1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
|
From iris.bi Require Export monpred.
From iris.bi Require Import plainly.
From iris.proofmode Require Import proofmode classes_make modality_instances.
From iris.prelude Require Import options.
Class MakeMonPredAt {I : biIndex} {PROP : bi} (i : I)
(P : monPred I PROP) (π : PROP) :=
make_monPred_at : P i β£β’ π.
Global Arguments MakeMonPredAt {_ _} _ _%_I _%_I.
(** Since [MakeMonPredAt] is used by [AsEmpValid] to import lemmas into the
proof mode, the index [I] and BI [PROP] often contain evars. Hence, it is
important to use the mode [!] also for the first two arguments. *)
Global Hint Mode MakeMonPredAt ! ! - ! - : typeclass_instances.
Class IsBiIndexRel {I : biIndex} (i j : I) := is_bi_index_rel : i β j.
Global Hint Mode IsBiIndexRel + - - : typeclass_instances.
Global Instance is_bi_index_rel_refl {I : biIndex} (i : I) : IsBiIndexRel i i | 0.
Proof. by rewrite /IsBiIndexRel. Qed.
Global Hint Extern 1 (IsBiIndexRel _ _) => unfold IsBiIndexRel; assumption
: typeclass_instances.
(** Frame [π‘] into the goal [monPred_at P i] and determine the remainder [π ].
Used when framing encounters a monPred_at in the goal. *)
Class FrameMonPredAt {I : biIndex} {PROP : bi} (p : bool) (i : I)
(π‘ : PROP) (P : monPred I PROP) (π : PROP) :=
frame_monPred_at : β‘?p π‘ β π β’ P i.
Global Arguments FrameMonPredAt {_ _} _ _ _%_I _%_I _%_I.
Global Hint Mode FrameMonPredAt + + + - ! ! - : typeclass_instances.
Section modalities.
Context {I : biIndex} {PROP : bi}.
Lemma modality_objectively_mixin :
modality_mixin (@monPred_objectively I PROP)
(MIEnvFilter Objective) (MIEnvFilter Objective).
Proof.
split; simpl; split_and?; intros;
try select (TCDiag _ _ _) (fun H => destruct H);
eauto using bi.equiv_entails_1_2, objective_objectively,
monPred_objectively_mono, monPred_objectively_and,
monPred_objectively_sep_2 with typeclass_instances.
Qed.
Definition modality_objectively :=
Modality _ modality_objectively_mixin.
End modalities.
Section bi.
Context {I : biIndex} {PROP : bi}.
Local Notation monPredI := (monPredI I PROP).
Local Notation monPred := (monPred I PROP).
Local Notation MakeMonPredAt := (@MakeMonPredAt I PROP).
Implicit Types P Q R : monPred.
Implicit Types π π π‘ : PROP.
Implicit Types Ο : Prop.
Implicit Types i j : I.
Global Instance from_modal_objectively P :
FromModal True modality_objectively (<obj> P) (<obj> P) P | 1.
Proof. by rewrite /FromModal. Qed.
Global Instance from_modal_subjectively P :
FromModal True modality_id (<subj> P) (<subj> P) P | 1.
Proof. by rewrite /FromModal /= -monPred_subjectively_intro. Qed.
Global Instance from_modal_affinely_monPred_at Ο `(sel : A) P Q π i :
FromModal Ο modality_affinely sel P Q β
MakeMonPredAt i Q π β
FromModal Ο modality_affinely sel (P i) π | 0.
Proof.
rewrite /FromModal /MakeMonPredAt /==> HPQ <- ?.
by rewrite -HPQ // monPred_at_affinely.
Qed.
Global Instance from_modal_persistently_monPred_at Ο `(sel : A) P Q π i :
FromModal Ο modality_persistently sel P Q β
MakeMonPredAt i Q π β
FromModal Ο modality_persistently sel (P i) π | 0.
Proof.
rewrite /FromModal /MakeMonPredAt /==> HPQ <- ?.
by rewrite -HPQ // monPred_at_persistently.
Qed.
Global Instance from_modal_intuitionistically_monPred_at Ο `(sel : A) P Q π i :
FromModal Ο modality_intuitionistically sel P Q β
MakeMonPredAt i Q π β
FromModal Ο modality_intuitionistically sel (P i) π | 0.
Proof.
rewrite /FromModal /MakeMonPredAt /==> HPQ <- ?.
by rewrite -HPQ // monPred_at_affinely monPred_at_persistently.
Qed.
