1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
(** This file declares notation for logically atomic Hoare triples, and some
generic lemmas about them. To enable the definition of a shared theory applying
to triples with any number of binders, the triples themselves are defined via telescopes, but as a user
you need not be concerned with that. You can just use the following notation:
<<{ ∀∀ x, atomic_precondition }>>
code @ E
<<{ ∃∃ y, atomic_postcondition | z, RET return_value; private_postcondition }>>
Here, [x] (which can be any number of binders, including 0) is bound in all of
the atomic pre- and postcondition and the private (non-atomic) postcondition and
the return value, [y] (which can be any number of binders, including 0) is bound
in both postconditions and the return value, and [z] (which can be any number of
binders, including 0) is bound in the return value and the private
postcondition.
Note that atomic triples are *not* implicitly persistent, unlike Texan triples.
If you need a private (non-atomic) precondition, you can use a magic wand:
private_precondition -∗
<<{ ∀∀ x, atomic_precondition }>>
code @ E
<<{ ∃∃ y, atomic_postcondition
| z, RET return_value; private_postcondition }>>
If you don't need a private postcondition, you can leave it away, e.g.:
<<{ ∀∀ x, atomic_precondition }>>
code @ E
<<{ ∃∃ y, atomic_postcondition | RET return_value }>>
Note that due to combinatorial explosion and because Coq does not have a
facility to declare such notation in a compositional way, not *all* variants of
this notation exist: if you have binders before the [RET] (which is very
uncommon), you must have a private postcondition (it can be [True]), and you
must have [∀∀] and [∃∃] binders (they can be [_: ()]).
For an example for how to prove and use logically atomic specifications, see
[iris_heap_lang/lib/increment.v].
*)
From stdpp Require Import namespaces.
From iris.bi Require Import telescopes.
From iris.bi.lib Require Export atomic.
From iris.proofmode Require Import proofmode classes.
From iris.program_logic Require Export weakestpre.
From iris.base_logic Require Import invariants.
From iris.prelude Require Import options.
(* This hard-codes the inner mask to be empty, because we have yet to find an
example where we want it to be anything else.
For the non-atomic post-condition, we use an [option PROP], combined with a
[-∗?]. This is to avoid introducing spurious [True -∗] into proofs that do not
need a non-atomic post-condition (which is most of them). *)
Definition atomic_wp `{!irisGS_gen hlc Λ Σ} {TA TB TP : tele}
(e: expr Λ) (* expression *)
(E : coPset) (* *implementation* mask *)
(α: TA → iProp Σ) (* atomic pre-condition *)
(β: TA → TB → iProp Σ) (* atomic post-condition *)
(POST: TA → TB → TP → option (iProp Σ)) (* non-atomic post-condition *)
(f: TA → TB → TP → val Λ) (* Turn the return data into the return value *)
: iProp Σ :=
∀ (Φ : val Λ → iProp Σ),
(* The (outer) user mask is what is left after the implementation
opened its things. *)
atomic_update (⊤∖E) ∅ α β (λ.. x y, ∀.. z, POST x y z -∗? Φ (f x y z)) -∗
WP e {{ Φ }}.
(** We avoid '<<{'/'}>>' since those can also reasonably be infix operators
(and in fact Autosubst uses the latter). *)
Notation "'<<{' ∀∀ x1 .. xn , α '}>>' e @ E '<<{' ∃∃ y1 .. yn , β '|' z1 .. zn , 'RET' v ; POST '}>>'" :=
(* The way to read the [tele_app foo] here is that they convert the n-ary
function [foo] into a unary function taking a telescope as the argument. *)
(atomic_wp (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
(TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(TP:=TeleS (λ z1, .. (TeleS (λ zn, TeleO)) .. ))
e%E
E
(tele_app $ λ x1, .. (λ xn, α%I) ..)
(tele_app $ λ x1, .. (λ xn,
tele_app $ λ y1, .. (λ yn, β%I) ..
) .. )
(tele_app $ λ x1, .. (λ xn,
tele_app $ λ y1, .. (λ yn,
tele_app $ λ z1, .. (λ zn, Some POST%I) ..
) ..
) .. )
(tele_app $ λ x1, .. (λ xn,
tele_app $ λ y1, .. (λ yn,
tele_app $ λ z1, .. (λ zn, v%V) ..
) ..
) .. )
)
(at level 20, E, β, α, v, POST at level 200, x1 binder, xn binder, y1 binder, yn binder, z1 binder, zn binder,
format "'[hv' '<<{' '[' ∀∀ x1 .. xn , '/' α ']' '}>>' '/ ' e @ E '/' '<<{' '[' ∃∃ y1 .. yn , '/' β '|' '/' z1 .. zn , RET v ; '/' POST ']' '}>>' ']'")
: bi_scope.
