1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
From iris.prelude Require Import options.
(** Just reserve the notation. *)
(** * Turnstiles *)
Reserved Notation "P ⊢ Q" (at level 99, Q at level 200, right associativity).
Reserved Notation "P '⊢@{' PROP } Q" (at level 99, Q at level 200, right associativity).
Reserved Notation "(⊢)".
Reserved Notation "'(⊢@{' PROP } )".
Reserved Notation "( P ⊣⊢.)".
Reserved Notation "(.⊣⊢ Q )".
Reserved Notation "P ⊣⊢ Q" (at level 95, no associativity).
Reserved Notation "P '⊣⊢@{' PROP } Q" (at level 95, no associativity).
Reserved Notation "(⊣⊢)".
Reserved Notation "'(⊣⊢@{' PROP } )".
Reserved Notation "(.⊢ Q )".
Reserved Notation "( P ⊢.)".
Reserved Notation "⊢ Q" (at level 20, Q at level 200).
Reserved Notation "'⊢@{' PROP } Q" (at level 20, Q at level 200).
(** The definition must coincide with "'⊢@{' PROP } Q". *)
Reserved Notation "'(⊢@{' PROP } Q )".
(**
Rationale:
Notation [( '⊢@{' PROP } )] prevents parsing [(⊢@{PROP} Q)] using the
[⊢@{PROP} Q] notation; since the latter parse arises from composing two
notations, it is missed by the automatic left-factorization.
To fix that, we force left-factorization by explicitly composing parentheses with
['⊢@{' PROP } Q] into the new notation [( '⊢@{' PROP } Q )],
which successfully undergoes automatic left-factoring. *)
(** * BI connectives *)
Reserved Notation "'emp'".
Reserved Notation "'⌜' φ '⌝'" (at level 0, φ at level 200, format "⌜ φ ⌝").
Reserved Notation "P ∗ Q" (at level 80, right associativity, format "P ∗ '/' Q").
Reserved Notation "P -∗ Q"
(at level 99, Q at level 200, right associativity,
format "'[' P -∗ '/' '[' Q ']' ']'").
Reserved Notation "⎡ P ⎤".
(** Modalities *)
Reserved Notation "'<pers>' P" (at level 20, right associativity).
Reserved Notation "'<pers>?' p P" (at level 20, p at level 9, P at level 20,
right associativity, format "'<pers>?' p P").
Reserved Notation "▷ P" (at level 20, right associativity).
Reserved Notation "▷? p P" (at level 20, p at level 9, P at level 20,
format "▷? p P").
Reserved Notation "▷^ n P" (at level 20, n at level 9, P at level 20,
format "▷^ n P").
Reserved Infix "∗-∗" (at level 95, no associativity).
Reserved Notation "'<affine>' P" (at level 20, right associativity).
Reserved Notation "'<affine>?' p P" (at level 20, p at level 9, P at level 20,
right associativity, format "'<affine>?' p P").
Reserved Notation "'<absorb>' P" (at level 20, right associativity).
Reserved Notation "'<absorb>?' p P" (at level 20, p at level 9, P at level 20,
right associativity, format "'<absorb>?' p P").
Reserved Notation "□ P" (at level 20, right associativity).
Reserved Notation "'□?' p P" (at level 20, p at level 9, P at level 20,
right associativity, format "'□?' p P").
Reserved Notation "◇ P" (at level 20, right associativity).
Reserved Notation "■ P" (at level 20, right associativity).
Reserved Notation "■? p P" (at level 20, p at level 9, P at level 20,
right associativity, format "■? p P").
Reserved Notation "'<obj>' P" (at level 20, right associativity).
Reserved Notation "'<subj>' P" (at level 20, right associativity).
(** * Update modalities *)
Reserved Notation "|==> Q" (at level 99, Q at level 200, format "'[ ' |==> '/' Q ']'").
Reserved Notation "P ==∗ Q"
(at level 99, Q at level 200, format "'[' P ==∗ '/' Q ']'").
Reserved Notation "|={ E1 , E2 }=> Q"
(at level 99, E1, E2 at level 50, Q at level 200,
format "'[ ' |={ E1 , E2 }=> '/' Q ']'").
Reserved Notation "P ={ E1 , E2 }=∗ Q"
(at level 99, E1,E2 at level 50, Q at level 200,
format "'[' P ={ E1 , E2 }=∗ '/' '[' Q ']' ']'").
Reserved Notation "|={ E }=> Q"
(at level 99, E at level 50, Q at level 200,
format "'[ ' |={ E }=> '/' Q ']'").
Reserved Notation "P ={ E }=∗ Q"
(at level 99, E at level 50, Q at level 200,
format "'[' P ={ E }=∗ '/' '[' Q ']' ']'").
(** Step-taking fancy updates *)
Reserved Notation "|={ E1 } [ E2 ]▷=> Q"
(at level 99, E1, E2 at level 50, Q at level 200,
format "'[ ' |={ E1 } [ E2 ]▷=> '/' Q ']'").
Reserved Notation "P ={ E1 } [ E2 ]▷=∗ Q"
(at level 99, E1, E2 at level 50, Q at level 200,
format "'[' P ={ E1 } [ E2 ]▷=∗ '/' '[' Q ']' ']'").