Global Instance from_modal_id_monPred_at Ο `(sel : A) P Q π i :
FromModal Ο modality_id sel P Q β MakeMonPredAt i Q π β
FromModal Ο modality_id sel (P i) π .
Proof. rewrite /FromModal /MakeMonPredAt=> HPQ <- ?. by rewrite -HPQ. Qed.
Global Instance make_monPred_at_pure Ο i : MakeMonPredAt i βΟβ βΟβ.
Proof. by rewrite /MakeMonPredAt monPred_at_pure. Qed.
Global Instance make_monPred_at_emp i : MakeMonPredAt i emp emp.
Proof. by rewrite /MakeMonPredAt monPred_at_emp. Qed.
Global Instance make_monPred_at_sep i P π Q π :
MakeMonPredAt i P π β MakeMonPredAt i Q π β
MakeMonPredAt i (P β Q) (π β π ).
Proof. by rewrite /MakeMonPredAt monPred_at_sep=><-<-. Qed.
Global Instance make_monPred_at_and i P π Q π :
MakeMonPredAt i P π β MakeMonPredAt i Q π β
MakeMonPredAt i (P β§ Q) (π β§ π ).
Proof. by rewrite /MakeMonPredAt monPred_at_and=><-<-. Qed.
Global Instance make_monPred_at_or i P π Q π :
MakeMonPredAt i P π β MakeMonPredAt i Q π β
MakeMonPredAt i (P β¨ Q) (π β¨ π ).
Proof. by rewrite /MakeMonPredAt monPred_at_or=><-<-. Qed.
Global Instance make_monPred_at_forall {A} i (Ξ¦ : A β monPred) (Ξ¨ : A β PROP) :
(β a, MakeMonPredAt i (Ξ¦ a) (Ξ¨ a)) β MakeMonPredAt i (β a, Ξ¦ a) (β a, Ξ¨ a).
Proof. rewrite /MakeMonPredAt monPred_at_forall=>H. by setoid_rewrite <- H. Qed.
Global Instance make_monPred_at_exists {A} i (Ξ¦ : A β monPred) (Ξ¨ : A β PROP) :
(β a, MakeMonPredAt i (Ξ¦ a) (Ξ¨ a)) β MakeMonPredAt i (β a, Ξ¦ a) (β a, Ξ¨ a).
Proof. rewrite /MakeMonPredAt monPred_at_exist=>H. by setoid_rewrite <- H. Qed.
Global Instance make_monPred_at_persistently i P π :
MakeMonPredAt i P π β MakeMonPredAt i (<pers> P) (<pers> π).
Proof. by rewrite /MakeMonPredAt monPred_at_persistently=><-. Qed.
Global Instance make_monPred_at_affinely i P π :
MakeMonPredAt i P π β MakeMonPredAt i (<affine> P) (<affine> π).
Proof. by rewrite /MakeMonPredAt monPred_at_affinely=><-. Qed.
Global Instance make_monPred_at_intuitionistically i P π :
MakeMonPredAt i P π β MakeMonPredAt i (β‘ P) (β‘ π).
Proof. by rewrite /MakeMonPredAt monPred_at_intuitionistically=><-. Qed.
Global Instance make_monPred_at_absorbingly i P π :
MakeMonPredAt i P π β MakeMonPredAt i (<absorb> P) (<absorb> π).
Proof. by rewrite /MakeMonPredAt monPred_at_absorbingly=><-. Qed.
Global Instance make_monPred_at_persistently_if i P π p :
MakeMonPredAt i P π β
MakeMonPredAt i (<pers>?p P) (<pers>?p π).
Proof. destruct p; simpl; apply _. Qed.
Global Instance make_monPred_at_affinely_if i P π p :
MakeMonPredAt i P π β
MakeMonPredAt i (<affine>?p P) (<affine>?p π).
Proof. destruct p; simpl; apply _. Qed.
Global Instance make_monPred_at_absorbingly_if i P π p :
MakeMonPredAt i P π β
MakeMonPredAt i (<absorb>?p P) (<absorb>?p π).
Proof. destruct p; simpl; apply _. Qed.
Global Instance make_monPred_at_intuitionistically_if i P π p :
MakeMonPredAt i P π β
MakeMonPredAt i (β‘?p P) (β‘?p π).
Proof. destruct p; simpl; apply _. Qed.
Global Instance make_monPred_at_embed i π : MakeMonPredAt i β‘πβ€ π.
Proof. by rewrite /MakeMonPredAt monPred_at_embed. Qed.
Global Instance make_monPred_at_in i j : MakeMonPredAt j (monPred_in i) βi β jβ.
