1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
From iris.algebra Require Import lib.excl_auth gmap agree.
From iris.proofmode Require Import proofmode.
From iris.base_logic.lib Require Export invariants.
From iris.prelude Require Import options.
Import uPred.
(** The CMRAs we need. *)
Class boxG Σ :=
#[local] boxG_inG :: inG Σ (prodR
(excl_authR boolO)
(optionR (agreeR (laterO (iPropO Σ))))).
Definition boxΣ : gFunctors := #[ GFunctor (excl_authR boolO *
optionRF (agreeRF (▶ ∙)) ) ].
Global Instance subG_boxΣ Σ : subG boxΣ Σ → boxG Σ.
Proof. solve_inG. Qed.
Section box_defs.
Context `{!invGS_gen hlc Σ, !boxG Σ} (N : namespace).
Definition slice_name := gname.
Definition box_own_auth (γ : slice_name) (a : excl_authR boolO) : iProp Σ :=
own γ (a, None).
Definition box_own_prop (γ : slice_name) (P : iProp Σ) : iProp Σ :=
own γ (ε, Some (to_agree (Next P))).
Definition slice_inv (γ : slice_name) (P : iProp Σ) : iProp Σ :=
∃ b, box_own_auth γ (●E b) ∗ if b then P else True.
Definition slice (γ : slice_name) (P : iProp Σ) : iProp Σ :=
box_own_prop γ P ∗ inv N (slice_inv γ P).
Definition box (f : gmap slice_name bool) (P : iProp Σ) : iProp Σ :=
tc_opaque (∃ Φ : slice_name → iProp Σ,
▷ (P ≡ [∗ map] γ ↦ _ ∈ f, Φ γ) ∗
[∗ map] γ ↦ b ∈ f, box_own_auth γ (◯E b) ∗ box_own_prop γ (Φ γ) ∗
inv N (slice_inv γ (Φ γ)))%I.
End box_defs.
Global Instance: Params (@box_own_prop) 3 := {}.
Global Instance: Params (@slice_inv) 3 := {}.
Global Instance: Params (@slice) 5 := {}.
Global Instance: Params (@box) 5 := {}.
Section box.
Context `{!invGS_gen hlc Σ, !boxG Σ} (N : namespace).
Implicit Types P Q : iProp Σ.
Global Instance box_own_prop_ne γ : NonExpansive (box_own_prop γ).
Proof. solve_proper. Qed.
Global Instance box_own_prop_contractive γ : Contractive (box_own_prop γ).
Proof. solve_contractive. Qed.
Global Instance box_inv_ne γ : NonExpansive (slice_inv γ).
Proof. solve_proper. Qed.
Global Instance slice_ne γ : NonExpansive (slice N γ).
Proof. solve_proper. Qed.
Global Instance slice_contractive γ : Contractive (slice N γ).
Proof. solve_contractive. Qed.
Global Instance slice_proper γ : Proper ((≡) ==> (≡)) (slice N γ).
Proof. apply ne_proper, _. Qed.
Global Instance slice_persistent γ P : Persistent (slice N γ P).
Proof. apply _. Qed.
Global Instance box_contractive f : Contractive (box N f).
Proof. solve_contractive. Qed.
Global Instance box_ne f : NonExpansive (box N f).
Proof. apply (contractive_ne _). Qed.
Global Instance box_proper f : Proper ((≡) ==> (≡)) (box N f).
Proof. apply ne_proper, _. Qed.
Lemma box_own_auth_agree γ b1 b2 :
box_own_auth γ (●E b1) ∗ box_own_auth γ (◯E b2) ⊢ ⌜b1 = b2⌝.
Proof.
rewrite /box_own_prop -own_op own_valid prod_validI /= and_elim_l.
by iDestruct 1 as %?%excl_auth_agree_L.
Qed.
Lemma box_own_auth_update γ b1 b2 b3 :
box_own_auth γ (●E b1) ∗ box_own_auth γ (◯E b2)
==∗ box_own_auth γ (●E b3) ∗ box_own_auth γ (◯E b3).
Proof.
rewrite /box_own_auth -!own_op. iApply own_update. apply prod_update; last done.
apply excl_auth_update.
Qed.
Lemma box_own_agree γ Q1 Q2 :
box_own_prop γ Q1 ∗ box_own_prop γ Q2 ⊢ ▷ (Q1 ≡ Q2).
Proof.
rewrite /box_own_prop -own_op own_valid prod_validI /= and_elim_r.
by rewrite option_validI /= agree_validI agree_equivI later_equivI /=.
Qed.
Lemma box_alloc : ⊢ box N ∅ True.
Proof.
iIntros. iExists (λ _, True)%I. by rewrite !big_opM_empty.
Qed.
