File: ua_algebra.v

package info (click to toggle)
coq-hott 9.0-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 7,516 kB
  • sloc: sh: 452; python: 414; haskell: 125; makefile: 22
file content (249 lines) | stat: -rw-r--r-- 7,948 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
(** This file defines [Algebra]. *)

Require Export
  HoTT.Utf8Minimal
  HoTT.Basics
  HoTT.Classes.implementations.ne_list
  HoTT.Classes.implementations.family_prod.

Require Import
  HoTT.Types
  HoTT.Universes.HSet
  HoTT.Spaces.List.Core.

Import ne_list.notations.

Declare Scope Algebra_scope.

Delimit Scope Algebra_scope with Algebra.

Open Scope Algebra_scope.

Definition SymbolType_internal : Type → Type := ne_list.

(** A [Signature] is used to characterise [Algebra]s. In particular
    a signature specifies which operations (functions) an algebra for
    the signature is expected to provide. A signature consists of
    - A type of [Sort]s. An algebra for the signature must provide
      a type for each [s : Sort].
    - A type of function symbols [Symbol]. For each function symbol
      [u : Symbol], an algebra for the signature must provide a
      corresponding operation.
    - The field [symbol_types σ u] indicates which type the operation
      corresponding to [u] should have. *)

Record Signature : Type := BuildSignature
  { Sort : Type
  ; Symbol : Type
  ; symbol_types : Symbol → SymbolType_internal Sort }.

(** We have this implicit coercion allowing us to use a signature
    [σ:Signature] as a map [Symbol σ → SymbolType σ]
    (see [SymbolType] below). *)

Global Coercion symbol_types : Signature >-> Funclass.

(** A single sorted [Signature] is a signature with [Sort = Unit]. *)

Definition BuildSingleSortedSignature (sym : Type) (arities : sym → nat)
  : Signature
  := BuildSignature Unit sym (ne_list.replicate_Sn tt o arities).

(** Let [σ:Signature]. For each symbol [u : Symbol σ], [σ u]
    associates [u] to a [SymbolType σ]. This represents the required
    type of the algebra operation corresponding to [u]. *)

Definition SymbolType (σ : Signature) : Type := ne_list (Sort σ).

(** For [s : SymbolType σ], [cod_symboltype σ] is the codomain of the
    symbol type [s]. *)

Definition cod_symboltype {σ} : SymbolType σ → Sort σ
  := ne_list.last.

(** For [s : SymbolType σ], [cod_symboltype σ] is the domain of the
    symbol type [s]. *)

Definition dom_symboltype {σ} : SymbolType σ → list (Sort σ)
  := ne_list.front.

(** For [s : SymbolType σ], [cod_symboltype σ] is the arity of the
    symbol type [s]. That is the number [n:nat] of arguments of the
    [SymbolType σ]. *)

Definition arity_symboltype {σ} : SymbolType σ → nat
  := length o dom_symboltype.

(** An [Algebra] must provide a family of [Carriers σ] indexed by
    [Sort σ]. These carriers are the "objects" (types) of the algebra. *)

(* [Carriers] is a notation because it will be used for an implicit
   coercion [Algebra >-> Funclass] below. *)

Notation Carriers σ := (Sort σ → Type).

(** The function [Operation] maps a family of carriers [A : Carriers σ]
    and [w : SymbolType σ] to the corresponding function type.

<<
      Operation A [:s1; s2; ...; sn; t:] = A s1 → A s2 → ... → A sn → A t
>>

    where [[:s1; s2; ...; sn; t:] : SymbolType σ] is a symbol type
    with domain [[s1; s2; ...; sn]] and codomain [t]. *)

Fixpoint Operation {σ} (A : Carriers σ) (w : SymbolType σ) : Type
  := match w with
     | [:s:] => A s
     | s ::: w' => A s → Operation A w'
     end.

Global Instance trunc_operation `{Funext} {σ : Signature}
  (A : Carriers σ) {n} `{!∀ s, IsTrunc n (A s)} (w : SymbolType σ)
  : IsTrunc n (Operation A w).
Proof.
  induction w; exact _.
Defined.

(** Uncurry of an [f : Operation A w], such that

<<
      ap_operation f (x1,x2,...,xn) = f x1 x2 ... xn
>>
*)

Fixpoint ap_operation {σ} {A : Carriers σ} {w : SymbolType σ}
    : Operation A w →
      FamilyProd A (dom_symboltype w) →
      A (cod_symboltype w)
    := match w with
       | [:s:] => λ f _, f
       | s ::: w' => λ f '(x, l), ap_operation (f x) l
       end.

