File: weakestpre.v

package info (click to toggle)
coq-iris 4.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,116 kB
  • sloc: python: 130; makefile: 61; sh: 28; sed: 2
file content (505 lines) | stat: -rw-r--r-- 23,603 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
From iris.proofmode Require Import base proofmode classes.
From iris.base_logic.lib Require Export fancy_updates.
From iris.program_logic Require Export language.
(* FIXME: If we import iris.bi.weakestpre earlier texan triples do not
   get pretty-printed correctly. *)
From iris.bi Require Export weakestpre.
From iris.prelude Require Import options.
Import uPred.

Class irisGS_gen (hlc : has_lc) (Λ : language) (Σ : gFunctors) := IrisG {
  #[global] iris_invGS :: invGS_gen hlc Σ;

  (** The state interpretation is an invariant that should hold in
  between each step of reduction. Here [Λstate] is the global state,
  the first [nat] is the number of steps already performed by the
  program, [list (observation Λ)] are the remaining observations, and the
  last [nat] is the number of forked-off threads (not the total number
  of threads, which is one higher because there is always a main
  thread). *)
  state_interp : state Λ → nat → list (observation Λ) → nat → iProp Σ;

  (** A fixed postcondition for any forked-off thread. For most languages, e.g.
  heap_lang, this will simply be [True]. However, it is useful if one wants to
  keep track of resources precisely, as in e.g. Iron. *)
  fork_post : val Λ → iProp Σ;

  (** The number of additional logical steps (i.e., later modality in the
  definition of WP) and later credits per physical step is
  [S (num_laters_per_step ns)], where [ns] is the number of physical steps
  executed so far. We add one to [num_laters_per_step] to ensure that there
  is always at least one later and later credit for each physical step. *)
  num_laters_per_step : nat → nat;

  (** When performing pure steps, the state interpretation needs to be
  adapted for the change in the [ns] parameter.

  Note that we use an empty-mask fancy update here. We could also use
  a basic update or a bare magic wand, the expressiveness of the
  framework would be the same. If we removed the modality here, then
  the client would have to include the modality it needs as part of
  the definition of [state_interp]. Since adding the modality as part
  of the definition [state_interp_mono] does not significantly
  complicate the formalization in Iris, we prefer simplifying the
  client. *)
  state_interp_mono σ ns κs nt:
    state_interp σ ns κs nt ⊢ |={∅}=> state_interp σ (S ns) κs nt
}.
Global Opaque iris_invGS.
Global Arguments IrisG {hlc Λ Σ}.

Notation irisGS := (irisGS_gen HasLc).

(** The predicate we take the fixpoint of in order to define the WP. *)
(** In the step case, we both provide [S (num_laters_per_step ns)]
  later credits, as well as an iterated update modality that allows
  stripping as many laters, where [ns] is the number of steps already taken.
  We have both as each of these provides distinct advantages:
  - Later credits do not have to be used right away, but can be kept to
    eliminate laters at a later point.
  - The step-taking update composes well in parallel: we can independently
    compose two clients who want to eliminate their laters for the same
    physical step, which is not possible with later credits, as they
    can only be used by exactly one client.
  - The step-taking update can even be used by clients that opt out of
    later credits, e.g. because they use [BiFUpdPlainly]. *)
Definition wp_pre `{!irisGS_gen hlc Λ Σ} (s : stuckness)
    (wp : coPset -d> expr Λ -d> (val Λ -d> iPropO Σ) -d> iPropO Σ) :
    coPset -d> expr Λ -d> (val Λ -d> iPropO Σ) -d> iPropO Σ := λ E e1 Φ,
  match to_val e1 with
  | Some v => |={E}=> Φ v
  | None => ∀ σ1 ns κ κs nt,
     state_interp σ1 ns (κ ++ κs) nt ={E,∅}=∗
       ⌜if s is NotStuck then reducible e1 σ1 else True⌝ ∗
       ∀ e2 σ2 efs, ⌜prim_step e1 σ1 κ e2 σ2 efs⌝ -∗
         £ (S (num_laters_per_step ns))
         ={∅}▷=∗^(S $ num_laters_per_step ns) |={∅,E}=>
         state_interp σ2 (S ns) κs (length efs + nt) ∗
         wp E e2 Φ ∗
         [∗ list] i ↦ ef ∈ efs, wp ⊤ ef fork_post
  end%I.

