File: ghost_map.v

package info (click to toggle)
coq-iris 4.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,116 kB
  • sloc: python: 130; makefile: 61; sh: 28; sed: 2
file content (342 lines) | stat: -rw-r--r-- 13,423 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
(** A "ghost map" (or "ghost heap") with a proposition controlling authoritative
ownership of the entire heap, and a "points-to-like" proposition for (mutable,
fractional, or persistent read-only) ownership of individual elements. *)
From iris.bi.lib Require Import fractional.
From iris.proofmode Require Import proofmode.
From iris.algebra Require Import gmap_view.
From iris.algebra Require Export dfrac.
From iris.base_logic.lib Require Export own.
From iris.prelude Require Import options.

(** The CMRA we need.
FIXME: This is intentionally discrete-only, but
should we support setoids via [Equiv]? *)
Class ghost_mapG Σ (K V : Type) `{Countable K} := GhostMapG {
  #[local] ghost_map_inG :: inG Σ (gmap_viewR K (agreeR (leibnizO V)));
}.

Definition ghost_mapΣ (K V : Type) `{Countable K} : gFunctors :=
  #[ GFunctor (gmap_viewR K (agreeR (leibnizO V))) ].

Global Instance subG_ghost_mapΣ Σ (K V : Type) `{Countable K} :
  subG (ghost_mapΣ K V) Σ → ghost_mapG Σ K V.
Proof. solve_inG. Qed.

Section definitions.
  Context `{ghost_mapG Σ K V}.

  Local Definition ghost_map_auth_def
      (γ : gname) (q : Qp) (m : gmap K V) : iProp Σ :=
    own γ (gmap_view_auth (V:=agreeR $ leibnizO V) (DfracOwn q) (to_agree <$> m)).
  Local Definition ghost_map_auth_aux : seal (@ghost_map_auth_def).
  Proof. by eexists. Qed.
  Definition ghost_map_auth := ghost_map_auth_aux.(unseal).
  Local Definition ghost_map_auth_unseal :
    @ghost_map_auth = @ghost_map_auth_def := ghost_map_auth_aux.(seal_eq).

  Local Definition ghost_map_elem_def
      (γ : gname) (k : K) (dq : dfrac) (v : V) : iProp Σ :=
    own γ (gmap_view_frag (V:=agreeR $ leibnizO V) k dq (to_agree v)).
  Local Definition ghost_map_elem_aux : seal (@ghost_map_elem_def).
  Proof. by eexists. Qed.
  Definition ghost_map_elem := ghost_map_elem_aux.(unseal).
  Local Definition ghost_map_elem_unseal :
    @ghost_map_elem = @ghost_map_elem_def := ghost_map_elem_aux.(seal_eq).
End definitions.

Notation "k ↪[ γ ] dq v" := (ghost_map_elem γ k dq v)
  (at level 20, γ at level 50, dq custom dfrac at level 1,
   format "k  ↪[ γ ] dq  v") : bi_scope.

Local Ltac unseal := rewrite
  ?ghost_map_auth_unseal /ghost_map_auth_def
  ?ghost_map_elem_unseal /ghost_map_elem_def.

Section lemmas.
  Context `{ghost_mapG Σ K V}.
  Implicit Types (k : K) (v : V) (dq : dfrac) (q : Qp) (m : gmap K V).

  (** * Lemmas about the map elements *)
  Global Instance ghost_map_elem_timeless k γ dq v : Timeless (k ↪[γ]{dq} v).
  Proof. unseal. apply _. Qed.
  Global Instance ghost_map_elem_persistent k γ v : Persistent (k ↪[γ]□ v).
  Proof. unseal. apply _. Qed.
  Global Instance ghost_map_elem_fractional k γ v :
    Fractional (λ q, k ↪[γ]{#q} v)%I.
  Proof. unseal=> p q. rewrite -own_op -gmap_view_frag_add agree_idemp //. Qed.
  Global Instance ghost_map_elem_as_fractional k γ q v :
    AsFractional (k ↪[γ]{#q} v) (λ q, k ↪[γ]{#q} v)%I q.
  Proof. split; first done. apply _. Qed.