(* There are overall 16 of possible variants of this notation:
- with and without ∀∀ binders
- with and without ∃∃ binders
- with and without RET binders
- with and without POST
However we don't support the case where RET binders are present but anything
else is missing. Below we declare the 8 notations that involve no RET binders.
*)
(* No RET binders *)
Notation "'<<{' ∀∀ x1 .. xn , α '}>>' e @ E '<<{' ∃∃ y1 .. yn , β '|' 'RET' v ; POST '}>>'" :=
(atomic_wp (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
(TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(TP:=TeleO)
e%E
E
(tele_app $ λ x1, .. (λ xn, α%I) ..)
(tele_app $ λ x1, .. (λ xn,
tele_app $ λ y1, .. (λ yn, β%I) ..
) .. )
(tele_app $ λ x1, .. (λ xn,
tele_app $ λ y1, .. (λ yn, tele_app $ Some POST%I) ..
) .. )
(tele_app $ λ x1, .. (λ xn,
tele_app $ λ y1, .. (λ yn, tele_app $ v%V) ..
) .. )
)
(at level 20, E, β, α, v, POST at level 200, x1 binder, xn binder, y1 binder, yn binder,
format "'[hv' '<<{' '[' ∀∀ x1 .. xn , '/' α ']' '}>>' '/ ' e @ E '/' '<<{' '[' ∃∃ y1 .. yn , '/' β '|' '/' RET v ; '/' POST ']' '}>>' ']'")
: bi_scope.
(* No ∃∃ binders, no RET binders *)
Notation "'<<{' ∀∀ x1 .. xn , α '}>>' e @ E '<<{' β '|' 'RET' v ; POST '}>>'" :=
(atomic_wp (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
(TB:=TeleO)
(TP:=TeleO)
e%E
E
(tele_app $ λ x1, .. (λ xn, α%I) ..)
(tele_app $ λ x1, .. (λ xn, tele_app β%I) .. )
(tele_app $ λ x1, .. (λ xn,
tele_app $ tele_app $ Some POST%I
) .. )
(tele_app $ λ x1, .. (λ xn,
tele_app $ tele_app $ v%V
) .. )
)
(at level 20, E, β, α, v, POST at level 200, x1 binder, xn binder,
format "'[hv' '<<{' '[' ∀∀ x1 .. xn , '/' α ']' '}>>' '/ ' e @ E '/' '<<{' '[' β '|' '/' RET v ; '/' POST ']' '}>>' ']'")
: bi_scope.
(* No ∀∀ binders, no RET binders *)
Notation "'<<{' α '}>>' e @ E '<<{' ∃∃ y1 .. yn , β '|' 'RET' v ; POST '}>>'" :=
(atomic_wp (TA:=TeleO)
(TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(TP:=TeleO)
e%E
E
(tele_app $ α%I)
(tele_app $ tele_app $ λ y1, .. (λ yn, β%I) .. )
(tele_app $ tele_app $ λ y1, .. (λ yn, tele_app $ Some POST%I) .. )
(tele_app $ tele_app $ λ y1, .. (λ yn, tele_app $ v%V) .. )
)
(at level 20, E, β, α, v, POST at level 200, y1 binder, yn binder,
format "'[hv' '<<{' '[' α ']' '}>>' '/ ' e @ E '/' '<<{' '[' ∃∃ y1 .. yn , '/' β '|' '/' RET v ; '/' POST ']' '}>>' ']'")
: bi_scope.
(* No ∀∀ binders, no ∃∃ binders, no RET binders *)
Notation "'<<{' α '}>>' e @ E '<<{' β '|' 'RET' v ; POST '}>>'" :=
(atomic_wp (TA:=TeleO)
(TB:=TeleO)
(TP:=TeleO)
e%E
E
(tele_app $ α%I)
(tele_app $ tele_app β%I)
(tele_app $ tele_app $ tele_app $ Some POST%I)
(tele_app $ tele_app $ tele_app $ v%V)
)
(at level 20, E, β, α, v, POST at level 200,
format "'[hv' '<<{' '[' α ']' '}>>' '/ ' e @ E '/' '<<{' '[' β '|' '/' RET v ; '/' POST ']' '}>>' ']'")
: bi_scope.