Local Instance wp_pre_contractive `{!irisGS_gen hlc Λ Σ} s : Contractive (wp_pre s).
Proof.
  rewrite /wp_pre /= => n wp wp' Hwp E e1 Φ.
  do 25 (f_contractive || f_equiv).
  (* FIXME : simplify this proof once we have a good definition and a
     proper instance for step_fupdN. *)
  induction num_laters_per_step as [|k IH]; simpl.
  - repeat (f_contractive || f_equiv); apply Hwp.
  - by rewrite -IH.
Qed.

Local Definition wp_def `{!irisGS_gen hlc Λ Σ} : Wp (iProp Σ) (expr Λ) (val Λ) stuckness :=
  λ s : stuckness, fixpoint (wp_pre s).
Local Definition wp_aux : seal (@wp_def). Proof. by eexists. Qed.
Definition wp' := wp_aux.(unseal).
Global Arguments wp' {hlc Λ Σ _}.
Global Existing Instance wp'.
Local Lemma wp_unseal `{!irisGS_gen hlc Λ Σ} : wp = @wp_def hlc Λ Σ _.
Proof. rewrite -wp_aux.(seal_eq) //. Qed.

Section wp.
Context `{!irisGS_gen hlc Λ Σ}.
Implicit Types s : stuckness.
Implicit Types P : iProp Σ.
Implicit Types Φ : val Λ → iProp Σ.
Implicit Types v : val Λ.
Implicit Types e : expr Λ.

(* Weakest pre *)
Lemma wp_unfold s E e Φ :
  WP e @ s; E {{ Φ }} ⊣⊢ wp_pre s (wp (PROP:=iProp Σ) s) E e Φ.
Proof. rewrite wp_unseal. apply (fixpoint_unfold (wp_pre s)). Qed.

Global Instance wp_ne s E e n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (wp (PROP:=iProp Σ) s E e).
Proof.
  revert e. induction (lt_wf n) as [n _ IH]=> e Φ Ψ HΦ.
  rewrite !wp_unfold /wp_pre /=.
  (* FIXME: figure out a way to properly automate this proof *)
  (* FIXME: reflexivity, as being called many times by f_equiv and f_contractive
  is very slow here *)
  do 25 (f_contractive || f_equiv).
  (* FIXME : simplify this proof once we have a good definition and a
     proper instance for step_fupdN. *)
  induction num_laters_per_step as [|k IHk]; simpl; last by rewrite IHk.
  rewrite IH; [done|lia|]. intros v. eapply dist_le; [apply HΦ|lia].
Qed.
Global Instance wp_proper s E e :
  Proper (pointwise_relation _ (≡) ==> (≡)) (wp (PROP:=iProp Σ) s E e).
Proof.
  by intros Φ Φ' ?; apply equiv_dist=>n; apply wp_ne=>v; apply equiv_dist.
Qed.
Global Instance wp_contractive s E e n :
  TCEq (to_val e) None →
  Proper (pointwise_relation _ (dist_later n) ==> dist n) (wp (PROP:=iProp Σ) s E e).
Proof.
  intros He Φ Ψ HΦ. rewrite !wp_unfold /wp_pre He /=.
  do 24 (f_contractive || f_equiv).
  (* FIXME : simplify this proof once we have a good definition and a
     proper instance for step_fupdN. *)
  induction num_laters_per_step as [|k IHk]; simpl; last by rewrite IHk.
  by do 4 f_equiv.
Qed.

Lemma wp_value_fupd' s E Φ v : WP of_val v @ s; E {{ Φ }} ⊣⊢ |={E}=> Φ v.
Proof. rewrite wp_unfold /wp_pre to_of_val. auto. Qed.

