1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
From iris.algebra Require Export ofe.
From iris.bi Require Export notation.
From iris.prelude Require Import options.
(* We enable primitive projections in this file to improve the performance of the Iris proofmode:
primitive projections for the bi-records makes the proofmode faster.
*)
Local Set Primitive Projections.
Section bi_mixin.
Context {PROP : Type} `{!Dist PROP, !Equiv PROP}.
Context (bi_entails : PROP → PROP → Prop).
Context (bi_emp : PROP).
Context (bi_pure : Prop → PROP).
Context (bi_and : PROP → PROP → PROP).
Context (bi_or : PROP → PROP → PROP).
Context (bi_impl : PROP → PROP → PROP).
Context (bi_forall : ∀ A, (A → PROP) → PROP).
Context (bi_exist : ∀ A, (A → PROP) → PROP).
Context (bi_sep : PROP → PROP → PROP).
Context (bi_wand : PROP → PROP → PROP).
Bind Scope bi_scope with PROP.
Local Infix "⊢" := bi_entails.
Local Notation "'emp'" := bi_emp : bi_scope.
Local Notation "'True'" := (bi_pure True) : bi_scope.
Local Notation "'False'" := (bi_pure False) : bi_scope.
Local Notation "'⌜' φ '⌝'" := (bi_pure φ%type%stdpp) : bi_scope.
Local Infix "∧" := bi_and : bi_scope.
Local Infix "∨" := bi_or : bi_scope.
Local Infix "→" := bi_impl : bi_scope.
Local Notation "∀ x .. y , P" :=
(bi_forall _ (λ x, .. (bi_forall _ (λ y, P%I)) ..)) : bi_scope.
Local Notation "∃ x .. y , P" :=
(bi_exist _ (λ x, .. (bi_exist _ (λ y, P%I)) ..)) : bi_scope.
Local Infix "∗" := bi_sep : bi_scope.
Local Infix "-∗" := bi_wand : bi_scope.
(** * Axioms for a general BI (logic of bunched implications) *)
(** The following axioms are satisifed by both affine and linear BIs, and BIs
that combine both kinds of resources. In particular, we have an "ordered RA"
model satisfying all these axioms. For this model, we extend RAs with an
arbitrary partial order, and up-close resources wrt. that order (instead of
extension order). We demand composition to be monotone wrt. the order: [x1 ≼
x2 → x1 ⋅ y ≼ x2 ⋅ y]. We define [emp := λ r, ε ≼ r]; persistently is still
defined with the core: [persistently P := λ r, P (core r)]. This is uplcosed
because the core is monotone. *)
Record BiMixin := {
bi_mixin_entails_po : PreOrder bi_entails;
bi_mixin_equiv_entails P Q : (P ≡ Q) ↔ (P ⊢ Q) ∧ (Q ⊢ P);
(** Non-expansiveness *)
bi_mixin_pure_ne n : Proper (iff ==> dist n) bi_pure;
bi_mixin_and_ne : NonExpansive2 bi_and;
bi_mixin_or_ne : NonExpansive2 bi_or;
bi_mixin_impl_ne : NonExpansive2 bi_impl;
bi_mixin_forall_ne A n :
Proper (pointwise_relation _ (dist n) ==> dist n) (bi_forall A);
bi_mixin_exist_ne A n :
Proper (pointwise_relation _ (dist n) ==> dist n) (bi_exist A);
bi_mixin_sep_ne : NonExpansive2 bi_sep;
bi_mixin_wand_ne : NonExpansive2 bi_wand;
(** Higher-order logic *)
bi_mixin_pure_intro (φ : Prop) P : φ → P ⊢ ⌜ φ ⌝;
bi_mixin_pure_elim' (φ : Prop) P : (φ → True ⊢ P) → ⌜ φ ⌝ ⊢ P;
