1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
|
From Coq Require Import ssreflect ssrfun.
From HB Require Import structures.
HB.mixin Record hasA T := { a : T }.
HB.structure Definition A := {T of hasA T}.
HB.mixin Record hasB (p : unit) T of A T := { b : T }.
HB.structure Definition B p := {T of A T & hasB p T}.
HB.mixin Record hasC (p q : unit) T of B p T := { c : T }.
HB.structure Definition C p q := {T of B p T & hasC p q T}.
HB.mixin Record hasD T of C tt tt T := { d : T }.
HB.structure Definition D := {T of C tt tt T & hasD T}.
#[compress_coercions]
HB.instance Definition prodA (A A' : A.type) :=
hasA.Build (A * A')%type (a, a).
#[compress_coercions]
HB.instance Definition prodB p (B B' : B.type p) :=
hasB.Build p (B * B')%type (b, b).
#[compress_coercions]
HB.instance Definition prodC p q (C C' : C.type p q) :=
hasC.Build p q (C * C')%type (c, c).
#[compress_coercions]
HB.instance Definition prodD (D D' : D.type) :=
hasD.Build (D * D')%type (d, d).
Set Printing Coercions.
Print Datatypes_prod__canonical__compress_coe_D.
|