Lemma wp_strong_mono s1 s2 E1 E2 e Φ Ψ :
  s1 ⊑ s2 → E1 ⊆ E2 →
  WP e @ s1; E1 {{ Φ }} -∗ (∀ v, Φ v ={E2}=∗ Ψ v) -∗ WP e @ s2; E2 {{ Ψ }}.
Proof.
  iIntros (? HE) "H HΦ". iLöb as "IH" forall (e E1 E2 HE Φ Ψ).
  rewrite !wp_unfold /wp_pre /=.
  destruct (to_val e) as [v|] eqn:?.
  { iApply ("HΦ" with "[> -]"). by iApply (fupd_mask_mono E1 _). }
  iIntros (σ1 ns κ κs nt) "Hσ".
  iMod (fupd_mask_subseteq E1) as "Hclose"; first done.
  iMod ("H" with "[$]") as "[% H]".
  iModIntro. iSplit; [by destruct s1, s2|]. iIntros (e2 σ2 efs Hstep) "Hcred".
  iMod ("H" with "[//] Hcred") as "H". iIntros "!> !>".  iMod "H". iModIntro.
  iApply (step_fupdN_wand with "[H]"); first by iApply "H".
  iIntros ">($ & H & Hefs)". iMod "Hclose" as "_". iModIntro. iSplitR "Hefs".
  - iApply ("IH" with "[//] H HΦ").
  - iApply (big_sepL_impl with "Hefs"); iIntros "!>" (k ef _).
    iIntros "H". iApply ("IH" with "[] H"); auto.
Qed.

Lemma fupd_wp s E e Φ : (|={E}=> WP e @ s; E {{ Φ }}) ⊢ WP e @ s; E {{ Φ }}.
Proof.
  rewrite wp_unfold /wp_pre. iIntros "H". destruct (to_val e) as [v|] eqn:?.
  { by iMod "H". }
  iIntros (σ1 ns κ κs nt) "Hσ1". iMod "H". by iApply "H".
Qed.
Lemma wp_fupd s E e Φ : WP e @ s; E {{ v, |={E}=> Φ v }} ⊢ WP e @ s; E {{ Φ }}.
Proof. iIntros "H". iApply (wp_strong_mono s s E with "H"); auto. Qed.

Lemma wp_atomic s E1 E2 e Φ `{!Atomic (stuckness_to_atomicity s) e} :
  (|={E1,E2}=> WP e @ s; E2 {{ v, |={E2,E1}=> Φ v }}) ⊢ WP e @ s; E1 {{ Φ }}.
Proof.
  iIntros "H". rewrite !wp_unfold /wp_pre.
  destruct (to_val e) as [v|] eqn:He.
  { by iDestruct "H" as ">>> $". }
  iIntros (σ1 ns κ κs nt) "Hσ". iMod "H". iMod ("H" $! σ1 with "Hσ") as "[$ H]".
  iModIntro. iIntros (e2 σ2 efs Hstep) "Hcred".
  iApply (step_fupdN_wand with "(H [//] Hcred)").
  iIntros ">(Hσ & H & Hefs)". destruct s.
  - rewrite !wp_unfold /wp_pre. destruct (to_val e2) as [v2|] eqn:He2.
    + iDestruct "H" as ">> $". by iFrame.
    + iMod ("H" $! _ _ [] with "[$]") as "[H _]". iDestruct "H" as %(? & ? & ? & ? & ?).
      by edestruct (atomic _ _ _ _ _ Hstep).
  - destruct (atomic _ _ _ _ _ Hstep) as [v <-%of_to_val].
    rewrite wp_value_fupd'. iMod "H" as ">H".
    iModIntro. iFrame "Hσ Hefs". by iApply wp_value_fupd'.
Qed.

(** This lemma gives us access to the later credits that are generated in each step,
  assuming that we have instantiated [num_laters_per_step] with a non-trivial (e.g. linear)
  function.
  This lemma can be used to provide a "regeneration" mechanism for later credits.
  [state_interp] will have to be defined in a way that involves the required regneration
  tokens. TODO: point to an example of how this is used.

