1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
(** A "ghost map" (or "ghost heap") with a proposition controlling authoritative
ownership of the entire heap, and a "points-to-like" proposition for (mutable,
fractional, or persistent read-only) ownership of individual elements. *)
From iris.bi.lib Require Import fractional.
From iris.proofmode Require Import proofmode.
From iris.algebra Require Import gmap_view.
From iris.algebra Require Export dfrac.
From iris.base_logic.lib Require Export own.
From iris.prelude Require Import options.
(** The CMRA we need.
FIXME: This is intentionally discrete-only, but
should we support setoids via [Equiv]? *)
Class ghost_mapG Σ (K V : Type) `{Countable K} := GhostMapG {
#[local] ghost_map_inG :: inG Σ (gmap_viewR K (agreeR (leibnizO V)));
}.
Definition ghost_mapΣ (K V : Type) `{Countable K} : gFunctors :=
#[ GFunctor (gmap_viewR K (agreeR (leibnizO V))) ].
Global Instance subG_ghost_mapΣ Σ (K V : Type) `{Countable K} :
subG (ghost_mapΣ K V) Σ → ghost_mapG Σ K V.
Proof. solve_inG. Qed.
Section definitions.
Context `{ghost_mapG Σ K V}.
Local Definition ghost_map_auth_def
(γ : gname) (q : Qp) (m : gmap K V) : iProp Σ :=
own γ (gmap_view_auth (V:=agreeR $ leibnizO V) (DfracOwn q) (to_agree <$> m)).
Local Definition ghost_map_auth_aux : seal (@ghost_map_auth_def).
Proof. by eexists. Qed.
Definition ghost_map_auth := ghost_map_auth_aux.(unseal).
Local Definition ghost_map_auth_unseal :
@ghost_map_auth = @ghost_map_auth_def := ghost_map_auth_aux.(seal_eq).
Local Definition ghost_map_elem_def
(γ : gname) (k : K) (dq : dfrac) (v : V) : iProp Σ :=
own γ (gmap_view_frag (V:=agreeR $ leibnizO V) k dq (to_agree v)).
Local Definition ghost_map_elem_aux : seal (@ghost_map_elem_def).
Proof. by eexists. Qed.
Definition ghost_map_elem := ghost_map_elem_aux.(unseal).
Local Definition ghost_map_elem_unseal :
@ghost_map_elem = @ghost_map_elem_def := ghost_map_elem_aux.(seal_eq).
End definitions.
Notation "k ↪[ γ ] dq v" := (ghost_map_elem γ k dq v)
(at level 20, γ at level 50, dq custom dfrac at level 1,
format "k ↪[ γ ] dq v") : bi_scope.
Local Ltac unseal := rewrite
?ghost_map_auth_unseal /ghost_map_auth_def
?ghost_map_elem_unseal /ghost_map_elem_def.
Section lemmas.
Context `{ghost_mapG Σ K V}.
Implicit Types (k : K) (v : V) (dq : dfrac) (q : Qp) (m : gmap K V).
(** * Lemmas about the map elements *)
Global Instance ghost_map_elem_timeless k γ dq v : Timeless (k ↪[γ]{dq} v).
Proof. unseal. apply _. Qed.
Global Instance ghost_map_elem_persistent k γ v : Persistent (k ↪[γ]□ v).
Proof. unseal. apply _. Qed.
Global Instance ghost_map_elem_fractional k γ v :
Fractional (λ q, k ↪[γ]{#q} v)%I.
Proof. unseal=> p q. rewrite -own_op -gmap_view_frag_add agree_idemp //. Qed.
Global Instance ghost_map_elem_as_fractional k γ q v :
AsFractional (k ↪[γ]{#q} v) (λ q, k ↪[γ]{#q} v)%I q.
Proof. split; first done. apply _. Qed.
Local Lemma ghost_map_elems_unseal γ m dq :
([∗ map] k ↦ v ∈ m, k ↪[γ]{dq} v) ==∗
own γ ([^op map] k↦v ∈ m,
gmap_view_frag (V:=agreeR (leibnizO V)) k dq (to_agree v)).
Proof.
unseal. destruct (decide (m = ∅)) as [->|Hne].
- rewrite !big_opM_empty. iIntros "_". iApply own_unit.
- rewrite big_opM_own //. iIntros "?". done.
Qed.
Lemma ghost_map_elem_valid k γ dq v : k ↪[γ]{dq} v -∗ ⌜✓ dq⌝.
Proof.
unseal. iIntros "Helem".
iDestruct (own_valid with "Helem") as %?%gmap_view_frag_valid.
naive_solver.
Qed.