Lemma slice_insert_empty E q f Q P :
▷?q box N f P ={E}=∗ ∃ γ, ⌜f !! γ = None⌝ ∗
slice N γ Q ∗ ▷?q box N (<[γ:=false]> f) (Q ∗ P).
Proof.
iDestruct 1 as (Φ) "[#HeqP Hf]".
iMod (own_alloc_cofinite (●E false ⋅ ◯E false,
Some (to_agree (Next Q))) (dom f))
as (γ) "[Hdom Hγ]"; first by (split; [apply auth_both_valid_discrete|]).
rewrite pair_split. iDestruct "Hγ" as "[[Hγ Hγ'] #HγQ]".
iDestruct "Hdom" as % ?%not_elem_of_dom.
iMod (inv_alloc N _ (slice_inv γ Q) with "[Hγ]") as "#Hinv".
{ iNext. iExists false; eauto. }
iModIntro; iExists γ; repeat iSplit; auto.
iNext. iExists (<[γ:=Q]> Φ); iSplit.
- iNext. iRewrite "HeqP". by rewrite big_opM_fn_insert'.
- rewrite (big_opM_fn_insert (λ _ _ P', _ ∗ _ _ P' ∗ _ _ (_ _ P')))%I //.
iFrame; eauto.
Qed.
Lemma slice_delete_empty E q f P Q γ :
↑N ⊆ E →
f !! γ = Some false →
slice N γ Q -∗ ▷?q box N f P ={E}=∗ ∃ P',
▷?q (▷ (P ≡ (Q ∗ P')) ∗ box N (delete γ f) P').
Proof.
iIntros (??) "[#HγQ Hinv] H". iDestruct "H" as (Φ) "[#HeqP Hf]".
iExists ([∗ map] γ'↦_ ∈ delete γ f, Φ γ')%I.
iInv N as (b) "[>Hγ _]".
iDestruct (big_sepM_delete _ f _ false with "Hf")
as "[[>Hγ' #[HγΦ ?]] ?]"; first done.
iDestruct (box_own_auth_agree γ b false with "[-]") as %->; first by iFrame.
iModIntro. iSplitL "Hγ"; first iExists false; eauto.
iModIntro. iNext. iSplit.
- iDestruct (box_own_agree γ Q (Φ γ) with "[#]") as "HeqQ"; first by eauto.
iNext. iRewrite "HeqP". iRewrite "HeqQ". by rewrite -big_opM_delete.
- iExists Φ; eauto.
Qed.
Lemma slice_fill E q f γ P Q :
↑N ⊆ E →
f !! γ = Some false →
slice N γ Q -∗ ▷ Q -∗ ▷?q box N f P ={E}=∗ ▷?q box N (<[γ:=true]> f) P.
Proof.
iIntros (??) "#[HγQ Hinv] HQ H"; iDestruct "H" as (Φ) "[#HeqP Hf]".
iInv N as (b') "[>Hγ _]".
iDestruct (big_sepM_delete _ f _ false with "Hf")
as "[[>Hγ' #[HγΦ Hinv']] ?]"; first done.
iMod (box_own_auth_update γ b' false true with "[$Hγ $Hγ']") as "[Hγ Hγ']".
iModIntro. iSplitL "Hγ HQ"; first (iNext; iExists true; by iFrame).
iModIntro; iNext; iExists Φ; iSplit.
- by rewrite big_opM_insert_override.
- rewrite -insert_delete_insert big_opM_insert ?lookup_delete //.
iFrame; eauto.
Qed.
Lemma slice_empty E q f P Q γ :
↑N ⊆ E →
f !! γ = Some true →
slice N γ Q -∗ ▷?q box N f P ={E}=∗ ▷ Q ∗ ▷?q box N (<[γ:=false]> f) P.
Proof.
iIntros (??) "#[HγQ Hinv] H"; iDestruct "H" as (Φ) "[#HeqP Hf]".
iInv N as (b) "[>Hγ HQ]".
iDestruct (big_sepM_delete _ f with "Hf")
as "[[>Hγ' #[HγΦ Hinv']] ?]"; first done.
iDestruct (box_own_auth_agree γ b true with "[-]") as %->; first by iFrame.
iFrame "HQ".
iMod (box_own_auth_update γ with "[$Hγ $Hγ']") as "[Hγ Hγ']".
iModIntro. iSplitL "Hγ"; first (iNext; iExists false; by repeat iSplit).
iModIntro; iNext; iExists Φ; iSplit.
- by rewrite big_opM_insert_override.
- rewrite -insert_delete_insert big_opM_insert ?lookup_delete //.
iFrame; eauto.
Qed.
Lemma slice_insert_full E q f P Q :
↑N ⊆ E →
▷ Q -∗ ▷?q box N f P ={E}=∗ ∃ γ, ⌜f !! γ = None⌝ ∗
slice N γ Q ∗ ▷?q box N (<[γ:=true]> f) (Q ∗ P).