bi_mixin_and_elim_l P Q : P ∧ Q ⊢ P;
bi_mixin_and_elim_r P Q : P ∧ Q ⊢ Q;
bi_mixin_and_intro P Q R : (P ⊢ Q) → (P ⊢ R) → P ⊢ Q ∧ R;
bi_mixin_or_intro_l P Q : P ⊢ P ∨ Q;
bi_mixin_or_intro_r P Q : Q ⊢ P ∨ Q;
bi_mixin_or_elim P Q R : (P ⊢ R) → (Q ⊢ R) → P ∨ Q ⊢ R;
bi_mixin_impl_intro_r P Q R : (P ∧ Q ⊢ R) → P ⊢ Q → R;
bi_mixin_impl_elim_l' P Q R : (P ⊢ Q → R) → P ∧ Q ⊢ R;
bi_mixin_forall_intro {A} P (Ψ : A → PROP) : (∀ a, P ⊢ Ψ a) → P ⊢ ∀ a, Ψ a;
bi_mixin_forall_elim {A} {Ψ : A → PROP} a : (∀ a, Ψ a) ⊢ Ψ a;
bi_mixin_exist_intro {A} {Ψ : A → PROP} a : Ψ a ⊢ ∃ a, Ψ a;
bi_mixin_exist_elim {A} (Φ : A → PROP) Q : (∀ a, Φ a ⊢ Q) → (∃ a, Φ a) ⊢ Q;
(** BI connectives *)
bi_mixin_sep_mono P P' Q Q' : (P ⊢ Q) → (P' ⊢ Q') → P ∗ P' ⊢ Q ∗ Q';
bi_mixin_emp_sep_1 P : P ⊢ emp ∗ P;
bi_mixin_emp_sep_2 P : emp ∗ P ⊢ P;
bi_mixin_sep_comm' P Q : P ∗ Q ⊢ Q ∗ P;
bi_mixin_sep_assoc' P Q R : (P ∗ Q) ∗ R ⊢ P ∗ (Q ∗ R);
bi_mixin_wand_intro_r P Q R : (P ∗ Q ⊢ R) → P ⊢ Q -∗ R;
bi_mixin_wand_elim_l' P Q R : (P ⊢ Q -∗ R) → P ∗ Q ⊢ R;
}.
(** We require any BI to have a persistence modality that carves out the
intuitionistic fragment of the separation logic. For logics such as Iris,
the persistence modality has a non-trivial definition (involving the [core] of
the camera). It is not clear whether a trivial definition exists: while
[<pers> P := False] comes close, it does not satisfy [later_persistently_1].
However, for some simpler discrete BIs the persistence modality
can be defined as:
<pers> P := ⌜ emp ⊢ P ⌝
That is, [P] holds persistently if it holds without resources.
The nesting of the entailment below the pure embedding ⌜ ⌝ only works for
discrete BIs: Non-expansiveness of [<pers>] relies on [dist] ignoring the
step-index.
To prove the rule [<pers> (∃ a, Ψ a) ⊢ ∃ a, <pers> Ψ a] the BI furthermore
needs to satisfy the "existential property": [emp ⊢ ∃ x, Φ x] implies
[∃ x, emp ⊢ Φ x].
This construction is formalized by the smart constructor
[bi_persistently_mixin_discrete] for [BiPersistentlyMixin]. See
[tests/heapprop] and [tests/heapprop_affine] for examples of how to use this
smart constructor. *)
Context (bi_persistently : PROP → PROP).
Local Notation "'<pers>' P" := (bi_persistently P) : bi_scope.
Record BiPersistentlyMixin := {
bi_mixin_persistently_ne : NonExpansive bi_persistently;
(* In the ordered RA model: Holds without further assumptions. *)
bi_mixin_persistently_mono P Q : (P ⊢ Q) → <pers> P ⊢ <pers> Q;
(* In the ordered RA model: `core` is idempotent *)
bi_mixin_persistently_idemp_2 P : <pers> P ⊢ <pers> <pers> P;
(* In the ordered RA model: [ε ≼ core x]. *)
bi_mixin_persistently_emp_2 : emp ⊢ <pers> emp;
(* The laws of a "frame" (https://ncatlab.org/nlab/show/frame, not to be
confused with separation logic terminology): commuting with finite
conjunction and infinite disjunction.
