1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
Require Export Basics.Classes Basics.Overture.
Require Import Spaces.Nat.Core.
Require Export HoTT.Classes.interfaces.canonical_names.
Require Import Modalities.ReflectiveSubuniverse.
Local Set Polymorphic Inductive Cumulativity.
Generalizable Variables A B C f g x y.
(*
For various structures we omit declaration of substructures. For example, if we
say:
Class Setoid_Morphism :=
{ setoidmor_a : Setoid A
; setoidmor_b : Setoid B
; sm_proper : Proper ((=) ==> (=)) f }.
#[export] Existing Instances setoidmor_a setoidmor_b sm_proper.
then each time a Setoid instance is required, Coq will try to prove that a
Setoid_Morphism exists. This obviously results in an enormous blow-up of the
search space. Moreover, one should be careful to declare a Setoid_Morphisms
as a substructure. Consider [f t1 t2], now if we want to perform setoid rewriting
in [t2] Coq will first attempt to prove that [f t1] is Proper, for which it will
attempt to prove [Setoid_Morphism (f t1)]. If many structures declare
Setoid_Morphism as a substructure, setoid rewriting will become horribly slow.
*)
(* An unbundled variant of the former CoRN CSetoid. We do not
include a proof that A is a Setoid because it can be derived. *)
Class IsApart A {Aap : Apart A} : Type :=
{ apart_set :: IsHSet A
; apart_mere :: is_mere_relation _ apart
; apart_symmetric :: Symmetric (≶)
; apart_cotrans :: CoTransitive (≶)
; tight_apart : forall x y, ~(x ≶ y) <-> x = y }.
Global Instance apart_irrefl `{IsApart A} : Irreflexive (≶).
Proof.
intros x ap.
apply (tight_apart x x).
- reflexivity.
- assumption.
Qed.
Arguments tight_apart {A Aap IsApart} _ _.
Section setoid_morphisms.
Context {A B} {Aap : Apart A} {Bap : Apart B} (f : A -> B).
Class StrongExtensionality := strong_extensionality : forall x y, f x ≶ f y -> x ≶ y.
End setoid_morphisms.
(* HOTT TODO check if this is ok/useful *)
#[export]
Hint Extern 4 (?f _ = ?f _) => eapply (ap f) : core.
Section setoid_binary_morphisms.
Context {A B C} {Aap: Apart A}
{Bap : Apart B} {Cap : Apart C} (f : A -> B -> C).
Class StrongBinaryExtensionality := strong_binary_extensionality
: forall x₁ y₁ x₂ y₂, f x₁ y₁ ≶ f x₂ y₂ -> hor (x₁ ≶ x₂) (y₁ ≶ y₂).
End setoid_binary_morphisms.
(*
Since apartness usually only becomes relevant when considering fields (e.g. the
real numbers), we do not include it in the lower part of the algebraic hierarchy
(as opposed to CoRN).
*)
Section upper_classes.
Universe i.
Context (A : Type@{i}).
Local Open Scope mc_mult_scope.
Class IsSemiGroup {Aop: SgOp A} :=
{ sg_set :: IsHSet A
; sg_ass :: Associative (.*.) }.
Class IsCommutativeSemiGroup {Aop : SgOp A} :=
{ comsg_sg :: @IsSemiGroup (.*.)
; comsg_comm :: Commutative (.*.) }.
Class IsSemiLattice {Aop : SgOp A} :=
{ semilattice_sg :: @IsCommutativeSemiGroup (.*.)
; semilattice_idempotent :: BinaryIdempotent (.*.)}.
Class IsMonoid {Aop : SgOp A} {Aunit : MonUnit A} :=
{ monoid_semigroup :: IsSemiGroup
; monoid_left_id :: LeftIdentity (.*.) mon_unit
; monoid_right_id :: RightIdentity (.*.) mon_unit }.
Class IsCommutativeMonoid {Aop : SgOp A} {Aunit : MonUnit A} :=
{ commonoid_mon :: @IsMonoid (.*.) Aunit
; commonoid_commutative :: Commutative (.*.) }.