Reserved Notation "|={ E }▷=> Q"
(at level 99, E at level 50, Q at level 200,
format "'[ ' |={ E }▷=> '/' Q ']'").
Reserved Notation "P ={ E }▷=∗ Q"
(at level 99, E at level 50, Q at level 200,
format "'[' P ={ E }▷=∗ '/' '[' Q ']' ']'").
(** Multi-step-taking fancy updates *)
Reserved Notation "|={ E1 } [ E2 ]▷=>^ n Q"
(at level 99, E1, E2 at level 50, n at level 9, Q at level 200,
format "'[ ' |={ E1 } [ E2 ]▷=>^ n '/' Q ']'").
Reserved Notation "P ={ E1 } [ E2 ]▷=∗^ n Q"
(at level 99, E1, E2 at level 50, n at level 9, Q at level 200,
format "'[' P ={ E1 } [ E2 ]▷=∗^ n '/' '[' Q ']' ']'").
Reserved Notation "|={ E }▷=>^ n Q"
(at level 99, E at level 50, n at level 9, Q at level 200,
format "'[ ' |={ E }▷=>^ n '/' Q ']'").
Reserved Notation "P ={ E }▷=∗^ n Q"
(at level 99, E at level 50, n at level 9, Q at level 200,
format "'[' P ={ E }▷=∗^ n '/' '[' Q ']' ']'").
(** * Big Ops *)
Reserved Notation "'[∗' 'list]' k ↦ x ∈ l , P"
(at level 200, l at level 10, k binder, x binder, right associativity,
format "[∗ list] k ↦ x ∈ l , P").
Reserved Notation "'[∗' 'list]' x ∈ l , P"
(at level 200, l at level 10, x binder, right associativity,
format "[∗ list] x ∈ l , P").
Reserved Notation "'[∗' 'list]' k ↦ x1 ; x2 ∈ l1 ; l2 , P"
(at level 200, l1, l2 at level 10, k binder, x1 binder, x2 binder,
right associativity,
format "[∗ list] k ↦ x1 ; x2 ∈ l1 ; l2 , P").
Reserved Notation "'[∗' 'list]' x1 ; x2 ∈ l1 ; l2 , P"
(at level 200, l1, l2 at level 10, x1 binder, x2 binder, right associativity,
format "[∗ list] x1 ; x2 ∈ l1 ; l2 , P").
Reserved Notation "'[∗]' Ps" (at level 20).
Reserved Notation "'[∧' 'list]' k ↦ x ∈ l , P"
(at level 200, l at level 10, k binder, x binder, right associativity,
format "[∧ list] k ↦ x ∈ l , P").
Reserved Notation "'[∧' 'list]' x ∈ l , P"
(at level 200, l at level 10, x binder, right associativity,
format "[∧ list] x ∈ l , P").
Reserved Notation "'[∧]' Ps" (at level 20).
Reserved Notation "'[∨' 'list]' k ↦ x ∈ l , P"
(at level 200, l at level 10, k binder, x binder, right associativity,
format "[∨ list] k ↦ x ∈ l , P").
Reserved Notation "'[∨' 'list]' x ∈ l , P"
(at level 200, l at level 10, x binder, right associativity,
format "[∨ list] x ∈ l , P").
Reserved Notation "'[∨]' Ps" (at level 20).
Reserved Notation "'[∗' 'map]' k ↦ x ∈ m , P"
(at level 200, m at level 10, k binder, x binder, right associativity,
format "[∗ map] k ↦ x ∈ m , P").
Reserved Notation "'[∗' 'map]' x ∈ m , P"
(at level 200, m at level 10, x binder, right associativity,
format "[∗ map] x ∈ m , P").
Reserved Notation "'[∗' 'map]' k ↦ x1 ; x2 ∈ m1 ; m2 , P"
(at level 200, m1, m2 at level 10,
k binder, x1 binder, x2 binder, right associativity,
format "[∗ map] k ↦ x1 ; x2 ∈ m1 ; m2 , P").
Reserved Notation "'[∗' 'map]' x1 ; x2 ∈ m1 ; m2 , P"
(at level 200, m1, m2 at level 10, x1 binder, x2 binder, right associativity,
format "[∗ map] x1 ; x2 ∈ m1 ; m2 , P").
Reserved Notation "'[∧' 'map]' k ↦ x ∈ m , P"
(at level 200, m at level 10, k binder, x binder, right associativity,
format "[∧ map] k ↦ x ∈ m , P").
Reserved Notation "'[∧' 'map]' x ∈ m , P"
(at level 200, m at level 10, x binder, right associativity,
format "[∧ map] x ∈ m , P").
Reserved Notation "'[∗' 'set]' x ∈ X , P"
(at level 200, X at level 10, x binder, right associativity,
format "[∗ set] x ∈ X , P").
Reserved Notation "'[∗' 'mset]' x ∈ X , P"
(at level 200, X at level 10, x binder, right associativity,
format "[∗ mset] x ∈ X , P").
(** Define the scope *)
Declare Scope bi_scope.
Delimit Scope bi_scope with I.
|