(** Funext for uncurried [Operation A w]. If

<<
      ap_operation f (x1,x2,...,xn) = ap_operation g (x1,x2,...,xn)
>>

    for all [(x1,x2,...,xn) : A s1 * A s2 * ... * A sn], then [f = g]. *)

Fixpoint path_forall_ap_operation `{Funext} {σ : Signature}
  {A : Carriers σ} {w : SymbolType σ}
  : ∀ (f g : Operation A w),
    (∀ a : FamilyProd A (dom_symboltype w),
       ap_operation f a = ap_operation g a)
    -> f = g
  := match w with
     | [:s:] => λ (f g : A s) p, p tt
     | s ::: w' =>
         λ (f g : A s → Operation A w') p,
          path_forall f g
            (λ x, path_forall_ap_operation (f x) (g x) (λ a, p (x,a)))
     end.

(** An [Algebra σ] for a signature [σ] consists of a family [carriers :
    Carriers σ] indexed by the sorts [s : Sort σ], and for each symbol
    [u : Symbol σ], an operation of type [Operation carriers (σ u)],
    where [σ u : SymbolType σ] is the symbol type of [u]. *)

Record Algebra {σ : Signature} : Type := BuildAlgebra
  { carriers : Carriers σ
  ; operations : ∀ (u : Symbol σ), Operation carriers (σ u) }.

Arguments Algebra : clear implicits.

Arguments BuildAlgebra {σ} carriers operations.

(** We have a convenient implicit coercion from an algebra to the
    family of carriers. *)
Global Coercion carriers : Algebra >-> Funclass.

Bind Scope Algebra_scope with Algebra.

Definition SigAlgebra (σ : Signature) : Type
  := {c : Carriers σ | ∀ (u : Symbol σ), Operation c (σ u) }.

Lemma issig_algebra (σ : Signature) : SigAlgebra σ <~> Algebra σ.
Proof.
  issig.
Defined.

Class IsTruncAlgebra (n : trunc_index) {σ : Signature} (A : Algebra σ)
  := trunc_carriers_algebra :: ∀ (s : Sort σ), IsTrunc n (A s).

Global Existing Instance trunc_carriers_algebra.

Notation IsHSetAlgebra := (IsTruncAlgebra 0).

Global Instance hprop_is_trunc_algebra `{Funext} (n : trunc_index)
  {σ : Signature} (A : Algebra σ)
  : IsHProp (IsTruncAlgebra n A).
Proof.
  apply istrunc_forall.
Qed.

Global Instance trunc_algebra_succ {σ : Signature} (A : Algebra σ)
  {n} `{!IsTruncAlgebra n A}
  : IsTruncAlgebra n.+1 A | 1000.
Proof.
  intro; exact _.
Qed.

(** To find a path between two algebras [A B : Algebra σ] it suffices
    to find paths between the carriers and the operations. *)

Lemma path_algebra {σ : Signature} (A B : Algebra σ)
  (p : carriers A = carriers B)
  (q : transport (λ X, ∀ u, Operation X (σ u)) p (operations A)
       = operations B)
  : A = B.
Proof.
  destruct A,B. cbn in *. by path_induction.
Defined.

Lemma path_ap_carriers_path_algebra {σ} (A B : Algebra σ)
  (p : carriers A = carriers B)
  (q : transport (λ X, ∀ u, Operation X (σ u)) p (operations A)
       = operations B)
  : ap carriers (path_algebra A B p q) = p.
Proof.
  destruct A as [A a], B as [B b]. cbn in *. by destruct p,q.
Defined.

(** Suppose [p],[q] are paths in [Algebra σ]. To show that [p = q] it
    suffices to find a path [r] between the paths corresponding to
    [p] and [q] in [SigAlgebra σ]. *)

Lemma path_path_algebra {σ : Signature} {A B : Algebra σ} (p q : A = B)
  (r : ap (issig_algebra σ)^-1 p = ap (issig_algebra σ)^-1 q)
  : p = q.
Proof.
  set (e := (equiv_ap (issig_algebra σ)^-1 A B)).
  by apply (@equiv_inv _ _ (ap e) (Equivalences.isequiv_ap _ _)).
Defined.

(** If [p q : A = B] and [IsHSetAlgebra B].
    Then [ap carriers p = ap carriers q] implies [p = q]. *)

Lemma path_path_hset_algebra `{Funext} {σ : Signature}
  {A B : Algebra σ} `{IsHSetAlgebra B}
  (p q : A = B) (r : ap carriers p = ap carriers q)
  : p = q.
Proof.
  apply path_path_algebra.
  unshelve eapply path_path_sigma.
  - transitivity (ap carriers p); [by destruct p |].
    transitivity (ap carriers q); [exact r | by destruct q].
  - apply path_ishprop.
Defined.

Module algebra_notations.

(** Given [A : Algebra σ] and function symbol [u : Symbol σ], we use
    the notation [u .# A] to refer to the corresponding algebra
    operation of type [Operation A (σ u)]. *)
  Global Notation "u .# A" := (operations A u) : Algebra_scope.

End algebra_notations.