(* No RET binders, no POST *)
Notation "'<<{' ∀∀ x1 .. xn , α '}>>' e @ E '<<{' ∃∃ y1 .. yn , β '|' 'RET' v '}>>'" :=
(atomic_wp (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
(TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(TP:=TeleO)
e%E
E
(tele_app $ λ x1, .. (λ xn, α%I) ..)
(tele_app $ λ x1, .. (λ xn,
tele_app $ λ y1, .. (λ yn, β%I) ..
) .. )
(tele_app $ λ x1, .. (λ xn,
tele_app $ λ y1, .. (λ yn, tele_app None) ..
) .. )
(tele_app $ λ x1, .. (λ xn,
tele_app $ λ y1, .. (λ yn, tele_app v%V) ..
) .. )
)
(at level 20, E, β, α, v at level 200, x1 binder, xn binder, y1 binder, yn binder,
format "'[hv' '<<{' '[' ∀∀ x1 .. xn , '/' α ']' '}>>' '/ ' e @ E '/' '<<{' '[' ∃∃ y1 .. yn , '/' β '|' '/' RET v ']' '}>>' ']'")
: bi_scope.
(* No ∃∃ binders, no RET binders, no POST *)
Notation "'<<{' ∀∀ x1 .. xn , α '}>>' e @ E '<<{' β '|' 'RET' v '}>>'" :=
(atomic_wp (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
(TB:=TeleO)
(TP:=TeleO)
e%E
E
(tele_app $ λ x1, .. (λ xn, α%I) ..)
(tele_app $ λ x1, .. (λ xn, tele_app β%I) .. )
(tele_app $ λ x1, .. (λ xn, tele_app $ tele_app None) .. )
(tele_app $ λ x1, .. (λ xn, tele_app $ tele_app v%V) .. )
)
(at level 20, E, β, α, v at level 200, x1 binder, xn binder,
format "'[hv' '<<{' '[' ∀∀ x1 .. xn , '/' α ']' '}>>' '/ ' e @ E '/' '<<{' '[' β '|' '/' RET v ']' '}>>' ']'")
: bi_scope.
(* No ∀∀ binders, no RET binders, no POST *)
Notation "'<<{' α '}>>' e @ E '<<{' ∃∃ y1 .. yn , β '|' 'RET' v '}>>'" :=
(atomic_wp (TA:=TeleO)
(TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(TP:=TeleO)
e%E
E
(tele_app α%I)
(tele_app $ tele_app $ λ y1, .. (λ yn, β%I) .. )
(tele_app $ tele_app $ λ y1, .. (λ yn, tele_app None) .. )
(tele_app $ tele_app $ λ y1, .. (λ yn, tele_app v%V) .. )
)
(at level 20, E, β, α, v at level 200, y1 binder, yn binder,
format "'[hv' '<<{' '[' α ']' '}>>' '/ ' e @ E '/' '<<{' '[' ∃∃ y1 .. yn , '/' β '|' '/' RET v ']' '}>>' ']'")
: bi_scope.
(* No ∀∀ binders, no ∃∃ binders, no RET binders, no POST *)
Notation "'<<{' α '}>>' e @ E '<<{' β '|' 'RET' v '}>>'" :=
(atomic_wp (TA:=TeleO)
(TB:=TeleO)
(TP:=TeleO)
e%E
E
(tele_app α%I)
(tele_app $ tele_app β%I)
(tele_app $ tele_app $ tele_app None)
(tele_app $ tele_app $ tele_app v%V)
)
(at level 20, E, β, α, v at level 200,
format "'[hv' '<<{' '[' α ']' '}>>' '/ ' e @ E '/' '<<{' '[' β '|' '/' RET v ']' '}>>' ']'")
: bi_scope.
(** Theory *)
Section lemmas.
Context `{!irisGS_gen hlc Λ Σ} {TA TB TP : tele}.
Notation iProp := (iProp Σ).
Implicit Types (α : TA → iProp) (β : TA → TB → iProp) (POST : TA → TB → TP → option iProp) (f : TA → TB → TP → val Λ).
(* Atomic triples imply sequential triples. *)
Lemma atomic_wp_seq e E α β POST f :
atomic_wp e E α β POST f -∗
∀ Φ, ∀.. x, α x -∗ (∀.. y, β x y -∗ ∀.. z, POST x y z -∗? Φ (f x y z)) -∗ WP e {{ Φ }}.
Proof.
iIntros "Hwp" (Φ x) "Hα HΦ".
iApply (wp_frame_wand with "HΦ"). iApply "Hwp".
iAuIntro. iAaccIntro with "Hα"; first by eauto. iIntros (y) "Hβ !>".