The null-ary case, [persistently_True : True ⊢ <pers> True], is derivable from the
other laws. *)
bi_mixin_persistently_and_2 (P Q : PROP) :
(<pers> P) ∧ (<pers> Q) ⊢ <pers> (P ∧ Q);
bi_mixin_persistently_exist_1 {A} (Ψ : A → PROP) :
<pers> (∃ a, Ψ a) ⊢ ∃ a, <pers> (Ψ a);
(* In the ordered RA model: [core x ≼ core (x ⋅ y)]. *)
bi_mixin_persistently_absorbing P Q : <pers> P ∗ Q ⊢ <pers> P;
(* In the ordered RA model: [x ⋅ core x = x]. *)
bi_mixin_persistently_and_sep_elim P Q : <pers> P ∧ Q ⊢ P ∗ Q;
}.
Lemma bi_persistently_mixin_discrete :
(∀ n (P Q : PROP), P ≡{n}≡ Q → P ≡ Q) →
(∀ {A} (Φ : A → PROP), (emp ⊢ ∃ x, Φ x) → ∃ x, emp ⊢ Φ x) →
(∀ P : PROP, (<pers> P)%I = ⌜ emp ⊢ P ⌝%I) →
BiMixin →
BiPersistentlyMixin.
Proof.
intros Hdiscrete Hex Hpers Hbi. pose proof (bi_mixin_entails_po Hbi).
split.
- (* [NonExpansive bi_persistently] *)
intros n P Q [HPQ HQP]%Hdiscrete%(bi_mixin_equiv_entails Hbi).
rewrite !Hpers. apply (bi_mixin_pure_ne Hbi). split=> ?; by etrans.
- (*[(P ⊢ Q) → <pers> P ⊢ <pers> Q] *)
intros P Q HPQ. rewrite !Hpers. apply (bi_mixin_pure_elim' Hbi)=> ?.
apply (bi_mixin_pure_intro Hbi). by trans P.
- (* [<pers> P ⊢ <pers> <pers> P] *)
intros P. rewrite !Hpers. apply (bi_mixin_pure_elim' Hbi)=> ?.
by do 2 apply (bi_mixin_pure_intro Hbi).
- (* [emp ⊢ <pers> emp] *)
rewrite Hpers. by apply (bi_mixin_pure_intro Hbi).
- (* [<pers> P ∧ <pers> Q ⊢ <pers> (P ∧ Q)] *)
intros P Q. rewrite !Hpers.
apply (bi_mixin_impl_elim_l' Hbi). apply (bi_mixin_pure_elim' Hbi)=> ?.
apply (bi_mixin_impl_intro_r Hbi).
etrans; [apply (bi_mixin_and_elim_r Hbi)|].
apply (bi_mixin_pure_elim' Hbi)=> ?.
apply (bi_mixin_pure_intro Hbi). by apply (bi_mixin_and_intro Hbi).
- (* [<pers> (∃ a, Ψ a) ⊢ ∃ a, <pers> Ψ a] *)
intros A Φ. rewrite !Hpers. apply (bi_mixin_pure_elim' Hbi)=> /Hex [x ?].
etrans; [|apply (bi_mixin_exist_intro Hbi x)]; simpl.
rewrite Hpers. by apply (bi_mixin_pure_intro Hbi).
- (* [<pers> P ∗ Q ⊢ <pers> P] *)
intros P Q. rewrite !Hpers.
apply (bi_mixin_wand_elim_l' Hbi). apply (bi_mixin_pure_elim' Hbi)=> ?.
apply (bi_mixin_wand_intro_r Hbi). by apply (bi_mixin_pure_intro Hbi).
- (* [<pers> P ∧ Q ⊢ P ∗ Q] *)
intros P Q. rewrite !Hpers.
apply (bi_mixin_impl_elim_l' Hbi). apply (bi_mixin_pure_elim' Hbi)=> ?.
apply (bi_mixin_impl_intro_r Hbi).
etrans; [apply (bi_mixin_and_elim_r Hbi)|].
etrans; [apply (bi_mixin_emp_sep_1 Hbi)|].
by apply (bi_mixin_sep_mono Hbi).
Qed.
(** We equip any BI with a later modality. This avoids an additional layer in
the BI hierarchy and improves performance significantly (see Iris issue #303).
For non step-indexed BIs the later modality can simply be defined as the
identity function, as the Löb axiom or contractiveness of later is not part of
[BiLaterMixin]. For step-indexed BIs one should separately prove an instance
of the class [BiLaterContractive PROP] or [BiLöb PROP]. (Note that there is an
instance [BiLaterContractive PROP → BiLöb PROP] in [derived_laws_later].)