Proof.
iIntros (?) "HQ Hbox".
iMod (slice_insert_empty with "Hbox") as (γ ?) "[#Hslice Hbox]".
iExists γ. iFrame "%#". iMod (slice_fill with "Hslice HQ Hbox"); first done.
- by apply lookup_insert.
- by rewrite insert_insert.
Qed.
Lemma slice_delete_full E q f P Q γ :
↑N ⊆ E →
f !! γ = Some true →
slice N γ Q -∗ ▷?q box N f P ={E}=∗
∃ P', ▷ Q ∗ ▷?q ▷ (P ≡ (Q ∗ P')) ∗ ▷?q box N (delete γ f) P'.
Proof.
iIntros (??) "#Hslice Hbox".
iMod (slice_empty with "Hslice Hbox") as "[$ Hbox]"; try done.
iMod (slice_delete_empty with "Hslice Hbox") as (P') "[Heq Hbox]"; first done.
{ by apply lookup_insert. }
iExists P'. iFrame. rewrite -insert_delete_insert delete_insert ?lookup_delete //.
Qed.
Lemma box_fill E f P :
↑N ⊆ E →
box N f P -∗ ▷ P ={E}=∗ box N (const true <$> f) P.
Proof.
iIntros (?) "H HP"; iDestruct "H" as (Φ) "[#HeqP Hf]".
iExists Φ; iSplitR; first by rewrite big_opM_fmap.
iEval (rewrite internal_eq_iff later_iff big_sepM_later) in "HeqP".
iDestruct ("HeqP" with "HP") as "HP".
iCombine "Hf" "HP" as "Hf".
rewrite -big_sepM_sep big_opM_fmap; iApply (big_sepM_fupd _ _ f).
iApply (@big_sepM_impl with "Hf").
iIntros "!>" (γ b' ?) "[(Hγ' & #$ & #$) HΦ]".
iInv N as (b) "[>Hγ _]".
iMod (box_own_auth_update γ with "[Hγ Hγ']") as "[Hγ $]"; first by iFrame.
iModIntro. iSplitL; last done. iNext; iExists true. iFrame.
Qed.
Lemma box_empty E f P :
↑N ⊆ E →
map_Forall (λ _, (true =.)) f →
box N f P ={E}=∗ ▷ P ∗ box N (const false <$> f) P.
Proof.
iDestruct 1 as (Φ) "[#HeqP Hf]".
iAssert (([∗ map] γ↦b ∈ f, ▷ Φ γ) ∗
[∗ map] γ↦b ∈ f, box_own_auth γ (◯E false) ∗ box_own_prop γ (Φ γ) ∗
inv N (slice_inv γ (Φ γ)))%I with "[> Hf]" as "[HΦ ?]".
{ rewrite -big_sepM_sep -big_sepM_fupd. iApply (@big_sepM_impl with "[$Hf]").
iIntros "!>" (γ b ?) "(Hγ' & #HγΦ & #Hinv)".
assert (true = b) as <- by eauto.
iInv N as (b) "[>Hγ HΦ]".
iDestruct (box_own_auth_agree γ b true with "[-]") as %->; first by iFrame.
iMod (box_own_auth_update γ true true false with "[$Hγ $Hγ']") as "[Hγ $]".
iModIntro. iSplitL "Hγ"; first (iNext; iExists false; iFrame; eauto).
iFrame "HγΦ Hinv". by iApply "HΦ". }
iModIntro; iSplitL "HΦ".
- rewrite internal_eq_iff later_iff big_sepM_later. by iApply "HeqP".
- iExists Φ; iSplit; by rewrite big_opM_fmap.
Qed.
Lemma slice_iff E q f P Q Q' γ b :
↑N ⊆ E → f !! γ = Some b →
▷ □ (Q ↔ Q') -∗ slice N γ Q -∗ ▷?q box N f P ={E}=∗ ∃ γ' P',
⌜delete γ f !! γ' = None⌝ ∗ ▷?q ▷ □ (P ↔ P') ∗
slice N γ' Q' ∗ ▷?q box N (<[γ' := b]>(delete γ f)) P'.
Proof.
iIntros (??) "#HQQ' #Hs Hb". destruct b.
- iMod (slice_delete_full with "Hs Hb") as (P') "(HQ & Heq & Hb)"; try done.
iDestruct ("HQQ'" with "HQ") as "HQ'".
iMod (slice_insert_full with "HQ' Hb") as (γ' ?) "[#Hs' Hb]"; try done.
iExists γ', _. iIntros "{$∗ $# $%} !>". do 2 iNext. iRewrite "Heq".
iIntros "!>". by iSplit; iIntros "[? $]"; iApply "HQQ'".