Class IsGroup {Aop : SgOp A} {Aunit : MonUnit A} {Ainv : Inverse A} :=
{ group_monoid :: @IsMonoid (.*.) mon_unit
; inverse_l :: LeftInverse (.*.) (^) mon_unit
; inverse_r :: RightInverse (.*.) (^) mon_unit
}.
Class IsBoundedSemiLattice {Aop : SgOp A} {Aunit : MonUnit A} :=
{ bounded_semilattice_mon :: @IsCommutativeMonoid (.*.) Aunit
; bounded_semilattice_idempotent :: BinaryIdempotent (.*.)}.
Local Close Scope mc_mult_scope.
Class IsAbGroup {Aop : SgOp A} {Aunit : MonUnit A} {Ainv : Inverse A} :=
{ abgroup_group :: @IsGroup Aop Aunit Ainv
; abgroup_commutative :: Commutative Aop }.
Context {Aplus : Plus A} {Amult : Mult A} {Azero : Zero A} {Aone : One A}.
Class IsSemiCRing :=
{ semiplus_monoid :: @IsCommutativeMonoid (+) 0
; semimult_monoid :: @IsCommutativeMonoid (.*.) 1
; semiring_distr :: LeftDistribute (.*.) (+)
; semiring_left_absorb :: LeftAbsorb (.*.) 0 }.
Context {Anegate : Negate A}.
Class IsRing :=
{ ring_abgroup :: @IsAbGroup (+) 0 (-)
; ring_monoid :: @IsMonoid (.*.) 1
; ring_dist_left :: LeftDistribute (.*.) (+)
; ring_dist_right :: RightDistribute (.*.) (+)
}.
Class IsCRing :=
{ cring_group :: @IsAbGroup (+) 0 (-)
; cring_monoid :: @IsCommutativeMonoid (.*.) 1
; cring_dist :: LeftDistribute (.*.) (+) }.
Global Instance isring_iscring : IsCRing -> IsRing.
Proof.
intros H.
econstructor; try exact _.
intros a b c.
lhs rapply commutativity.
lhs rapply distribute_l.
f_ap; apply commutativity.
Defined.
Class IsIntegralDomain :=
{ intdom_ring : IsCRing
; intdom_nontrivial : PropHolds (not (1 = 0))
; intdom_nozeroes :: NoZeroDivisors A }.
#[export] Existing Instances intdom_nozeroes.
(* We do not include strong extensionality for (-) and (/)
because it can de derived *)
Class IsField {Aap: Apart A} {Arecip: Recip A} :=
{ field_ring :: IsCRing
; field_apart :: IsApart A
; field_plus_ext :: StrongBinaryExtensionality (+)
; field_mult_ext :: StrongBinaryExtensionality (.*.)
; field_nontrivial : PropHolds (1 ≶ 0)
; recip_inverse : forall x, x.1 // x = 1 }.
#[export] Existing Instances
field_ring
field_apart
field_plus_ext
field_mult_ext.
(* We let /0 = 0 so properties as Injective (/),
f (/x) = / (f x), / /x = x, /x * /y = /(x * y)
hold without any additional assumptions *)
Class IsDecField {Adec_recip : DecRecip A} :=
{ decfield_ring :: IsCRing
; decfield_nontrivial : PropHolds (1 <> 0)
; dec_recip_0 : /0 = 0
; dec_recip_inverse : forall x, x <> 0 -> x / x = 1 }.
#[export] Existing Instances decfield_ring.
Class FieldCharacteristic@{j} {Aap : Apart@{i j} A} (k : nat) : Type@{j}
:= field_characteristic : forall n : nat,
Nat.Core.lt 0 n ->
iff@{j j j} (forall m : nat, not@{j} (paths@{Set} n
(nat_mul k m)))
(@apart A Aap (nat_iter n (1 +) 0) 0).
End upper_classes.
(* Due to bug #2528 *)
#[export]
Hint Extern 4 (PropHolds (1 <> 0)) =>
eapply @intdom_nontrivial : typeclass_instances.