For non step-indexed BIs one can get a "free" instance of [BiLaterMixin] using
the smart constructor [bi_later_mixin_id] below. *)
Context (bi_later : PROP → PROP).
Local Notation "▷ P" := (bi_later P) : bi_scope.
Record BiLaterMixin := {
bi_mixin_later_ne : NonExpansive bi_later;
bi_mixin_later_mono P Q : (P ⊢ Q) → ▷ P ⊢ ▷ Q;
bi_mixin_later_intro P : P ⊢ ▷ P;
bi_mixin_later_forall_2 {A} (Φ : A → PROP) : (∀ a, ▷ Φ a) ⊢ ▷ ∀ a, Φ a;
bi_mixin_later_exist_false {A} (Φ : A → PROP) :
(▷ ∃ a, Φ a) ⊢ ▷ False ∨ (∃ a, ▷ Φ a);
bi_mixin_later_sep_1 P Q : ▷ (P ∗ Q) ⊢ ▷ P ∗ ▷ Q;
bi_mixin_later_sep_2 P Q : ▷ P ∗ ▷ Q ⊢ ▷ (P ∗ Q);
bi_mixin_later_persistently_1 P : ▷ <pers> P ⊢ <pers> ▷ P;
bi_mixin_later_persistently_2 P : <pers> ▷ P ⊢ ▷ <pers> P;
(* In a step-index model, this law allows case distinctions on whether
the step-index is 0 (expressed as [▷ False] in the logic):
* If it is 0, the left side is true, and we know nothing about [P].
* If not, then it is [S n] for some [n], and [P] holds at [n]. By down-
closure, it also holds at [0]. Thus, we get to use [P], but only if
the step-index is 0 ([▷ False] is true). *)
bi_mixin_later_false_em P : ▷ P ⊢ ▷ False ∨ (▷ False → P);
}.
Lemma bi_later_mixin_id :
(∀ (P : PROP), (▷ P)%I = P) →
BiMixin → BiLaterMixin.
Proof.
intros Hlater Hbi. pose proof (bi_mixin_entails_po Hbi).
split; repeat intro; rewrite ?Hlater //.
- apply (bi_mixin_forall_intro Hbi)=> a.
etrans; [apply (bi_mixin_forall_elim Hbi a)|]. by rewrite Hlater.
- etrans; [|apply (bi_mixin_or_intro_r Hbi)].
apply (bi_mixin_exist_elim Hbi)=> a.
etrans; [|apply (bi_mixin_exist_intro Hbi a)]. by rewrite /= Hlater.
- etrans; [|apply (bi_mixin_or_intro_r Hbi)].
apply (bi_mixin_impl_intro_r Hbi), (bi_mixin_and_elim_l Hbi).
Qed.
End bi_mixin.
Module Import universes.
(** The universe of the logic (PROP). *)
Universe Logic.
(** The universe of quantifiers in the logic. *)
Universe Quant.
End universes.
Structure bi := Bi {
bi_car :> Type@{Logic};
bi_dist : Dist bi_car;
bi_equiv : Equiv bi_car;
bi_entails : bi_car → bi_car → Prop;
bi_emp : bi_car;
bi_pure : Prop → bi_car;
bi_and : bi_car → bi_car → bi_car;
bi_or : bi_car → bi_car → bi_car;
bi_impl : bi_car → bi_car → bi_car;
bi_forall : ∀ A : Type@{Quant}, (A → bi_car) → bi_car;
bi_exist : ∀ A : Type@{Quant}, (A → bi_car) → bi_car;
bi_sep : bi_car → bi_car → bi_car;
bi_wand : bi_car → bi_car → bi_car;
bi_persistently : bi_car → bi_car;
bi_later : bi_car → bi_car;
bi_ofe_mixin : OfeMixin bi_car;
bi_cofe_aux : Cofe (Ofe bi_car bi_ofe_mixin);
bi_bi_mixin : BiMixin bi_entails bi_emp bi_pure bi_and bi_or bi_impl bi_forall
bi_exist bi_sep bi_wand;
bi_bi_persistently_mixin :
BiPersistentlyMixin bi_entails bi_emp bi_and bi_exist bi_sep bi_persistently;
bi_bi_later_mixin : BiLaterMixin bi_entails bi_pure bi_or bi_impl
bi_forall bi_exist bi_sep bi_persistently bi_later;
}.