Lemma ghost_map_elem_valid_2 k γ dq1 dq2 v1 v2 :
k ↪[γ]{dq1} v1 -∗ k ↪[γ]{dq2} v2 -∗ ⌜✓ (dq1 ⋅ dq2) ∧ v1 = v2⌝.
Proof.
unseal. iIntros "H1 H2".
iCombine "H1 H2" gives %[? Hag]%gmap_view_frag_op_valid.
rewrite to_agree_op_valid_L in Hag. done.
Qed.
Lemma ghost_map_elem_agree k γ dq1 dq2 v1 v2 :
k ↪[γ]{dq1} v1 -∗ k ↪[γ]{dq2} v2 -∗ ⌜v1 = v2⌝.
Proof.
iIntros "Helem1 Helem2".
iDestruct (ghost_map_elem_valid_2 with "Helem1 Helem2") as %[_ ?].
done.
Qed.
Global Instance ghost_map_elem_combine_gives γ k v1 dq1 v2 dq2 :
CombineSepGives (k ↪[γ]{dq1} v1) (k ↪[γ]{dq2} v2) ⌜✓ (dq1 ⋅ dq2) ∧ v1 = v2⌝.
Proof.
rewrite /CombineSepGives. iIntros "[H1 H2]".
iDestruct (ghost_map_elem_valid_2 with "H1 H2") as %[H1 H2].
eauto.
Qed.
Lemma ghost_map_elem_combine k γ dq1 dq2 v1 v2 :
k ↪[γ]{dq1} v1 -∗ k ↪[γ]{dq2} v2 -∗ k ↪[γ]{dq1 ⋅ dq2} v1 ∗ ⌜v1 = v2⌝.
Proof.
iIntros "Hl1 Hl2". iDestruct (ghost_map_elem_agree with "Hl1 Hl2") as %->.
unseal. iCombine "Hl1 Hl2" as "Hl". rewrite agree_idemp. eauto with iFrame.
Qed.
Global Instance ghost_map_elem_combine_as k γ dq1 dq2 v1 v2 :
CombineSepAs (k ↪[γ]{dq1} v1) (k ↪[γ]{dq2} v2) (k ↪[γ]{dq1 ⋅ dq2} v1) | 60.
(* higher cost than the Fractional instance [combine_sep_fractional_bwd],
which kicks in for #qs *)
Proof.
rewrite /CombineSepAs. iIntros "[H1 H2]".
iDestruct (ghost_map_elem_combine with "H1 H2") as "[$ _]".
Qed.
Lemma ghost_map_elem_frac_ne γ k1 k2 dq1 dq2 v1 v2 :
¬ ✓ (dq1 ⋅ dq2) → k1 ↪[γ]{dq1} v1 -∗ k2 ↪[γ]{dq2} v2 -∗ ⌜k1 ≠ k2⌝.
Proof.
iIntros (?) "H1 H2"; iIntros (->).
by iCombine "H1 H2" gives %[??].
Qed.
Lemma ghost_map_elem_ne γ k1 k2 dq2 v1 v2 :
k1 ↪[γ] v1 -∗ k2 ↪[γ]{dq2} v2 -∗ ⌜k1 ≠ k2⌝.
Proof. apply ghost_map_elem_frac_ne. apply: exclusive_l. Qed.
(** Make an element read-only. *)
Lemma ghost_map_elem_persist k γ dq v :
k ↪[γ]{dq} v ==∗ k ↪[γ]□ v.
Proof. unseal. iApply own_update. apply gmap_view_frag_persist. Qed.
(** Recover fractional ownership for read-only element. *)
Lemma ghost_map_elem_unpersist k γ v :
k ↪[γ]□ v ==∗ ∃ q, k ↪[γ]{# q} v.
Proof.
unseal. iIntros "H".
iMod (own_updateP with "H") as "H";
first by apply gmap_view_frag_unpersist.
iDestruct "H" as (? (q&->)) "H".
iIntros "!>". iExists q. done.
Qed.
(** * Lemmas about [ghost_map_auth] *)
Lemma ghost_map_alloc_strong P m :
pred_infinite P →
⊢ |==> ∃ γ, ⌜P γ⌝ ∗ ghost_map_auth γ 1 m ∗ [∗ map] k ↦ v ∈ m, k ↪[γ] v.
Proof.
unseal. intros.
iMod (own_alloc_strong
(gmap_view_auth (V:=agreeR (leibnizO V)) (DfracOwn 1) ∅) P)
as (γ) "[% Hauth]"; first done.
{ apply gmap_view_auth_valid. }
iExists γ. iSplitR; first done.
rewrite -big_opM_own_1 -own_op. iApply (own_update with "Hauth").
etrans; first apply (gmap_view_alloc_big _ (to_agree <$> m) (DfracOwn 1)).
- apply map_disjoint_empty_r.