#[export]
Hint Extern 5 (PropHolds (1 ≶ 0)) =>
eapply @field_nontrivial : typeclass_instances.
#[export]
Hint Extern 5 (PropHolds (1 <> 0)) =>
eapply @decfield_nontrivial : typeclass_instances.
(*
For a strange reason IsCRing instances of Integers are sometimes obtained by
Integers -> IntegralDomain -> Ring and sometimes directly. Making this an
instance with a low priority instead of using intdom_ring:> IsCRing forces Coq to
take the right way
*)
#[export]
Hint Extern 10 (IsCRing _) => apply @intdom_ring : typeclass_instances.
Arguments recip_inverse {A Aplus Amult Azero Aone Anegate Aap Arecip IsField} _.
Arguments dec_recip_inverse
{A Aplus Amult Azero Aone Anegate Adec_recip IsDecField} _ _.
Arguments dec_recip_0 {A Aplus Amult Azero Aone Anegate Adec_recip IsDecField}.
Section lattice.
Context A {Ajoin: Join A} {Ameet: Meet A} {Abottom : Bottom A} {Atop : Top A}.
Class IsJoinSemiLattice :=
join_semilattice :: @IsSemiLattice A join_is_sg_op.
Class IsBoundedJoinSemiLattice :=
bounded_join_semilattice :: @IsBoundedSemiLattice A
join_is_sg_op bottom_is_mon_unit.
Class IsMeetSemiLattice :=
meet_semilattice :: @IsSemiLattice A meet_is_sg_op.
Class IsBoundedMeetSemiLattice :=
bounded_meet_semilattice :: @IsBoundedSemiLattice A
meet_is_sg_op top_is_mon_unit.
Class IsLattice :=
{ lattice_join :: IsJoinSemiLattice
; lattice_meet :: IsMeetSemiLattice
; join_meet_absorption :: Absorption (⊔) (⊓)
; meet_join_absorption :: Absorption (⊓) (⊔) }.
Class IsBoundedLattice :=
{ boundedlattice_join :: IsBoundedJoinSemiLattice
; boundedlattice_meet :: IsBoundedMeetSemiLattice
; boundedjoin_meet_absorption :: Absorption (⊔) (⊓)
; boundedmeet_join_absorption :: Absorption (⊓) (⊔)}.
Class IsDistributiveLattice :=
{ distr_lattice_lattice :: IsLattice
; join_meet_distr_l :: LeftDistribute (⊔) (⊓) }.
End lattice.
Section morphism_classes.
Section sgmorphism_classes.
Context {A B : Type} {Aop : SgOp A} {Bop : SgOp B}
{Aunit : MonUnit A} {Bunit : MonUnit B}.
Local Open Scope mc_mult_scope.
Class IsSemiGroupPreserving (f : A -> B) :=
preserves_sg_op : forall x y, f (x * y) = f x * f y.
Class IsUnitPreserving (f : A -> B) :=
preserves_mon_unit : f mon_unit = mon_unit.
Class IsMonoidPreserving (f : A -> B) :=
{ monmor_sgmor :: IsSemiGroupPreserving f
; monmor_unitmor :: IsUnitPreserving f }.
End sgmorphism_classes.
Section ringmorphism_classes.
Context {A B : Type} {Aplus : Plus A} {Bplus : Plus B}
{Amult : Mult A} {Bmult : Mult B} {Azero : Zero A} {Bzero : Zero B}
{Aone : One A} {Bone : One B}.
Class IsSemiRingPreserving (f : A -> B) :=
{ semiringmor_plus_mor :: @IsMonoidPreserving A B
(+) (+) 0 0 f
; semiringmor_mult_mor :: @IsMonoidPreserving A B
(.*.) (.*.) 1 1 f }.
Context {Aap : Apart A} {Bap : Apart B}.
Class IsSemiRingStrongPreserving (f : A -> B) :=
{ strong_semiringmor_sr_mor :: IsSemiRingPreserving f
; strong_semiringmor_strong_mor :: StrongExtensionality f }.