Bind Scope bi_scope with bi_car.
Coercion bi_ofeO (PROP : bi) : ofe := Ofe PROP (bi_ofe_mixin PROP).
Canonical Structure bi_ofeO.
(** The projection [bi_cofe_aux] is not registered as an instance because it has
the wrong type. Its result type is unfolded, i.e., [Cofe (Ofe PROP ...)], and
thus should never be used. The instance [bi_cofe] has the proper result type
[Cofe (bi_ofeO PROP)]. *)
Global Instance bi_cofe (PROP : bi) : Cofe PROP := bi_cofe_aux PROP.
Global Instance: Params (@bi_entails) 1 := {}.
Global Instance: Params (@bi_emp) 1 := {}.
Global Instance: Params (@bi_pure) 1 := {}.
Global Instance: Params (@bi_and) 1 := {}.
Global Instance: Params (@bi_or) 1 := {}.
Global Instance: Params (@bi_impl) 1 := {}.
Global Instance: Params (@bi_forall) 2 := {}.
Global Instance: Params (@bi_exist) 2 := {}.
Global Instance: Params (@bi_sep) 1 := {}.
Global Instance: Params (@bi_wand) 1 := {}.
Global Instance: Params (@bi_persistently) 1 := {}.
Global Instance: Params (@bi_later) 1 := {}.
Global Arguments bi_car : simpl never.
Global Arguments bi_dist : simpl never.
Global Arguments bi_equiv : simpl never.
Global Arguments bi_entails {PROP} _ _ : simpl never, rename.
Global Arguments bi_emp {PROP} : simpl never, rename.
Global Arguments bi_pure {PROP} _%_stdpp : simpl never, rename.
Global Arguments bi_and {PROP} _ _ : simpl never, rename.
Global Arguments bi_or {PROP} _ _ : simpl never, rename.
Global Arguments bi_impl {PROP} _ _ : simpl never, rename.
Global Arguments bi_forall {PROP _} _%_I : simpl never, rename.
Global Arguments bi_exist {PROP _} _%_I : simpl never, rename.
Global Arguments bi_sep {PROP} _ _ : simpl never, rename.
Global Arguments bi_wand {PROP} _ _ : simpl never, rename.
Global Arguments bi_persistently {PROP} _ : simpl never, rename.
Global Arguments bi_later {PROP} _ : simpl never, rename.
Global Hint Extern 0 (bi_entails _ _) => reflexivity : core.
(** We set this rewrite relation's cost above the stdlib's
([impl], [iff], [eq], ...) and [≡] but below [⊑].
[eq] (at 100) < [≡] (at 150) < [bi_entails _] (at 170) < [⊑] (at 200)
*)
Global Instance bi_rewrite_relation (PROP : bi) : RewriteRelation (@bi_entails PROP) | 170 := {}.
Global Instance bi_inhabited {PROP : bi} : Inhabited PROP := populate (bi_pure True).
Notation "'emp'" := (bi_emp) : bi_scope.
Notation "'⌜' φ '⌝'" := (bi_pure φ%type%stdpp) : bi_scope.
Notation "'True'" := (bi_pure True) : bi_scope.
Notation "'False'" := (bi_pure False) : bi_scope.
Infix "∧" := bi_and : bi_scope.
Notation "(∧)" := bi_and (only parsing) : bi_scope.
Infix "∨" := bi_or : bi_scope.
Notation "(∨)" := bi_or (only parsing) : bi_scope.
Infix "→" := bi_impl : bi_scope.
Notation "¬ P" := (P → False)%I : bi_scope.
Infix "∗" := bi_sep : bi_scope.
Notation "(∗)" := bi_sep (only parsing) : bi_scope.
Notation "P -∗ Q" := (bi_wand P Q) : bi_scope.
Notation "∀ x .. y , P" :=
(bi_forall (λ x, .. (bi_forall (λ y, P%I)) ..)) : bi_scope.