  Local Lemma ghost_map_elems_unseal γ m dq :
    ([∗ map] k ↦ v ∈ m, k ↪[γ]{dq} v) ==∗
    own γ ([^op map] k↦v ∈ m,
      gmap_view_frag (V:=agreeR (leibnizO V)) k dq (to_agree v)).
  Proof.
    unseal. destruct (decide (m = ∅)) as [->|Hne].
    - rewrite !big_opM_empty. iIntros "_". iApply own_unit.
    - rewrite big_opM_own //. iIntros "?". done.
  Qed.

  Lemma ghost_map_elem_valid k γ dq v : k ↪[γ]{dq} v -∗ ⌜✓ dq⌝.
  Proof.
    unseal. iIntros "Helem".
    iDestruct (own_valid with "Helem") as %?%gmap_view_frag_valid.
    naive_solver.
  Qed.
  Lemma ghost_map_elem_valid_2 k γ dq1 dq2 v1 v2 :
    k ↪[γ]{dq1} v1 -∗ k ↪[γ]{dq2} v2 -∗ ⌜✓ (dq1 ⋅ dq2) ∧ v1 = v2⌝.
  Proof.
    unseal. iIntros "H1 H2".
    iCombine "H1 H2" gives %[? Hag]%gmap_view_frag_op_valid.
    rewrite to_agree_op_valid_L in Hag. done.
  Qed.
  Lemma ghost_map_elem_agree k γ dq1 dq2 v1 v2 :
    k ↪[γ]{dq1} v1 -∗ k ↪[γ]{dq2} v2 -∗ ⌜v1 = v2⌝.
  Proof.
    iIntros "Helem1 Helem2".
    iDestruct (ghost_map_elem_valid_2 with "Helem1 Helem2") as %[_ ?].
    done.
  Qed.

  Global Instance ghost_map_elem_combine_gives γ k v1 dq1 v2 dq2 :
    CombineSepGives (k ↪[γ]{dq1} v1) (k ↪[γ]{dq2} v2) ⌜✓ (dq1 ⋅ dq2) ∧ v1 = v2⌝.
  Proof.
    rewrite /CombineSepGives. iIntros "[H1 H2]".
    iDestruct (ghost_map_elem_valid_2 with "H1 H2") as %[H1 H2].
    eauto.
  Qed.

  Lemma ghost_map_elem_combine k γ dq1 dq2 v1 v2 :
    k ↪[γ]{dq1} v1 -∗ k ↪[γ]{dq2} v2 -∗ k ↪[γ]{dq1 ⋅ dq2} v1 ∗ ⌜v1 = v2⌝.
  Proof.
    iIntros "Hl1 Hl2". iDestruct (ghost_map_elem_agree with "Hl1 Hl2") as %->.
    unseal. iCombine "Hl1 Hl2" as "Hl". rewrite agree_idemp. eauto with iFrame.
  Qed.

  Global Instance ghost_map_elem_combine_as k γ dq1 dq2 v1 v2 :
    CombineSepAs (k ↪[γ]{dq1} v1) (k ↪[γ]{dq2} v2) (k ↪[γ]{dq1 ⋅ dq2} v1) | 60.
    (* higher cost than the Fractional instance [combine_sep_fractional_bwd],
       which kicks in for #qs *)
  Proof.
    rewrite /CombineSepAs. iIntros "[H1 H2]".
    iDestruct (ghost_map_elem_combine with "H1 H2") as "[$ _]".
  Qed.