  In detail, a client can use this lemma as follows:
  * the client obtains the state interpretation [state_interp _ ns _ _],
  * it uses some ghost state wired up to the interpretation to know that
    [ns = k + m], and update the state interpretation to [state_interp _ m _ _],
  * _after_ [e] has finally stepped, we get [num_laters_per_step k] later credits
    that we can use to prove [P] in the postcondition, and we have to update
    the state interpretation from [state_interp _ (S m) _ _] to
    [state_interp _ (S ns) _ _] again. *)
Lemma wp_credit_access s E e Φ P :
  TCEq (to_val e) None →
  (∀ m k, num_laters_per_step m + num_laters_per_step k ≤ num_laters_per_step (m + k)) →
  (∀ σ1 ns κs nt, state_interp σ1 ns κs nt ={E}=∗
    ∃ k m, state_interp σ1 m κs nt ∗ ⌜ns = (m + k)%nat⌝ ∗
    (∀ nt σ2 κs, £ (num_laters_per_step k) -∗ state_interp σ2 (S m) κs nt ={E}=∗
      state_interp σ2 (S ns) κs nt ∗ P)) -∗
  WP e @ s; E {{ v, P ={E}=∗ Φ v }} -∗
  WP e @ s; E {{ Φ }}.
Proof.
  rewrite !wp_unfold /wp_pre /=. iIntros (-> Htri) "Hupd Hwp".
  iIntros (σ1 ns κ κs nt) "Hσ1".
  iMod ("Hupd" with "Hσ1") as (k m) "(Hσ1 & -> & Hpost)".
  iMod ("Hwp" with "Hσ1") as "[$ Hwp]". iModIntro.
  iIntros (e2 σ2 efs Hstep) "Hc".
  iDestruct "Hc" as "[Hone Hc]".
  iPoseProof (lc_weaken with "Hc") as "Hc"; first apply Htri.
  iDestruct "Hc" as "[Hm Hk]".
  iCombine "Hone Hm" as "Hm".
  iApply (step_fupd_wand with "(Hwp [//] Hm)"). iIntros "Hwp".
  iApply (step_fupdN_le (num_laters_per_step m)); [ | done | ].
  { etrans; last apply Htri. lia. }
  iApply (step_fupdN_wand with "Hwp"). iIntros ">(SI & Hwp & $)".
  iMod ("Hpost" with "Hk SI") as "[$ HP]". iModIntro.
  iApply (wp_strong_mono with "Hwp"); [by auto..|].
  iIntros (v) "HΦ". iApply ("HΦ" with "HP").
Qed.

(** In this stronger version of [wp_step_fupdN], the masks in the
   step-taking fancy update are a bit weird and somewhat difficult to
   use in practice. Hence, we prove it for the sake of completeness,
   but [wp_step_fupdN] is just a little bit weaker, suffices in
   practice and is easier to use.

   See the statement of [wp_step_fupdN] below to understand the use of
   ordinary conjunction here. *)
Lemma wp_step_fupdN_strong n s E1 E2 e P Φ :
  TCEq (to_val e) None → E2 ⊆ E1 →
  (∀ σ ns κs nt, state_interp σ ns κs nt
       ={E1,∅}=∗ ⌜n ≤ S (num_laters_per_step ns)⌝) ∧
  ((|={E1,E2}=> |={∅}▷=>^n |={E2,E1}=> P) ∗
    WP e @ s; E2 {{ v, P ={E1}=∗ Φ v }}) -∗
  WP e @ s; E1 {{ Φ }}.
Proof.
  destruct n as [|n].
  { iIntros (_ ?) "/= [_ [HP Hwp]]".
    iApply (wp_strong_mono with "Hwp"); [done..|].
    iIntros (v) "H". iApply ("H" with "[>HP]"). by do 2 iMod "HP". }
  rewrite !wp_unfold /wp_pre /=. iIntros (-> ?) "H".
  iIntros (σ1 ns κ κs nt) "Hσ".
  destruct (decide (n ≤ num_laters_per_step ns)) as [Hn|Hn]; first last.
  { iDestruct "H" as "[Hn _]". iMod ("Hn" with "Hσ") as %?. lia. }
  iDestruct "H" as "[_ [>HP Hwp]]". iMod ("Hwp" with "[$]") as "[$ H]". iMod "HP".
  iIntros "!>" (e2 σ2 efs Hstep) "Hcred". iMod ("H" $! e2 σ2 efs with "[% //] Hcred") as "H".
  iIntros "!>!>". iMod "H". iMod "HP". iModIntro.
  revert n Hn. generalize (num_laters_per_step ns)=>n0 n Hn.
  iInduction n as [|n IH] forall (n0 Hn).
  - iApply (step_fupdN_wand with "H"). iIntros ">($ & Hwp & $)". iMod "HP".
    iModIntro. iApply (wp_strong_mono with "Hwp"); [done|set_solver|].
    iIntros (v) "HΦ". iApply ("HΦ" with "HP").
  - destruct n0 as [|n0]; [lia|]=>/=. iMod "HP". iMod "H". iIntros "!> !>".
    iMod "HP". iMod "H". iModIntro. iApply ("IH" with "[] HP H").
    auto with lia.
Qed.