Proof. by rewrite /MakeMonPredAt monPred_at_in. Qed.
Global Instance make_monPred_at_default i P : MakeMonPredAt i P (P i) | 100.
Proof. by rewrite /MakeMonPredAt. Qed.
Global Instance make_monPred_at_bupd `{!BiBUpd PROP} i P π :
MakeMonPredAt i P π β MakeMonPredAt i (|==> P) (|==> π).
Proof. by rewrite /MakeMonPredAt monPred_at_bupd=> <-. Qed.
Global Instance from_assumption_make_monPred_at_l p i j P π :
MakeMonPredAt i P π β IsBiIndexRel j i β KnownLFromAssumption p (P j) π.
Proof.
rewrite /MakeMonPredAt /KnownLFromAssumption /FromAssumption /IsBiIndexRel=><- ->.
apply bi.intuitionistically_if_elim.
Qed.
Global Instance from_assumption_make_monPred_at_r p i j P π :
MakeMonPredAt i P π β IsBiIndexRel i j β KnownRFromAssumption p π (P j).
Proof.
rewrite /MakeMonPredAt /KnownRFromAssumption /FromAssumption /IsBiIndexRel=><- ->.
apply bi.intuitionistically_if_elim.
Qed.
Global Instance from_assumption_make_monPred_objectively p P Q :
FromAssumption p P Q β KnownLFromAssumption p (<obj> P) Q.
Proof.
by rewrite /KnownLFromAssumption /FromAssumption monPred_objectively_elim.
Qed.
Global Instance from_assumption_make_monPred_subjectively p P Q :
FromAssumption p P Q β KnownRFromAssumption p P (<subj> Q).
Proof.
by rewrite /KnownRFromAssumption /FromAssumption -monPred_subjectively_intro.
Qed.
Global Instance as_emp_valid_monPred_at Ο P (Ξ¦ : I β PROP) :
AsEmpValid0 Ο P β (β i, MakeMonPredAt i P (Ξ¦ i)) β AsEmpValid Ο (β i, Ξ¦ i) | 100.
Proof.
rewrite /MakeMonPredAt /AsEmpValid0 /AsEmpValid /bi_emp_valid=> -> EQ.
setoid_rewrite <-EQ. split.
- move=>[H]. apply bi.forall_intro=>i. rewrite -H. by rewrite monPred_at_emp.
- move=>HP. split=>i. rewrite monPred_at_emp HP bi.forall_elim //.
Qed.
Global Instance as_emp_valid_monPred_at_wand Ο P Q (Ξ¦ Ξ¨ : I β PROP) :
AsEmpValid0 Ο (P -β Q) β
(β i, MakeMonPredAt i P (Ξ¦ i)) β (β i, MakeMonPredAt i Q (Ξ¨ i)) β
AsEmpValid Ο (β i, Ξ¦ i -β Ξ¨ i).
Proof.
rewrite /AsEmpValid0 /AsEmpValid /MakeMonPredAt. intros -> EQ1 EQ2.
setoid_rewrite <-EQ1. setoid_rewrite <-EQ2. split.
- move=>/bi.wand_entails HP. setoid_rewrite HP. by iIntros (i) "$".
- move=>HP. apply bi.entails_wand. split=>i. iIntros "H". by iApply HP.
Qed.
Global Instance as_emp_valid_monPred_at_equiv Ο P Q (Ξ¦ Ξ¨ : I β PROP) :
AsEmpValid0 Ο (P β-β Q) β
(β i, MakeMonPredAt i P (Ξ¦ i)) β (β i, MakeMonPredAt i Q (Ξ¨ i)) β
AsEmpValid Ο (β i, Ξ¦ i β-β Ξ¨ i).
Proof.
rewrite /AsEmpValid0 /AsEmpValid /MakeMonPredAt. intros -> EQ1 EQ2.
setoid_rewrite <-EQ1. setoid_rewrite <-EQ2. split.
- move=>/bi.wand_iff_equiv HP. setoid_rewrite HP. iIntros. iSplit; iIntros "$".
- move=>HP. apply bi.equiv_wand_iff. split=>i. by iSplit; iIntros; iApply HP.
Qed.
Global Instance into_pure_monPred_at P Ο i : IntoPure P Ο β IntoPure (P i) Ο.
Proof. rewrite /IntoPure=>->. by rewrite monPred_at_pure. Qed.
Global Instance from_pure_monPred_at a P Ο i : FromPure a P Ο β FromPure a (P i) Ο.
Proof. rewrite /FromPure=><-. by rewrite monPred_at_affinely_if monPred_at_pure. Qed.