  Lemma ghost_map_elem_frac_ne γ k1 k2 dq1 dq2 v1 v2 :
    ¬ ✓ (dq1 ⋅ dq2) → k1 ↪[γ]{dq1} v1 -∗ k2 ↪[γ]{dq2} v2 -∗ ⌜k1 ≠ k2⌝.
  Proof.
    iIntros (?) "H1 H2"; iIntros (->).
    by iCombine "H1 H2" gives %[??].
  Qed.
  Lemma ghost_map_elem_ne γ k1 k2 dq2 v1 v2 :
    k1 ↪[γ] v1 -∗ k2 ↪[γ]{dq2} v2 -∗ ⌜k1 ≠ k2⌝.
  Proof. apply ghost_map_elem_frac_ne. apply: exclusive_l. Qed.

  (** Make an element read-only. *)
  Lemma ghost_map_elem_persist k γ dq v :
    k ↪[γ]{dq} v ==∗ k ↪[γ]□ v.
  Proof. unseal. iApply own_update. apply gmap_view_frag_persist. Qed.

  (** Recover fractional ownership for read-only element. *)
  Lemma ghost_map_elem_unpersist k γ v :
    k ↪[γ]□ v ==∗ ∃ q, k ↪[γ]{# q} v.
  Proof.
    unseal. iIntros "H".
    iMod (own_updateP with "H") as "H";
      first by apply gmap_view_frag_unpersist.
    iDestruct "H" as (? (q&->)) "H".
    iIntros "!>". iExists q. done.
  Qed.

  (** * Lemmas about [ghost_map_auth] *)
  Lemma ghost_map_alloc_strong P m :
    pred_infinite P →
    ⊢ |==> ∃ γ, ⌜P γ⌝ ∗ ghost_map_auth γ 1 m ∗ [∗ map] k ↦ v ∈ m, k ↪[γ] v.
  Proof.
    unseal. intros.
    iMod (own_alloc_strong
      (gmap_view_auth (V:=agreeR (leibnizO V)) (DfracOwn 1) ∅) P)
      as (γ) "[% Hauth]"; first done.
    { apply gmap_view_auth_valid. }
    iExists γ. iSplitR; first done.
    rewrite -big_opM_own_1 -own_op. iApply (own_update with "Hauth").
    etrans; first apply (gmap_view_alloc_big _ (to_agree <$> m) (DfracOwn 1)).
    - apply map_disjoint_empty_r.
    - done.
    - by apply map_Forall_fmap.
    - rewrite right_id big_opM_fmap. done.
  Qed.
  Lemma ghost_map_alloc_strong_empty P :
    pred_infinite P →
    ⊢ |==> ∃ γ, ⌜P γ⌝ ∗ ghost_map_auth γ 1 (∅ : gmap K V).
  Proof.
    intros. iMod (ghost_map_alloc_strong P ∅) as (γ) "(% & Hauth & _)"; eauto.
  Qed.
  Lemma ghost_map_alloc m :
    ⊢ |==> ∃ γ, ghost_map_auth γ 1 m ∗ [∗ map] k ↦ v ∈ m, k ↪[γ] v.
  Proof.
    iMod (ghost_map_alloc_strong (λ _, True) m) as (γ) "[_ Hmap]".
    - by apply pred_infinite_True.
    - eauto.
  Qed.
  Lemma ghost_map_alloc_empty :
    ⊢ |==> ∃ γ, ghost_map_auth γ 1 (∅ : gmap K V).
  Proof.
    intros. iMod (ghost_map_alloc ∅) as (γ) "(Hauth & _)"; eauto.
  Qed.

  Global Instance ghost_map_auth_timeless γ q m : Timeless (ghost_map_auth γ q m).
  Proof. unseal. apply _. Qed.
  Global Instance ghost_map_auth_fractional γ m : Fractional (λ q, ghost_map_auth γ q m)%I.
  Proof. intros p q. unseal. rewrite -own_op -gmap_view_auth_dfrac_op //. Qed.
  Global Instance ghost_map_auth_as_fractional γ q m :
    AsFractional (ghost_map_auth γ q m) (λ q, ghost_map_auth γ q m)%I q.
  Proof. split; first done. apply _. Qed.