Lemma wp_bind K `{!LanguageCtx K} s E e Φ :
  WP e @ s; E {{ v, WP K (of_val v) @ s; E {{ Φ }} }} ⊢ WP K e @ s; E {{ Φ }}.
Proof.
  iIntros "H". iLöb as "IH" forall (E e Φ). rewrite wp_unfold /wp_pre.
  destruct (to_val e) as [v|] eqn:He.
  { apply of_to_val in He as <-. by iApply fupd_wp. }
  rewrite wp_unfold /wp_pre fill_not_val /=; [|done].
  iIntros (σ1 step κ κs n) "Hσ". iMod ("H" with "[$]") as "[% H]".
  iModIntro; iSplit.
  { destruct s; eauto using reducible_fill. }
  iIntros (e2 σ2 efs Hstep) "Hcred".
  destruct (fill_step_inv e σ1 κ e2 σ2 efs) as (e2'&->&?); auto.
  iMod ("H" $! e2' σ2 efs with "[//] Hcred") as "H". iIntros "!>!>".
  iMod "H". iModIntro. iApply (step_fupdN_wand with "H"). iIntros "H".
  iMod "H" as "($ & H & $)". iModIntro. by iApply "IH".
Qed.

Lemma wp_bind_inv K `{!LanguageCtx K} s E e Φ :
  WP K e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ v, WP K (of_val v) @ s; E {{ Φ }} }}.
Proof.
  iIntros "H". iLöb as "IH" forall (E e Φ). rewrite !wp_unfold /wp_pre /=.
  destruct (to_val e) as [v|] eqn:He.
  { apply of_to_val in He as <-. by rewrite !wp_unfold /wp_pre. }
  rewrite fill_not_val //.
  iIntros (σ1 ns κ κs nt) "Hσ". iMod ("H" with "[$]") as "[% H]".
  iModIntro; iSplit.
  { destruct s; eauto using reducible_fill_inv. }
  iIntros (e2 σ2 efs Hstep) "Hcred".
  iMod ("H" $! _ _ _ with "[] Hcred") as "H"; first eauto using fill_step.
  iIntros "!> !>". iMod "H". iModIntro. iApply (step_fupdN_wand with "H").
  iIntros "H". iMod "H" as "($ & H & $)". iModIntro. by iApply "IH".
Qed.

(** * Derived rules *)
Lemma wp_mono s E e Φ Ψ : (∀ v, Φ v ⊢ Ψ v) → WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ Ψ }}.
Proof.
  iIntros (HΦ) "H"; iApply (wp_strong_mono with "H"); auto.
  iIntros (v) "?". by iApply HΦ.
Qed.
Lemma wp_stuck_mono s1 s2 E e Φ :
  s1 ⊑ s2 → WP e @ s1; E {{ Φ }} ⊢ WP e @ s2; E {{ Φ }}.
Proof. iIntros (?) "H". iApply (wp_strong_mono with "H"); auto. Qed.
Lemma wp_stuck_weaken s E e Φ :
  WP e @ s; E {{ Φ }} ⊢ WP e @ E ?{{ Φ }}.
Proof. apply wp_stuck_mono. by destruct s. Qed.
Lemma wp_mask_mono s E1 E2 e Φ : E1 ⊆ E2 → WP e @ s; E1 {{ Φ }} ⊢ WP e @ s; E2 {{ Φ }}.
Proof. iIntros (?) "H"; iApply (wp_strong_mono with "H"); auto. Qed.
Global Instance wp_mono' s E e :
  Proper (pointwise_relation _ (⊢) ==> (⊢)) (wp (PROP:=iProp Σ) s E e).
Proof. by intros Φ Φ' ?; apply wp_mono. Qed.
Global Instance wp_flip_mono' s E e :
  Proper (pointwise_relation _ (flip (⊢)) ==> (flip (⊢))) (wp (PROP:=iProp Σ) s E e).
Proof. by intros Φ Φ' ?; apply wp_mono. Qed.

