivity. (* takes 7s, note that both by and // call reflexivity *)
Abort.
End SlowFailure.
Module FastFailure.
HB.lock Definition new_concept := 999999.
Lemma test x : new_concept ^ x ^ new_concept = x ^ new_concept ^ new_concept.
Time Fail reflexivity. (* takes 0s *)
rewrite new_concept.unlock.
Time Fail reflexivity. (* takes 7s, the original body is restored *)
Abort.
Print Module Type new_concept_Locked.
Print Module new_concept.
(*
Module Type new_conceptLocked = Sig
Parameter body : nat.
Parameter unlock : body = 999999
End
Module new_concept : new_conceptLocked := ...
*)
Print new_concept.
(*
Notation new_concept := new_concept.body
*)
Canonical unlock_new_concept := Unlockable new_concept.unlock.
End FastFailure.
(* ******************************************************************* *)
(* ******************************* Joins ***************************** *)
(* ******************************************************************* *)
(*
All structures which are not leaves must be joinable
*)
Module MissingJoin.
HB.mixin Record isTop M := { }.
HB.structure Definition Top := {M of isTop M}.
HB.mixin Record isA1 M of Top M := { }.
HB.structure Definition A1 := {M of isA1 M & isTop M}.
HB.mixin Record isA2 M of Top M := { }.
HB.structure Definition A2 := {M of isA2 M & isTop M}.
HB.mixin Record isB1 M of A1 M := { }.
HB.structure Definition B1 := {M of isB1 M & }.
HB.mixin Record isB2 M of A2 M := { }.
HB.structure Definition B2 := {M of isB2 M & isA2 M }.
HB.structure Definition B2A1 := {M of B2 M & A1 M }.
Fail HB.structure Definition A2B1 := {M of A2 M & B1 M }.
HB.graph "missing_join.dot".
End MissingJoin.
Module GoodJoin.
HB.mixin Record isTop M := { }.
HB.structure Definition Top := {M of isTop M}.
HB.mixin Record isA1 M of Top M := { }.
HB.structure Definition A1 := {M of isA1 M & isTop M}.
HB.mixin Record isA2 M of Top M := { }.
HB.structure Definition A2 := {M of isA2 M & isTop M}.
HB.mixin Record isB1 M of A1 M := { }.
HB.structure Definition B1 := {M of isB1 M & }.
HB.mixin Record isB2 M of A2 M := { }.
HB.structure Definition B2 := {M of isB2 M & isA2 M }.
HB.structure Definition join := {M of A1 M & A2 M }.
HB.structure Definition B2A1 := {M of B2 M & A1 M }.
HB.structure Definition A2B1 := {M of A2 M & B1 M }.
HB.graph "good_join.dot".
End GoodJoin.
|