End ringmorphism_classes.
Section latticemorphism_classes.
Context {A B : Type} {Ajoin : Join A} {Bjoin : Join B}
{Ameet : Meet A} {Bmeet : Meet B}.
Class IsJoinPreserving (f : A -> B) :=
join_slmor_sgmor :: @IsSemiGroupPreserving A B join_is_sg_op join_is_sg_op f.
Class IsMeetPreserving (f : A -> B) :=
meet_slmor_sgmor :: @IsSemiGroupPreserving A B meet_is_sg_op meet_is_sg_op f.
Context {Abottom : Bottom A} {Bbottom : Bottom B}.
Class IsBoundedJoinPreserving (f : A -> B) := bounded_join_slmor_monmor
:: @IsMonoidPreserving A B join_is_sg_op join_is_sg_op
bottom_is_mon_unit bottom_is_mon_unit f.
Class IsLatticePreserving (f : A -> B) :=
{ latticemor_join_mor :: IsJoinPreserving f
; latticemor_meet_mor :: IsMeetPreserving f }.
End latticemorphism_classes.
End morphism_classes.
Section id_mor.
Context `{SgOp A} `{MonUnit A}.
Global Instance id_sg_morphism : IsSemiGroupPreserving (@id A).
Proof.
split.
Defined.
Global Instance id_monoid_morphism : IsMonoidPreserving (@id A).
Proof.
split; split.
Defined.
End id_mor.
Section compose_mor.
Context
`{SgOp A} `{MonUnit A}
`{SgOp B} `{MonUnit B}
`{SgOp C} `{MonUnit C}
(f : A -> B) (g : B -> C).
(** Making these global instances causes typeclass loops. Instead they are declared below as [Hint Extern]s that apply only when the goal has the specified form. *)
Local Instance compose_sg_morphism : IsSemiGroupPreserving f -> IsSemiGroupPreserving g ->
IsSemiGroupPreserving (g ∘ f).
Proof.
red; intros fp gp x y.
unfold Compose.
refine ((ap g _) @ _).
- apply fp.
- apply gp.
Defined.
Local Instance compose_monoid_morphism : IsMonoidPreserving f -> IsMonoidPreserving g ->
IsMonoidPreserving (g ∘ f).
Proof.
intros;split.
- apply _.
- red;unfold Compose.
etransitivity;[|apply (preserves_mon_unit (f:=g))].
apply ap,preserves_mon_unit.
Defined.
End compose_mor.
Section invert_mor.
Context
`{SgOp A} `{MonUnit A}
`{SgOp B} `{MonUnit B}
(f : A -> B).
Local Instance invert_sg_morphism
: forall `{!IsEquiv f}, IsSemiGroupPreserving f ->
IsSemiGroupPreserving (f^-1).
Proof.
red; intros E fp x y.
apply (equiv_inj f).
lhs nrapply eisretr.
symmetry.
lhs nrapply fp.
f_ap; apply eisretr.
Defined.
Local Instance invert_monoid_morphism :
forall `{!IsEquiv f}, IsMonoidPreserving f -> IsMonoidPreserving (f^-1).
Proof.
intros;split.
- apply _.
- apply (equiv_inj f).
refine (_ @ _).
+ apply eisretr.
+ symmetry; apply preserves_mon_unit.
Defined.
End invert_mor.
#[export]
Hint Extern 4 (IsSemiGroupPreserving (_ ∘ _)) =>
class_apply @compose_sg_morphism : typeclass_instances.
#[export]
Hint Extern 4 (IsMonoidPreserving (_ ∘ _)) =>
class_apply @compose_monoid_morphism : typeclass_instances.
#[export]
Hint Extern 4 (IsSemiGroupPreserving (_ o _)) =>
class_apply @compose_sg_morphism : typeclass_instances.
#[export]
Hint Extern 4 (IsMonoidPreserving (_ o _)) =>
class_apply @compose_monoid_morphism : typeclass_instances.