Lemma wp_value_fupd s E Φ e v : IntoVal e v → WP e @ s; E {{ Φ }} ⊣⊢ |={E}=> Φ v.
Proof. intros <-. by apply wp_value_fupd'. Qed.
Lemma wp_value' s E Φ v : Φ v ⊢ WP (of_val v) @ s; E {{ Φ }}.
Proof. rewrite wp_value_fupd'. auto. Qed.
Lemma wp_value s E Φ e v : IntoVal e v → Φ v ⊢ WP e @ s; E {{ Φ }}.
Proof. intros <-. apply wp_value'. Qed.

Lemma wp_frame_l s E e Φ R : R ∗ WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ v, R ∗ Φ v }}.
Proof. iIntros "[? H]". iApply (wp_strong_mono with "H"); auto with iFrame. Qed.
Lemma wp_frame_r s E e Φ R : WP e @ s; E {{ Φ }} ∗ R ⊢ WP e @ s; E {{ v, Φ v ∗ R }}.
Proof. iIntros "[H ?]". iApply (wp_strong_mono with "H"); auto with iFrame. Qed.

(** This lemma states that if we can prove that [n] laters are used in
   the current physical step, then one can perform an n-steps fancy
   update during that physical step. The resources needed to prove the
   bound on [n] are not used up: they can be reused in the proof of
   the WP or in the proof of the n-steps fancy update. In order to
   describe this unusual resource flow, we use ordinary conjunction as
   a premise. *)
Lemma wp_step_fupdN n s E1 E2 e P Φ :
  TCEq (to_val e) None → E2 ⊆ E1 →
  (∀ σ ns κs nt, state_interp σ ns κs nt
       ={E1,∅}=∗ ⌜n ≤ S (num_laters_per_step ns)⌝) ∧
  ((|={E1∖E2,∅}=> |={∅}▷=>^n |={∅,E1∖E2}=> P) ∗
    WP e @ s; E2 {{ v, P ={E1}=∗ Φ v }}) -∗
  WP e @ s; E1 {{ Φ }}.
Proof.
  iIntros (??) "H". iApply (wp_step_fupdN_strong with "[H]"); [done|].
  iApply (and_mono_r with "H"). apply sep_mono_l. iIntros "HP".
  iMod fupd_mask_subseteq_emptyset_difference as "H"; [|iMod "HP"]; [set_solver|].
  iMod "H" as "_". replace (E1 ∖ (E1 ∖ E2)) with E2; last first.
  { set_unfold=>x. destruct (decide (x ∈ E2)); naive_solver. }
  iModIntro. iApply (step_fupdN_wand with "HP"). iIntros "H".
  iApply fupd_mask_frame; [|iMod "H"; iModIntro]; [set_solver|].
  by rewrite difference_empty_L (comm_L (∪)) -union_difference_L.
Qed.
Lemma wp_step_fupd s E1 E2 e P Φ :
  TCEq (to_val e) None → E2 ⊆ E1 →
  (|={E1}[E2]▷=> P) -∗ WP e @ s; E2 {{ v, P ={E1}=∗ Φ v }} -∗ WP e @ s; E1 {{ Φ }}.
Proof.
  iIntros (??) "HR H".
  iApply (wp_step_fupdN_strong 1 _ E1 E2 with "[-]"); [done|..]. iSplit.
  - iIntros (????) "_". iMod (fupd_mask_subseteq ∅) as "_"; [set_solver+|].
    auto with lia.
  - iFrame "H". iMod "HR" as "$". auto.
Qed.