(* FIXME: Using ssreflect rewrite does not work, see Coq bug #7773. *)
rewrite ->!tele_app_bind. iIntros (z) "Hpost HΦ". iApply ("HΦ" with "Hβ Hpost").
Qed.
(** This version matches the Texan triple, i.e., with a later in front of the
[(∀.. y, β x y -∗ Φ (f x y))]. *)
Lemma atomic_wp_seq_step e E α β POST f :
TCEq (to_val e) None →
atomic_wp e E α β POST f -∗
∀ Φ, ∀.. x, α x -∗ ▷ (∀.. y, β x y -∗ ∀.. z, POST x y z -∗? Φ (f x y z)) -∗ WP e {{ Φ }}.
Proof.
iIntros (?) "H"; iIntros (Φ x) "Hα HΦ".
iApply (wp_step_fupd _ _ ⊤ _ (∀.. y : TB, _)
with "[$HΦ //]"); first done.
iApply (atomic_wp_seq with "H Hα").
iIntros "%y Hβ %z Hpost HΦ". iApply ("HΦ" with "Hβ Hpost").
Qed.
(* Sequential triples with the empty mask for a physically atomic [e] are atomic. *)
Lemma atomic_seq_wp_atomic e E α β POST f `{!Atomic WeaklyAtomic e} :
(∀ Φ, ∀.. x, α x -∗ (∀.. y, β x y -∗ ∀.. z, POST x y z -∗? Φ (f x y z)) -∗ WP e @ ∅ {{ Φ }}) -∗
atomic_wp e E α β POST f.
Proof.
iIntros "Hwp" (Φ) "AU". iMod "AU" as (x) "[Hα [_ Hclose]]".
iApply ("Hwp" with "Hα"). iIntros "%y Hβ %z Hpost".
iMod ("Hclose" with "Hβ") as "HΦ".
rewrite ->!tele_app_bind. iApply "HΦ". done.
Qed.
(** Sequential triples with a persistent precondition and no initial quantifier
are atomic. *)
Lemma persistent_seq_wp_atomic e E (α : [tele] → iProp) (β : [tele] → TB → iProp)
(POST : [tele] → TB → TP → option iProp) (f : [tele] → TB → TP → val Λ)
{HP : Persistent (α [tele_arg])} :
(∀ Φ, α [tele_arg] -∗ (∀.. y, β [tele_arg] y -∗ ∀.. z, POST [tele_arg] y z -∗? Φ (f [tele_arg] y z)) -∗ WP e {{ Φ }}) -∗
atomic_wp e E α β POST f.
Proof.
simpl in HP. iIntros "Hwp" (Φ) "HΦ". iApply fupd_wp.
iMod ("HΦ") as "[#Hα [Hclose _]]". iMod ("Hclose" with "Hα") as "HΦ".
iApply wp_fupd. iApply ("Hwp" with "Hα"). iIntros "!> %y Hβ %z Hpost".
iMod ("HΦ") as "[_ [_ Hclose]]". iMod ("Hclose" with "Hβ") as "HΦ".
(* FIXME: Using ssreflect rewrite does not work, see Coq bug #7773. *)
rewrite ->!tele_app_bind. iApply "HΦ". done.
Qed.
Lemma atomic_wp_mask_weaken e E1 E2 α β POST f :
E1 ⊆ E2 → atomic_wp e E1 α β POST f -∗ atomic_wp e E2 α β POST f.
Proof.
iIntros (HE) "Hwp". iIntros (Φ) "AU". iApply "Hwp".
iApply atomic_update_mask_weaken; last done. set_solver.
Qed.
(** We can open invariants around atomic triples.
(Just for demonstration purposes; we always use [iInv] in proofs.) *)
Lemma atomic_wp_inv e E α β POST f N I :
↑N ⊆ E →
atomic_wp e (E ∖ ↑N) (λ.. x, ▷ I ∗ α x) (λ.. x y, ▷ I ∗ β x y) POST f -∗
inv N I -∗ atomic_wp e E α β POST f.
Proof.
intros ?. iIntros "Hwp #Hinv" (Φ) "AU". iApply "Hwp". iAuIntro.
iInv N as "HI". iApply (aacc_aupd with "AU"); first solve_ndisj.
iIntros (x) "Hα". iAaccIntro with "[HI Hα]"; rewrite ->!tele_app_bind; first by iFrame.
- (* abort *)
iIntros "[HI $]". by eauto with iFrame.
- (* commit *)
iIntros (y). rewrite ->!tele_app_bind. iIntros "[HI Hβ]". iRight.
iExists y. rewrite ->!tele_app_bind. by eauto with iFrame.
Qed.
End lemmas.
|