  Lemma ghost_map_auth_valid γ q m : ghost_map_auth γ q m -∗ ⌜q ≤ 1⌝%Qp.
  Proof.
    unseal. iIntros "Hauth".
    iDestruct (own_valid with "Hauth") as %?%gmap_view_auth_dfrac_valid.
    done.
  Qed.
  Lemma ghost_map_auth_valid_2 γ q1 q2 m1 m2 :
    ghost_map_auth γ q1 m1 -∗ ghost_map_auth γ q2 m2 -∗ ⌜(q1 + q2 ≤ 1)%Qp ∧ m1 = m2⌝.
  Proof.
    unseal. iIntros "H1 H2".
    (* We need to explicitly specify the Inj instances instead of
    using inj _ since we need to specify [leibnizO] for [to_agree_inj]. *)
    iCombine "H1 H2" gives %[? ?%(map_fmap_equiv_inj _
      (to_agree_inj (A:=(leibnizO _))))]%gmap_view_auth_dfrac_op_valid.
    iPureIntro. split; first done. by fold_leibniz.
  Qed.
  Lemma ghost_map_auth_agree γ q1 q2 m1 m2 :
    ghost_map_auth γ q1 m1 -∗ ghost_map_auth γ q2 m2 -∗ ⌜m1 = m2⌝.
  Proof.
    iIntros "H1 H2".
    iDestruct (ghost_map_auth_valid_2 with "H1 H2") as %[_ ?].
    done.
  Qed.

  (** * Lemmas about the interaction of [ghost_map_auth] with the elements *)
  Lemma ghost_map_lookup {γ q m k dq v} :
    ghost_map_auth γ q m -∗ k ↪[γ]{dq} v -∗ ⌜m !! k = Some v⌝.
  Proof.
    unseal. iIntros "Hauth Hel".
    iCombine "Hauth Hel" gives
      %(av' & _ & _ & Hav' & _ & Hincl)%gmap_view_both_dfrac_valid_discrete_total.
    iPureIntro.
    apply lookup_fmap_Some in Hav' as [v' [<- Hv']].
    apply to_agree_included_L in Hincl. by rewrite Hincl.
  Qed.

  Global Instance ghost_map_lookup_combine_gives_1 {γ q m k dq v} :
    CombineSepGives (ghost_map_auth γ q m) (k ↪[γ]{dq} v) ⌜m !! k = Some v⌝.
  Proof.
    rewrite /CombineSepGives. iIntros "[H1 H2]".
    iDestruct (ghost_map_lookup with "H1 H2") as %->. eauto.
  Qed.

  Global Instance ghost_map_lookup_combine_gives_2 {γ q m k dq v} :
    CombineSepGives (k ↪[γ]{dq} v) (ghost_map_auth γ q m) ⌜m !! k = Some v⌝.
  Proof.
    rewrite /CombineSepGives comm. apply ghost_map_lookup_combine_gives_1.
  Qed.

  Lemma ghost_map_insert {γ m} k v :
    m !! k = None →
    ghost_map_auth γ 1 m ==∗ ghost_map_auth γ 1 (<[k := v]> m) ∗ k ↪[γ] v.
  Proof.
    unseal. intros Hm. rewrite -own_op.
    iApply own_update. rewrite fmap_insert. apply: gmap_view_alloc; [|done..].
    rewrite lookup_fmap Hm //.
  Qed.
  Lemma ghost_map_insert_persist {γ m} k v :
    m !! k = None →
    ghost_map_auth γ 1 m ==∗ ghost_map_auth γ 1 (<[k := v]> m) ∗ k ↪[γ]□ v.
  Proof.
    iIntros (?) "Hauth".
    iMod (ghost_map_insert k with "Hauth") as "[$ Helem]"; first done.
    iApply ghost_map_elem_persist. done.
  Qed.

  Lemma ghost_map_delete {γ m k v} :
    ghost_map_auth γ 1 m -∗ k ↪[γ] v ==∗ ghost_map_auth γ 1 (delete k m).
  Proof.
    unseal. iApply bi.wand_intro_r. rewrite -own_op.
    iApply own_update. rewrite fmap_delete. apply: gmap_view_delete.
  Qed.