Lemma wp_frame_step_l s E1 E2 e Φ R :
  TCEq (to_val e) None → E2 ⊆ E1 →
  (|={E1}[E2]▷=> R) ∗ WP e @ s; E2 {{ Φ }} ⊢ WP e @ s; E1 {{ v, R ∗ Φ v }}.
Proof.
  iIntros (??) "[Hu Hwp]". iApply (wp_step_fupd with "Hu"); try done.
  iApply (wp_mono with "Hwp"). by iIntros (?) "$$".
Qed.
Lemma wp_frame_step_r s E1 E2 e Φ R :
  TCEq (to_val e) None → E2 ⊆ E1 →
  WP e @ s; E2 {{ Φ }} ∗ (|={E1}[E2]▷=> R) ⊢ WP e @ s; E1 {{ v, Φ v ∗ R }}.
Proof.
  rewrite [(WP _ @ _; _ {{ _ }} ∗ _)%I]comm; setoid_rewrite (comm _ _ R).
  apply wp_frame_step_l.
Qed.
Lemma wp_frame_step_l' s E e Φ R :
  TCEq (to_val e) None → ▷ R ∗ WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ v, R ∗ Φ v }}.
Proof. iIntros (?) "[??]". iApply (wp_frame_step_l s E E); try iFrame; eauto. Qed.
Lemma wp_frame_step_r' s E e Φ R :
  TCEq (to_val e) None → WP e @ s; E {{ Φ }} ∗ ▷ R ⊢ WP e @ s; E {{ v, Φ v ∗ R }}.
Proof. iIntros (?) "[??]". iApply (wp_frame_step_r s E E); try iFrame; eauto. Qed.

Lemma wp_wand s E e Φ Ψ :
  WP e @ s; E {{ Φ }} -∗ (∀ v, Φ v -∗ Ψ v) -∗ WP e @ s; E {{ Ψ }}.
Proof.
  iIntros "Hwp H". iApply (wp_strong_mono with "Hwp"); auto.
  iIntros (?) "?". by iApply "H".
Qed.
Lemma wp_wand_l s E e Φ Ψ :
  (∀ v, Φ v -∗ Ψ v) ∗ WP e @ s; E {{ Φ }} ⊢ WP e @ s; E {{ Ψ }}.
Proof. iIntros "[H Hwp]". iApply (wp_wand with "Hwp H"). Qed.
Lemma wp_wand_r s E e Φ Ψ :
  WP e @ s; E {{ Φ }} ∗ (∀ v, Φ v -∗ Ψ v) ⊢ WP e @ s; E {{ Ψ }}.
Proof. iIntros "[Hwp H]". iApply (wp_wand with "Hwp H"). Qed.
Lemma wp_frame_wand s E e Φ R :
  R -∗ WP e @ s; E {{ v, R -∗ Φ v }} -∗ WP e @ s; E {{ Φ }}.
Proof.
  iIntros "HR HWP". iApply (wp_wand with "HWP").
  iIntros (v) "HΦ". by iApply "HΦ".
Qed.
End wp.

(** Proofmode class instances *)
Section proofmode_classes.
  Context `{!irisGS_gen hlc Λ Σ}.
  Implicit Types P Q : iProp Σ.
  Implicit Types Φ : val Λ → iProp Σ.
  Implicit Types v : val Λ.
  Implicit Types e : expr Λ.

  Global Instance frame_wp p s E e R Φ Ψ :
    (FrameInstantiateExistDisabled → ∀ v, Frame p R (Φ v) (Ψ v)) →
    Frame p R (WP e @ s; E {{ Φ }}) (WP e @ s; E {{ Ψ }}) | 2.
  Proof.
    rewrite /Frame=> HR. rewrite wp_frame_l. apply wp_mono, HR. constructor.
  Qed.

  Global Instance is_except_0_wp s E e Φ : IsExcept0 (WP e @ s; E {{ Φ }}).
  Proof. by rewrite /IsExcept0 -{2}fupd_wp -except_0_fupd -fupd_intro. Qed.