Notation "∃ x .. y , P" :=
(bi_exist (λ x, .. (bi_exist (λ y, P%I)) ..)) : bi_scope.
Notation "'<pers>' P" := (bi_persistently P) : bi_scope.
Notation "▷ P" := (bi_later P) : bi_scope.
Notation "P ⊢ Q" := (bi_entails P%I Q%I) : stdpp_scope.
Notation "P '⊢@{' PROP } Q" := (bi_entails (PROP:=PROP) P%I Q%I) (only parsing) : stdpp_scope.
Notation "(⊢)" := bi_entails (only parsing) : stdpp_scope.
Notation "'(⊢@{' PROP } )" := (bi_entails (PROP:=PROP)) (only parsing) : stdpp_scope.
Notation "P ⊣⊢ Q" := (equiv (A:=bi_car _) P%I Q%I) : stdpp_scope.
Notation "P '⊣⊢@{' PROP } Q" := (equiv (A:=bi_car PROP) P%I Q%I) (only parsing) : stdpp_scope.
Notation "(⊣⊢)" := (equiv (A:=bi_car _)) (only parsing) : stdpp_scope.
Notation "'(⊣⊢@{' PROP } )" := (equiv (A:=bi_car PROP)) (only parsing) : stdpp_scope.
Notation "( P ⊣⊢.)" := (equiv (A:=bi_car _) P) (only parsing) : stdpp_scope.
Notation "(.⊣⊢ Q )" := (λ P, P ≡@{bi_car _} Q) (only parsing) : stdpp_scope.
Definition bi_emp_valid {PROP : bi} (P : PROP) : Prop := emp ⊢ P.
Global Arguments bi_emp_valid {_} _%_I : simpl never.
Global Typeclasses Opaque bi_emp_valid.
Notation "⊢ Q" := (bi_emp_valid Q%I) : stdpp_scope.
Notation "'⊢@{' PROP } Q" := (bi_emp_valid (PROP:=PROP) Q%I) (only parsing) : stdpp_scope.
(** Work around parsing issues: see [notation.v] for details. *)
Notation "'(⊢@{' PROP } Q )" := (bi_emp_valid (PROP:=PROP) Q%I) (only parsing) : stdpp_scope.
Notation "(.⊢ Q )" := (λ P, P ⊢ Q) (only parsing) : stdpp_scope.
Notation "( P ⊢.)" := (bi_entails P) (only parsing) : stdpp_scope.
Notation "P -∗ Q" := (⊢ P -∗ Q) : stdpp_scope.
Module bi.
Section bi_laws.
Context {PROP : bi}.
Implicit Types φ : Prop.
Implicit Types P Q R : PROP.
Implicit Types A : Type.
(* About the entailment *)
Global Instance entails_po : PreOrder (@bi_entails PROP).
Proof. eapply bi_mixin_entails_po, bi_bi_mixin. Qed.
Lemma equiv_entails P Q : P ≡ Q ↔ (P ⊢ Q) ∧ (Q ⊢ P).
Proof. eapply bi_mixin_equiv_entails, bi_bi_mixin. Qed.
(* Non-expansiveness *)
Global Instance pure_ne n : Proper (iff ==> dist n) (@bi_pure PROP).
Proof. eapply bi_mixin_pure_ne, bi_bi_mixin. Qed.
Global Instance and_ne : NonExpansive2 (@bi_and PROP).
Proof. eapply bi_mixin_and_ne, bi_bi_mixin. Qed.
Global Instance or_ne : NonExpansive2 (@bi_or PROP).
Proof. eapply bi_mixin_or_ne, bi_bi_mixin. Qed.
Global Instance impl_ne : NonExpansive2 (@bi_impl PROP).
Proof. eapply bi_mixin_impl_ne, bi_bi_mixin. Qed.
Global Instance forall_ne A n :
Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_forall PROP A).
Proof. eapply bi_mixin_forall_ne, bi_bi_mixin. Qed.
Global Instance exist_ne A n :
Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_exist PROP A).
Proof. eapply bi_mixin_exist_ne, bi_bi_mixin. Qed.
Global Instance sep_ne : NonExpansive2 (@bi_sep PROP).
Proof. eapply bi_mixin_sep_ne, bi_bi_mixin. Qed.