#[export]
Hint Extern 4 (IsSemiGroupPreserving (_^-1)) =>
class_apply @invert_sg_morphism : typeclass_instances.
#[export]
Hint Extern 4 (IsMonoidPreserving (_^-1)) =>
class_apply @invert_monoid_morphism : typeclass_instances.
#[export]
Instance isinjective_mapinO_tr {A B : Type} (f : A -> B)
{p : MapIn (Tr (-1)) f} : IsInjective f
:= fun x y pfeq => ap pr1 (@center _ (p (f y) (x; pfeq) (y; idpath))).
Section strong_injective.
Context {A B} {Aap : Apart A} {Bap : Apart B} (f : A -> B) .
Class IsStrongInjective :=
{ strong_injective : forall x y, x ≶ y -> f x ≶ f y
; strong_injective_mor : StrongExtensionality f }.
End strong_injective.
Section extras.
Class CutMinusSpec A (cm : CutMinus A) `{Zero A} `{Plus A} `{Le A} := {
cut_minus_le : forall x y, y ≤ x -> x ∸ y + y = x ;
cut_minus_0 : forall x y, x ≤ y -> x ∸ y = 0
}.
Global Instance ishprop_issemigrouppreserving `{Funext} {A B : Type} `{IsHSet B}
`{SgOp A} `{SgOp B} {f : A -> B} : IsHProp (IsSemiGroupPreserving f).
Proof.
unfold IsSemiGroupPreserving; exact _.
Defined.
Definition issig_IsSemiRingPreserving {A B : Type}
`{Plus A, Plus B, Mult A, Mult B, Zero A, Zero B, One A, One B} {f : A -> B}
: _ <~> IsSemiRingPreserving f := ltac:(issig).
Definition issig_IsMonoidPreserving {A B : Type} `{SgOp A} `{SgOp B}
`{MonUnit A} `{MonUnit B} {f : A -> B} : _ <~> IsMonoidPreserving f
:= ltac:(issig).
Global Instance ishprop_ismonoidpreserving `{Funext} {A B : Type} `{SgOp A}
`{SgOp B} `{IsHSet B} `{MonUnit A} `{MonUnit B} (f : A -> B)
: IsHProp (IsMonoidPreserving f).
Proof.
srapply (istrunc_equiv_istrunc _ issig_IsMonoidPreserving).
srapply (istrunc_equiv_istrunc _ (equiv_sigma_prod0 _ _)^-1).
srapply istrunc_prod.
unfold IsUnitPreserving.
exact _.
Defined.
Global Instance ishprop_issemiringpreserving `{Funext} {A B : Type} `{IsHSet B}
`{Plus A, Plus B, Mult A, Mult B, Zero A, Zero B, One A, One B}
(f : A -> B)
: IsHProp (IsSemiRingPreserving f).
Proof.
snrapply (istrunc_equiv_istrunc _ issig_IsSemiRingPreserving).
exact _.
Defined.
Definition issig_issemigroup x y : _ <~> @IsSemiGroup x y := ltac:(issig).
Global Instance ishprop_issemigroup `{Funext}
: forall x y, IsHProp (@IsSemiGroup x y).
Proof.
intros x y; apply istrunc_S; intros a b.
rewrite <- (eisretr (issig_issemigroup x y) a).
rewrite <- (eisretr (issig_issemigroup x y) b).
set (a' := (issig_issemigroup x y)^-1 a).
set (b' := (issig_issemigroup x y)^-1 b).
clearbody a' b'; clear a b.
srapply (contr_equiv _ (ap (issig_issemigroup x y))).
rewrite <- (eissect (equiv_sigma_prod0 _ _) a').
rewrite <- (eissect (equiv_sigma_prod0 _ _) b').
set (a := equiv_sigma_prod0 _ _ a').
set (b := equiv_sigma_prod0 _ _ b').
clearbody a b; clear a' b'.
srapply (contr_equiv _ (ap (equiv_sigma_prod0 _ _)^-1)).
srapply (contr_equiv _ (equiv_path_prod _ _)).
srapply contr_prod.
destruct a as [a' a], b as [b' b].
do 3 (nrefine (contr_equiv' _ (@equiv_path_forall H _ _ _ _));
nrefine (@contr_forall H _ _ _); intro).
exact _.