- done.
- by apply map_Forall_fmap.
- rewrite right_id big_opM_fmap. done.
Qed.
Lemma ghost_map_alloc_strong_empty P :
pred_infinite P →
⊢ |==> ∃ γ, ⌜P γ⌝ ∗ ghost_map_auth γ 1 (∅ : gmap K V).
Proof.
intros. iMod (ghost_map_alloc_strong P ∅) as (γ) "(% & Hauth & _)"; eauto.
Qed.
Lemma ghost_map_alloc m :
⊢ |==> ∃ γ, ghost_map_auth γ 1 m ∗ [∗ map] k ↦ v ∈ m, k ↪[γ] v.
Proof.
iMod (ghost_map_alloc_strong (λ _, True) m) as (γ) "[_ Hmap]".
- by apply pred_infinite_True.
- eauto.
Qed.
Lemma ghost_map_alloc_empty :
⊢ |==> ∃ γ, ghost_map_auth γ 1 (∅ : gmap K V).
Proof.
intros. iMod (ghost_map_alloc ∅) as (γ) "(Hauth & _)"; eauto.
Qed.
Global Instance ghost_map_auth_timeless γ q m : Timeless (ghost_map_auth γ q m).
Proof. unseal. apply _. Qed.
Global Instance ghost_map_auth_fractional γ m : Fractional (λ q, ghost_map_auth γ q m)%I.
Proof. intros p q. unseal. rewrite -own_op -gmap_view_auth_dfrac_op //. Qed.
Global Instance ghost_map_auth_as_fractional γ q m :
AsFractional (ghost_map_auth γ q m) (λ q, ghost_map_auth γ q m)%I q.
Proof. split; first done. apply _. Qed.
Lemma ghost_map_auth_valid γ q m : ghost_map_auth γ q m -∗ ⌜q ≤ 1⌝%Qp.
Proof.
unseal. iIntros "Hauth".
iDestruct (own_valid with "Hauth") as %?%gmap_view_auth_dfrac_valid.
done.
Qed.
Lemma ghost_map_auth_valid_2 γ q1 q2 m1 m2 :
ghost_map_auth γ q1 m1 -∗ ghost_map_auth γ q2 m2 -∗ ⌜(q1 + q2 ≤ 1)%Qp ∧ m1 = m2⌝.
Proof.
unseal. iIntros "H1 H2".
(* We need to explicitly specify the Inj instances instead of
using inj _ since we need to specify [leibnizO] for [to_agree_inj]. *)
iCombine "H1 H2" gives %[? ?%(map_fmap_equiv_inj _
(to_agree_inj (A:=(leibnizO _))))]%gmap_view_auth_dfrac_op_valid.
iPureIntro. split; first done. by fold_leibniz.
Qed.
Lemma ghost_map_auth_agree γ q1 q2 m1 m2 :
ghost_map_auth γ q1 m1 -∗ ghost_map_auth γ q2 m2 -∗ ⌜m1 = m2⌝.
Proof.
iIntros "H1 H2".
iDestruct (ghost_map_auth_valid_2 with "H1 H2") as %[_ ?].
done.
Qed.
(** * Lemmas about the interaction of [ghost_map_auth] with the elements *)
Lemma ghost_map_lookup {γ q m k dq v} :
ghost_map_auth γ q m -∗ k ↪[γ]{dq} v -∗ ⌜m !! k = Some v⌝.
Proof.
unseal. iIntros "Hauth Hel".
iCombine "Hauth Hel" gives
%(av' & _ & _ & Hav' & _ & Hincl)%gmap_view_both_dfrac_valid_discrete_total.
iPureIntro.
apply lookup_fmap_Some in Hav' as [v' [<- Hv']].
apply to_agree_included_L in Hincl. by rewrite Hincl.
Qed.
Global Instance ghost_map_lookup_combine_gives_1 {γ q m k dq v} :
CombineSepGives (ghost_map_auth γ q m) (k ↪[γ]{dq} v) ⌜m !! k = Some v⌝.
Proof.
rewrite /CombineSepGives. iIntros "[H1 H2]".
iDestruct (ghost_map_lookup with "H1 H2") as %->. eauto.
Qed.
Global Instance ghost_map_lookup_combine_gives_2 {γ q m k dq v} :
CombineSepGives (k ↪[γ]{dq} v) (ghost_map_auth γ q m) ⌜m !! k = Some v⌝.
Proof.
rewrite /CombineSepGives comm. apply ghost_map_lookup_combine_gives_1.
Qed.
Lemma ghost_map_insert {γ m} k v :
m !! k = None →
ghost_map_auth γ 1 m ==∗ ghost_map_auth γ 1 (<[k := v]> m) ∗ k ↪[γ] v.