Global Instance wand_ne : NonExpansive2 (@bi_wand PROP).
Proof. eapply bi_mixin_wand_ne, bi_bi_mixin. Qed.
Global Instance persistently_ne : NonExpansive (@bi_persistently PROP).
Proof. eapply bi_mixin_persistently_ne, bi_bi_persistently_mixin. Qed.
(* Higher-order logic *)
Lemma pure_intro (φ : Prop) P : φ → P ⊢ ⌜ φ ⌝.
Proof. eapply bi_mixin_pure_intro, bi_bi_mixin. Qed.
Lemma pure_elim' (φ : Prop) P : (φ → True ⊢ P) → ⌜ φ ⌝ ⊢ P.
Proof. eapply bi_mixin_pure_elim', bi_bi_mixin. Qed.
Lemma and_elim_l P Q : P ∧ Q ⊢ P.
Proof. eapply bi_mixin_and_elim_l, bi_bi_mixin. Qed.
Lemma and_elim_r P Q : P ∧ Q ⊢ Q.
Proof. eapply bi_mixin_and_elim_r, bi_bi_mixin. Qed.
Lemma and_intro P Q R : (P ⊢ Q) → (P ⊢ R) → P ⊢ Q ∧ R.
Proof. eapply bi_mixin_and_intro, bi_bi_mixin. Qed.
Lemma or_intro_l P Q : P ⊢ P ∨ Q.
Proof. eapply bi_mixin_or_intro_l, bi_bi_mixin. Qed.
Lemma or_intro_r P Q : Q ⊢ P ∨ Q.
Proof. eapply bi_mixin_or_intro_r, bi_bi_mixin. Qed.
Lemma or_elim P Q R : (P ⊢ R) → (Q ⊢ R) → P ∨ Q ⊢ R.
Proof. eapply bi_mixin_or_elim, bi_bi_mixin. Qed.
Lemma impl_intro_r P Q R : (P ∧ Q ⊢ R) → P ⊢ Q → R.
Proof. eapply bi_mixin_impl_intro_r, bi_bi_mixin. Qed.
Lemma impl_elim_l' P Q R : (P ⊢ Q → R) → P ∧ Q ⊢ R.
Proof. eapply bi_mixin_impl_elim_l', bi_bi_mixin. Qed.
Lemma forall_intro {A} P (Ψ : A → PROP) : (∀ a, P ⊢ Ψ a) → P ⊢ ∀ a, Ψ a.
Proof. eapply bi_mixin_forall_intro, bi_bi_mixin. Qed.
Lemma forall_elim {A} {Ψ : A → PROP} a : (∀ a, Ψ a) ⊢ Ψ a.
Proof. eapply (bi_mixin_forall_elim bi_entails), bi_bi_mixin. Qed.
Lemma exist_intro {A} {Ψ : A → PROP} a : Ψ a ⊢ ∃ a, Ψ a.
Proof. eapply bi_mixin_exist_intro, bi_bi_mixin. Qed.
Lemma exist_elim {A} (Φ : A → PROP) Q : (∀ a, Φ a ⊢ Q) → (∃ a, Φ a) ⊢ Q.
Proof. eapply bi_mixin_exist_elim, bi_bi_mixin. Qed.
(* BI connectives *)
Lemma sep_mono P P' Q Q' : (P ⊢ Q) → (P' ⊢ Q') → P ∗ P' ⊢ Q ∗ Q'.
Proof. eapply bi_mixin_sep_mono, bi_bi_mixin. Qed.
Lemma emp_sep_1 P : P ⊢ emp ∗ P.
Proof. eapply bi_mixin_emp_sep_1, bi_bi_mixin. Qed.
Lemma emp_sep_2 P : emp ∗ P ⊢ P.
Proof. eapply bi_mixin_emp_sep_2, bi_bi_mixin. Qed.
Lemma sep_comm' P Q : P ∗ Q ⊢ Q ∗ P.
Proof. eapply (bi_mixin_sep_comm' bi_entails), bi_bi_mixin. Qed.
Lemma sep_assoc' P Q R : (P ∗ Q) ∗ R ⊢ P ∗ (Q ∗ R).
Proof. eapply bi_mixin_sep_assoc', bi_bi_mixin. Qed.