- iMod (slice_delete_empty with "Hs Hb") as (P') "(Heq & Hb)"; try done.
iMod (slice_insert_empty with "Hb") as (γ' ?) "[#Hs' Hb]"; try done.
iExists γ', (Q' ∗ P')%I. iIntros "{$∗ $# $%} !>". do 2 iNext. iRewrite "Heq".
iIntros "!>". by iSplit; iIntros "[? $]"; iApply "HQQ'".
Qed.
Lemma slice_split E q f P Q1 Q2 γ b :
↑N ⊆ E → f !! γ = Some b →
slice N γ (Q1 ∗ Q2) -∗ ▷?q box N f P ={E}=∗ ∃ γ1 γ2,
⌜delete γ f !! γ1 = None⌝ ∗ ⌜delete γ f !! γ2 = None⌝ ∗ ⌜γ1 ≠ γ2⌝ ∗
slice N γ1 Q1 ∗ slice N γ2 Q2 ∗ ▷?q box N (<[γ2 := b]>(<[γ1 := b]>(delete γ f))) P.
Proof.
iIntros (??) "#Hslice Hbox". destruct b.
- iMod (slice_delete_full with "Hslice Hbox") as (P') "([HQ1 HQ2] & Heq & Hbox)"; try done.
iMod (slice_insert_full with "HQ1 Hbox") as (γ1 ?) "[#Hslice1 Hbox]"; first done.
iMod (slice_insert_full with "HQ2 Hbox") as (γ2 ?) "[#Hslice2 Hbox]"; first done.
iExists γ1, γ2. iIntros "{$% $#} !>". iSplit; last iSplit; try iPureIntro.
{ by eapply lookup_insert_None. }
{ by apply (lookup_insert_None (delete γ f) γ1 γ2 true). }
iNext. iApply (internal_eq_rewrite_contractive _ _ (box _ _) with "[Heq] Hbox").
iNext. iRewrite "Heq". iPureIntro. by rewrite assoc (comm _ Q2).
- iMod (slice_delete_empty with "Hslice Hbox") as (P') "[Heq Hbox]"; try done.
iMod (slice_insert_empty with "Hbox") as (γ1 ?) "[#Hslice1 Hbox]".
iMod (slice_insert_empty with "Hbox") as (γ2 ?) "[#Hslice2 Hbox]".
iExists γ1, γ2. iIntros "{$% $#} !>". iSplit; last iSplit; try iPureIntro.
{ by eapply lookup_insert_None. }
{ by apply (lookup_insert_None (delete γ f) γ1 γ2 false). }
iNext. iApply (internal_eq_rewrite_contractive _ _ (box _ _) with "[Heq] Hbox").
iNext. iRewrite "Heq". iPureIntro. by rewrite assoc (comm _ Q2).
Qed.
Lemma slice_combine E q f P Q1 Q2 γ1 γ2 b :
↑N ⊆ E → γ1 ≠ γ2 → f !! γ1 = Some b → f !! γ2 = Some b →
slice N γ1 Q1 -∗ slice N γ2 Q2 -∗ ▷?q box N f P ={E}=∗ ∃ γ,
⌜delete γ2 (delete γ1 f) !! γ = None⌝ ∗ slice N γ (Q1 ∗ Q2) ∗
▷?q box N (<[γ := b]>(delete γ2 (delete γ1 f))) P.
Proof.
iIntros (????) "#Hslice1 #Hslice2 Hbox". destruct b.
- iMod (slice_delete_full with "Hslice1 Hbox") as (P1) "(HQ1 & Heq1 & Hbox)"; try done.
iMod (slice_delete_full with "Hslice2 Hbox") as (P2) "(HQ2 & Heq2 & Hbox)"; first done.
{ by simplify_map_eq. }
iMod (slice_insert_full _ _ _ _ (Q1 ∗ Q2) with "[$HQ1 $HQ2] Hbox")
as (γ ?) "[#Hslice Hbox]"; first done.
iExists γ. iIntros "{$% $#} !>". iNext.
iApply (internal_eq_rewrite_contractive _ _ (box _ _) with "[Heq1 Heq2] Hbox").
iNext. iRewrite "Heq1". iRewrite "Heq2". by rewrite assoc.
- iMod (slice_delete_empty with "Hslice1 Hbox") as (P1) "(Heq1 & Hbox)"; try done.
iMod (slice_delete_empty with "Hslice2 Hbox") as (P2) "(Heq2 & Hbox)"; first done.
{ by simplify_map_eq. }
iMod (slice_insert_empty with "Hbox") as (γ ?) "[#Hslice Hbox]".
iExists γ. iIntros "{$% $#} !>". iNext.
iApply (internal_eq_rewrite_contractive _ _ (box _ _) with "[Heq1 Heq2] Hbox").
iNext. iRewrite "Heq1". iRewrite "Heq2". by rewrite assoc.
Qed.
End box.
Global Typeclasses Opaque slice box.
|