Proof.
unseal. intros Hm. rewrite -own_op.
iApply own_update. rewrite fmap_insert. apply: gmap_view_alloc; [|done..].
rewrite lookup_fmap Hm //.
Qed.
Lemma ghost_map_insert_persist {γ m} k v :
m !! k = None →
ghost_map_auth γ 1 m ==∗ ghost_map_auth γ 1 (<[k := v]> m) ∗ k ↪[γ]□ v.
Proof.
iIntros (?) "Hauth".
iMod (ghost_map_insert k with "Hauth") as "[$ Helem]"; first done.
iApply ghost_map_elem_persist. done.
Qed.
Lemma ghost_map_delete {γ m k v} :
ghost_map_auth γ 1 m -∗ k ↪[γ] v ==∗ ghost_map_auth γ 1 (delete k m).
Proof.
unseal. iApply bi.wand_intro_r. rewrite -own_op.
iApply own_update. rewrite fmap_delete. apply: gmap_view_delete.
Qed.
Lemma ghost_map_update {γ m k v} w :
ghost_map_auth γ 1 m -∗ k ↪[γ] v ==∗ ghost_map_auth γ 1 (<[k := w]> m) ∗ k ↪[γ] w.
Proof.
unseal. iApply bi.wand_intro_r. rewrite -!own_op.
iApply own_update. rewrite fmap_insert. apply: gmap_view_replace; done.
Qed.
(** Big-op versions of above lemmas *)
Lemma ghost_map_lookup_big {γ q m} m0 :
ghost_map_auth γ q m -∗
([∗ map] k↦v ∈ m0, k ↪[γ] v) -∗
⌜m0 ⊆ m⌝.
Proof.
iIntros "Hauth Hfrag". rewrite map_subseteq_spec. iIntros (k v Hm0).
iDestruct (ghost_map_lookup with "Hauth [Hfrag]") as %->.
{ rewrite big_sepM_lookup; done. }
done.
Qed.
Lemma ghost_map_insert_big {γ m} m' :
m' ##ₘ m →
ghost_map_auth γ 1 m ==∗
ghost_map_auth γ 1 (m' ∪ m) ∗ ([∗ map] k ↦ v ∈ m', k ↪[γ] v).
Proof.
unseal. intros ?. rewrite -big_opM_own_1 -own_op. iApply own_update.
etrans; first apply: (gmap_view_alloc_big _ (to_agree <$> m') (DfracOwn 1)).
- apply map_disjoint_fmap. done.
- done.
- by apply map_Forall_fmap.
- rewrite map_fmap_union big_opM_fmap. done.
Qed.
Lemma ghost_map_insert_persist_big {γ m} m' :
m' ##ₘ m →
ghost_map_auth γ 1 m ==∗
ghost_map_auth γ 1 (m' ∪ m) ∗ ([∗ map] k ↦ v ∈ m', k ↪[γ]□ v).
Proof.
iIntros (Hdisj) "Hauth".
iMod (ghost_map_insert_big m' with "Hauth") as "[$ Helem]"; first done.
iApply big_sepM_bupd. iApply (big_sepM_impl with "Helem").
iIntros "!#" (k v) "_". iApply ghost_map_elem_persist.
Qed.
Lemma ghost_map_delete_big {γ m} m0 :
ghost_map_auth γ 1 m -∗
([∗ map] k↦v ∈ m0, k ↪[γ] v) ==∗
ghost_map_auth γ 1 (m ∖ m0).
Proof.
iIntros "Hauth Hfrag". iMod (ghost_map_elems_unseal with "Hfrag") as "Hfrag".
unseal. iApply (own_update_2 with "Hauth Hfrag").
rewrite map_fmap_difference.
etrans; last apply: gmap_view_delete_big.
rewrite big_opM_fmap. done.
Qed.
Theorem ghost_map_update_big {γ m} m0 m1 :
dom m0 = dom m1 →
ghost_map_auth γ 1 m -∗
([∗ map] k↦v ∈ m0, k ↪[γ] v) ==∗
ghost_map_auth γ 1 (m1 ∪ m) ∗
[∗ map] k↦v ∈ m1, k ↪[γ] v.
Proof.
iIntros (?) "Hauth Hfrag".
iMod (ghost_map_elems_unseal with "Hfrag") as "Hfrag".
unseal. rewrite -big_opM_own_1 -own_op.
iApply (own_update_2 with "Hauth Hfrag").
rewrite map_fmap_union.
rewrite -!(big_opM_fmap to_agree (λ k, gmap_view_frag k (DfracOwn 1))).
apply gmap_view_replace_big.
- rewrite !dom_fmap_L. done.
- by apply map_Forall_fmap.
Qed.
End lemmas.
|