Global Instance into_pure_monPred_in i j : @IntoPure PROP (monPred_in i j) (i β j).
Proof. by rewrite /IntoPure monPred_at_in. Qed.
Global Instance from_pure_monPred_in i j : @FromPure PROP false (monPred_in i j) (i β j).
Proof. by rewrite /FromPure monPred_at_in. Qed.
Global Instance into_persistent_monPred_at p P Q π i :
IntoPersistent p P Q β MakeMonPredAt i Q π β IntoPersistent p (P i) π | 0.
Proof.
rewrite /IntoPersistent /MakeMonPredAt =>-[/(_ i) ?] <-.
by rewrite -monPred_at_persistently -monPred_at_persistently_if.
Qed.
Lemma into_wand_monPred_at_unknown_unknown p q R P π Q π i :
IntoWand p q R P Q β MakeMonPredAt i P π β MakeMonPredAt i Q π β
IntoWand p q (R i) π π .
Proof.
rewrite /IntoWand /MakeMonPredAt /bi_affinely_if /bi_persistently_if.
destruct p, q=> /bi.wand_elim_l' [/(_ i) H] <- <-; apply bi.wand_intro_r;
revert H; by rewrite monPred_at_sep ?monPred_at_affinely ?monPred_at_persistently.
Qed.
Lemma into_wand_monPred_at_unknown_known p q R P π Q i j :
IsBiIndexRel i j β IntoWand p q R P Q β
MakeMonPredAt j P π β IntoWand p q (R i) π (Q j).
Proof.
rewrite /IntoWand /IsBiIndexRel /MakeMonPredAt=>-> ? ?.
eapply into_wand_monPred_at_unknown_unknown=>//. apply _.
Qed.
Lemma into_wand_monPred_at_known_unknown_le p q R P Q π i j :
IsBiIndexRel i j β IntoWand p q R P Q β
MakeMonPredAt j Q π β IntoWand p q (R i) (P j) π .
Proof.
rewrite /IntoWand /IsBiIndexRel /MakeMonPredAt=>-> ? ?.
eapply into_wand_monPred_at_unknown_unknown=>//. apply _.
Qed.
Lemma into_wand_monPred_at_known_unknown_ge p q R P Q π i j :
IsBiIndexRel i j β IntoWand p q R P Q β
MakeMonPredAt j Q π β IntoWand p q (R j) (P i) π .
Proof.
rewrite /IntoWand /IsBiIndexRel /MakeMonPredAt=>-> ? ?.
eapply into_wand_monPred_at_unknown_unknown=>//. apply _.
Qed.
Global Instance into_wand_wand'_monPred p q P Q π π i :
IntoWand' p q ((P -β Q) i) π π β IntoWand p q ((P -β Q) i) π π | 100.
Proof. done. Qed.
Global Instance into_wand_impl'_monPred p q P Q π π i :
IntoWand' p q ((P β Q) i) π π β IntoWand p q ((P β Q) i) π π | 100.
Proof. done. Qed.
Global Instance from_forall_monPred_at_wand P Q (Ξ¦ Ξ¨ : I β PROP) i :
(β j, MakeMonPredAt j P (Ξ¦ j)) β (β j, MakeMonPredAt j Q (Ξ¨ j)) β
FromForall ((P -β Q) i)%I (Ξ» j, βi β jβ β Ξ¦ j -β Ξ¨ j)%I (to_ident_name idx).
Proof.
rewrite /FromForall /MakeMonPredAt monPred_at_wand=> H1 H2. do 2 f_equiv.
by rewrite H1 H2.
Qed.
Global Instance from_forall_monPred_at_impl P Q (Ξ¦ Ξ¨ : I β PROP) i :
(β j, MakeMonPredAt j P (Ξ¦ j)) β (β j, MakeMonPredAt j Q (Ξ¨ j)) β
FromForall ((P β Q) i)%I (Ξ» j, βi β jβ β Ξ¦ j β Ξ¨ j)%I (to_ident_name idx).
Proof.
rewrite /FromForall /MakeMonPredAt monPred_at_impl=> H1 H2. do 2 f_equiv.
by rewrite H1 H2 bi.pure_impl_forall.
Qed.
Global Instance into_forall_monPred_at_index P i :
IntoForall (P i) (Ξ» j, βi β jβ β P j)%I | 100.
Proof.
rewrite /IntoForall. setoid_rewrite bi.pure_impl_forall.
do 2 apply bi.forall_intro=>?. by f_equiv.
Qed.