Defined.
Definition issig_ismonoid x y z : _ <~> @IsMonoid x y z := ltac:(issig).
Global Instance ishprop_ismonoid `{Funext} x y z : IsHProp (@IsMonoid x y z).
Proof.
apply istrunc_S.
intros a b.
rewrite <- (eisretr (issig_ismonoid x y z) a).
rewrite <- (eisretr (issig_ismonoid x y z) b).
set (a' := (issig_ismonoid x y z)^-1 a).
set (b' := (issig_ismonoid x y z)^-1 b).
clearbody a' b'; clear a b.
srapply (contr_equiv _ (ap (issig_ismonoid x y z))).
rewrite <- (eissect (equiv_sigma_prod0 _ _) a').
rewrite <- (eissect (equiv_sigma_prod0 _ _) b').
set (a := equiv_sigma_prod0 _ _ a').
set (b := equiv_sigma_prod0 _ _ b').
clearbody a b; clear a' b'.
srapply (contr_equiv _ (ap (equiv_sigma_prod0 _ _)^-1)).
srapply (contr_equiv _ (equiv_path_prod _ _)).
srapply contr_prod.
destruct a as [a' a], b as [b' b]; cbn.
rewrite <- (eissect (equiv_sigma_prod0 _ _) a).
rewrite <- (eissect (equiv_sigma_prod0 _ _) b).
set (a'' := equiv_sigma_prod0 _ _ a).
set (b'' := equiv_sigma_prod0 _ _ b).
clearbody a'' b''; clear a b.
srapply (contr_equiv _ (ap (equiv_sigma_prod0 _ _)^-1)).
srapply (contr_equiv _ (equiv_path_prod _ _)).
destruct a'' as [a a''], b'' as [b b'']; cbn.
snrapply contr_prod.
all: srapply contr_paths_contr.
all: srapply contr_inhabited_hprop.
all: srapply istrunc_forall.
Defined.
Definition issig_isgroup w x y z : _ <~> @IsGroup w x y z := ltac:(issig).
Global Instance ishprop_isgroup `{Funext} w x y z : IsHProp (@IsGroup w x y z).
Proof.
apply istrunc_S.
intros a b.
rewrite <- (eisretr (issig_isgroup w x y z) a).
rewrite <- (eisretr (issig_isgroup w x y z) b).
set (a' := (issig_isgroup w x y z)^-1 a).
set (b' := (issig_isgroup w x y z)^-1 b).
clearbody a' b'; clear a b.
srapply (contr_equiv _ (ap (issig_isgroup w x y z))).
rewrite <- (eissect (equiv_sigma_prod0 _ _) a').
rewrite <- (eissect (equiv_sigma_prod0 _ _) b').
set (a := equiv_sigma_prod0 _ _ a').
set (b := equiv_sigma_prod0 _ _ b').
clearbody a b; clear a' b'.
srapply (contr_equiv _ (ap (equiv_sigma_prod0 _ _)^-1)).
srapply (contr_equiv _ (equiv_path_prod _ _)).
srapply contr_prod.
destruct a as [a' a], b as [b' b]; cbn.
rewrite <- (eissect (equiv_sigma_prod0 _ _) a).
rewrite <- (eissect (equiv_sigma_prod0 _ _) b).
set (a'' := equiv_sigma_prod0 _ _ a).
set (b'' := equiv_sigma_prod0 _ _ b).
clearbody a'' b''; clear a b.
srapply (contr_equiv _ (ap (equiv_sigma_prod0 _ _)^-1)).
srapply (contr_equiv _ (equiv_path_prod _ _)).
destruct a'' as [a a''], b'' as [b b'']; cbn.
srapply contr_prod.
all: srapply contr_paths_contr.
all: srapply contr_inhabited_hprop.
all: srapply istrunc_forall.
Defined.
End extras.
|