  Global Instance elim_modal_bupd_wp p s E e P Φ :
    ElimModal True p false (|==> P) P (WP e @ s; E {{ Φ }}) (WP e @ s; E {{ Φ }}).
  Proof.
    by rewrite /ElimModal intuitionistically_if_elim
      (bupd_fupd E) fupd_frame_r wand_elim_r fupd_wp.
  Qed.

  Global Instance elim_modal_fupd_wp p s E e P Φ :
    ElimModal True p false (|={E}=> P) P (WP e @ s; E {{ Φ }}) (WP e @ s; E {{ Φ }}).
  Proof.
    by rewrite /ElimModal intuitionistically_if_elim
      fupd_frame_r wand_elim_r fupd_wp.
  Qed.
  (** Error message instance for non-mask-changing view shifts.
  Also uses a slightly different error: we cannot apply [fupd_mask_subseteq]
  if [e] is not atomic, so we tell the user to first add a leading [fupd]
  and then change the mask of that. *)
  Global Instance elim_modal_fupd_wp_wrong_mask p s E1 E2 e P Φ :
    ElimModal
      (pm_error "Goal and eliminated modality must have the same mask.
Use [iApply fupd_wp; iMod (fupd_mask_subseteq E2)] to adjust the mask of your goal to [E2]")
      p false
      (|={E2}=> P) False (WP e @ s; E1 {{ Φ }}) False | 100.
  Proof. intros []. Qed.

  Global Instance elim_modal_fupd_wp_atomic p s E1 E2 e P Φ :
    ElimModal (Atomic (stuckness_to_atomicity s) e) p false
            (|={E1,E2}=> P) P
            (WP e @ s; E1 {{ Φ }}) (WP e @ s; E2 {{ v, |={E2,E1}=> Φ v }})%I | 100.
  Proof.
    intros ?. by rewrite intuitionistically_if_elim
      fupd_frame_r wand_elim_r wp_atomic.
  Qed.
  (** Error message instance for mask-changing view shifts. *)
  Global Instance elim_modal_fupd_wp_atomic_wrong_mask p s E1 E2 E2' e P Φ :
    ElimModal
      (pm_error "Goal and eliminated modality must have the same mask.
Use [iMod (fupd_mask_subseteq E2)] to adjust the mask of your goal to [E2]")
      p false
      (|={E2,E2'}=> P) False
      (WP e @ s; E1 {{ Φ }}) False | 200.
  Proof. intros []. Qed.

  Global Instance add_modal_fupd_wp s E e P Φ :
    AddModal (|={E}=> P) P (WP e @ s; E {{ Φ }}).
  Proof. by rewrite /AddModal fupd_frame_r wand_elim_r fupd_wp. Qed.

  Global Instance elim_acc_wp_atomic {X} E1 E2 α β γ e s Φ :
    ElimAcc (X:=X) (Atomic (stuckness_to_atomicity s) e)
            (fupd E1 E2) (fupd E2 E1)
            α β γ (WP e @ s; E1 {{ Φ }})
            (λ x, WP e @ s; E2 {{ v, |={E2}=> β x ∗ (γ x -∗? Φ v) }})%I | 100.
  Proof.
    iIntros (?) "Hinner >Hacc". iDestruct "Hacc" as (x) "[Hα Hclose]".
    iApply (wp_wand with "(Hinner Hα)").
    iIntros (v) ">[Hβ HΦ]". iApply "HΦ". by iApply "Hclose".
  Qed.

  Global Instance elim_acc_wp_nonatomic {X} E α β γ e s Φ :
    ElimAcc (X:=X) True (fupd E E) (fupd E E)
            α β γ (WP e @ s; E {{ Φ }})
            (λ x, WP e @ s; E {{ v, |={E}=> β x ∗ (γ x -∗? Φ v) }})%I.
  Proof.
    iIntros (_) "Hinner >Hacc". iDestruct "Hacc" as (x) "[Hα Hclose]".
    iApply wp_fupd.
    iApply (wp_wand with "(Hinner Hα)").
    iIntros (v) ">[Hβ HΦ]". iApply "HΦ". by iApply "Hclose".
  Qed.
End proofmode_classes.