  Lemma ghost_map_update {γ m k v} w :
    ghost_map_auth γ 1 m -∗ k ↪[γ] v ==∗ ghost_map_auth γ 1 (<[k := w]> m) ∗ k ↪[γ] w.
  Proof.
    unseal. iApply bi.wand_intro_r. rewrite -!own_op.
    iApply own_update. rewrite fmap_insert. apply: gmap_view_replace; done.
  Qed.

  (** Big-op versions of above lemmas *)
  Lemma ghost_map_lookup_big {γ q m} m0 :
    ghost_map_auth γ q m -∗
    ([∗ map] k↦v ∈ m0, k ↪[γ] v) -∗
    ⌜m0 ⊆ m⌝.
  Proof.
    iIntros "Hauth Hfrag". rewrite map_subseteq_spec. iIntros (k v Hm0).
    iDestruct (ghost_map_lookup with "Hauth [Hfrag]") as %->.
    { rewrite big_sepM_lookup; done. }
    done.
  Qed.

  Lemma ghost_map_insert_big {γ m} m' :
    m' ##ₘ m →
    ghost_map_auth γ 1 m ==∗
    ghost_map_auth γ 1 (m' ∪ m) ∗ ([∗ map] k ↦ v ∈ m', k ↪[γ] v).
  Proof.
    unseal. intros ?. rewrite -big_opM_own_1 -own_op. iApply own_update.
    etrans; first apply: (gmap_view_alloc_big _ (to_agree <$> m') (DfracOwn 1)).
    - apply map_disjoint_fmap. done.
    - done.
    - by apply map_Forall_fmap.
    - rewrite map_fmap_union big_opM_fmap. done.
  Qed.
  Lemma ghost_map_insert_persist_big {γ m} m' :
    m' ##ₘ m →
    ghost_map_auth γ 1 m ==∗
    ghost_map_auth γ 1 (m' ∪ m) ∗ ([∗ map] k ↦ v ∈ m', k ↪[γ]□ v).
  Proof.
    iIntros (Hdisj) "Hauth".
    iMod (ghost_map_insert_big m' with "Hauth") as "[$ Helem]"; first done.
    iApply big_sepM_bupd. iApply (big_sepM_impl with "Helem").
    iIntros "!#" (k v) "_". iApply ghost_map_elem_persist.
  Qed.

  Lemma ghost_map_delete_big {γ m} m0 :
    ghost_map_auth γ 1 m -∗
    ([∗ map] k↦v ∈ m0, k ↪[γ] v) ==∗
    ghost_map_auth γ 1 (m ∖ m0).
  Proof.
    iIntros "Hauth Hfrag". iMod (ghost_map_elems_unseal with "Hfrag") as "Hfrag".
    unseal. iApply (own_update_2 with "Hauth Hfrag").
    rewrite map_fmap_difference.
    etrans; last apply: gmap_view_delete_big.
    rewrite big_opM_fmap. done.
  Qed.

  Theorem ghost_map_update_big {γ m} m0 m1 :
    dom m0 = dom m1 →
    ghost_map_auth γ 1 m -∗
    ([∗ map] k↦v ∈ m0, k ↪[γ] v) ==∗
    ghost_map_auth γ 1 (m1 ∪ m) ∗
        [∗ map] k↦v ∈ m1, k ↪[γ] v.
  Proof.
    iIntros (?) "Hauth Hfrag".
    iMod (ghost_map_elems_unseal with "Hfrag") as "Hfrag".
    unseal. rewrite -big_opM_own_1 -own_op.
    iApply (own_update_2 with "Hauth Hfrag").
    rewrite map_fmap_union.
    rewrite -!(big_opM_fmap to_agree (λ k, gmap_view_frag k (DfracOwn 1))).
    apply gmap_view_replace_big.
    - rewrite !dom_fmap_L. done.
    - by apply map_Forall_fmap.
  Qed.

End lemmas.