Lemma wand_intro_r P Q R : (P ∗ Q ⊢ R) → P ⊢ Q -∗ R.
Proof. eapply bi_mixin_wand_intro_r, bi_bi_mixin. Qed.
Lemma wand_elim_l' P Q R : (P ⊢ Q -∗ R) → P ∗ Q ⊢ R.
Proof. eapply bi_mixin_wand_elim_l', bi_bi_mixin. Qed.
(* Persistently *)
Lemma persistently_mono P Q : (P ⊢ Q) → <pers> P ⊢ <pers> Q.
Proof. eapply bi_mixin_persistently_mono, bi_bi_persistently_mixin. Qed.
Lemma persistently_idemp_2 P : <pers> P ⊢ <pers> <pers> P.
Proof. eapply bi_mixin_persistently_idemp_2, bi_bi_persistently_mixin. Qed.
Lemma persistently_emp_2 : emp ⊢@{PROP} <pers> emp.
Proof. eapply bi_mixin_persistently_emp_2, bi_bi_persistently_mixin. Qed.
Lemma persistently_and_2 (P Q : PROP) :
((<pers> P) ∧ (<pers> Q)) ⊢ <pers> (P ∧ Q).
Proof. eapply bi_mixin_persistently_and_2, bi_bi_persistently_mixin. Qed.
Lemma persistently_exist_1 {A} (Ψ : A → PROP) :
<pers> (∃ a, Ψ a) ⊢ ∃ a, <pers> (Ψ a).
Proof. eapply bi_mixin_persistently_exist_1, bi_bi_persistently_mixin. Qed.
Lemma persistently_absorbing P Q : <pers> P ∗ Q ⊢ <pers> P.
Proof.
eapply (bi_mixin_persistently_absorbing bi_entails), bi_bi_persistently_mixin.
Qed.
Lemma persistently_and_sep_elim P Q : <pers> P ∧ Q ⊢ P ∗ Q.
Proof.
eapply (bi_mixin_persistently_and_sep_elim bi_entails), bi_bi_persistently_mixin.
Qed.
(* Later *)
Global Instance later_ne : NonExpansive (@bi_later PROP).
Proof. eapply bi_mixin_later_ne, bi_bi_later_mixin. Qed.
Lemma later_mono P Q : (P ⊢ Q) → ▷ P ⊢ ▷ Q.
Proof. eapply bi_mixin_later_mono, bi_bi_later_mixin. Qed.
Lemma later_intro P : P ⊢ ▷ P.
Proof. eapply bi_mixin_later_intro, bi_bi_later_mixin. Qed.
Lemma later_forall_2 {A} (Φ : A → PROP) : (∀ a, ▷ Φ a) ⊢ ▷ ∀ a, Φ a.
Proof. eapply bi_mixin_later_forall_2, bi_bi_later_mixin. Qed.
Lemma later_exist_false {A} (Φ : A → PROP) :
(▷ ∃ a, Φ a) ⊢ ▷ False ∨ (∃ a, ▷ Φ a).
Proof. eapply bi_mixin_later_exist_false, bi_bi_later_mixin. Qed.
Lemma later_sep_1 P Q : ▷ (P ∗ Q) ⊢ ▷ P ∗ ▷ Q.
Proof. eapply bi_mixin_later_sep_1, bi_bi_later_mixin. Qed.
Lemma later_sep_2 P Q : ▷ P ∗ ▷ Q ⊢ ▷ (P ∗ Q).
Proof. eapply bi_mixin_later_sep_2, bi_bi_later_mixin. Qed.
Lemma later_persistently_1 P : ▷ <pers> P ⊢ <pers> ▷ P.
Proof. eapply (bi_mixin_later_persistently_1 bi_entails), bi_bi_later_mixin. Qed.
Lemma later_persistently_2 P : <pers> ▷ P ⊢ ▷ <pers> P.
Proof. eapply (bi_mixin_later_persistently_2 bi_entails), bi_bi_later_mixin. Qed.
Lemma later_false_em P : ▷ P ⊢ ▷ False ∨ (▷ False → P).
Proof. eapply bi_mixin_later_false_em, bi_bi_later_mixin. Qed.
End bi_laws.
End bi.
|