Global Instance from_and_monPred_at P Q1 π 1 Q2 π 2 i :
FromAnd P Q1 Q2 β MakeMonPredAt i Q1 π 1 β MakeMonPredAt i Q2 π 2 β
FromAnd (P i) π 1 π 2.
Proof.
rewrite /FromAnd /MakeMonPredAt /MakeMonPredAt=> <- <- <-.
by rewrite monPred_at_and.
Qed.
Global Instance into_and_monPred_at p P Q1 π 1 Q2 π 2 i :
IntoAnd p P Q1 Q2 β MakeMonPredAt i Q1 π 1 β MakeMonPredAt i Q2 π 2 β
IntoAnd p (P i) π 1 π 2.
Proof.
rewrite /IntoAnd /MakeMonPredAt /bi_affinely_if /bi_persistently_if.
destruct p=>-[/(_ i) H] <- <-; revert H;
by rewrite ?monPred_at_affinely ?monPred_at_persistently monPred_at_and.
Qed.
Global Instance from_sep_monPred_at P Q1 π 1 Q2 π 2 i :
FromSep P Q1 Q2 β MakeMonPredAt i Q1 π 1 β MakeMonPredAt i Q2 π 2 β
FromSep (P i) π 1 π 2.
Proof. rewrite /FromSep /MakeMonPredAt=> <- <- <-. by rewrite monPred_at_sep. Qed.
Global Instance into_sep_monPred_at P Q1 π 1 Q2 π 2 i :
IntoSep P Q1 Q2 β MakeMonPredAt i Q1 π 1 β MakeMonPredAt i Q2 π 2 β
IntoSep (P i) π 1 π 2.
Proof. rewrite /IntoSep /MakeMonPredAt=> -> <- <-. by rewrite monPred_at_sep. Qed.
Global Instance from_or_monPred_at P Q1 π 1 Q2 π 2 i :
FromOr P Q1 Q2 β MakeMonPredAt i Q1 π 1 β MakeMonPredAt i Q2 π 2 β
FromOr (P i) π 1 π 2.
Proof. rewrite /FromOr /MakeMonPredAt=> <- <- <-. by rewrite monPred_at_or. Qed.
Global Instance into_or_monPred_at P Q1 π 1 Q2 π 2 i :
IntoOr P Q1 Q2 β MakeMonPredAt i Q1 π 1 β MakeMonPredAt i Q2 π 2 β
IntoOr (P i) π 1 π 2.
Proof. rewrite /IntoOr /MakeMonPredAt=> -> <- <-. by rewrite monPred_at_or. Qed.
Global Instance from_exist_monPred_at {A} P (Ξ¦ : A β monPred) (Ξ¨ : A β PROP) i :
FromExist P Ξ¦ β (β a, MakeMonPredAt i (Ξ¦ a) (Ξ¨ a)) β FromExist (P i) Ξ¨.
Proof.
rewrite /FromExist /MakeMonPredAt=><- H. setoid_rewrite <- H.
by rewrite monPred_at_exist.
Qed.
Global Instance into_exist_monPred_at {A} P (Ξ¦ : A β monPred) name (Ξ¨ : A β PROP) i :
IntoExist P Ξ¦ name β (β a, MakeMonPredAt i (Ξ¦ a) (Ξ¨ a)) β IntoExist (P i) Ξ¨ name.
Proof.
rewrite /IntoExist /MakeMonPredAt=>-> H. setoid_rewrite <- H.
by rewrite monPred_at_exist.
Qed.
Global Instance from_forall_monPred_at_objectively P (Ξ¦ : I β PROP) i :
(β i, MakeMonPredAt i P (Ξ¦ i)) β FromForall ((<obj> P) i)%I Ξ¦ (to_ident_name idx).
Proof.
rewrite /FromForall /MakeMonPredAt monPred_at_objectively=>H. by setoid_rewrite <- H.
Qed.
Global Instance into_forall_monPred_at_objectively P (Ξ¦ : I β PROP) i :
(β i, MakeMonPredAt i P (Ξ¦ i)) β IntoForall ((<obj> P) i) Ξ¦.
Proof.
rewrite /IntoForall /MakeMonPredAt monPred_at_objectively=>H. by setoid_rewrite <- H.
Qed.
Global Instance from_exist_monPred_at_ex P (Ξ¦ : I β PROP) i :
(β i, MakeMonPredAt i P (Ξ¦ i)) β FromExist ((<subj> P) i) Ξ¦.
Proof.
rewrite /FromExist /MakeMonPredAt monPred_at_subjectively=>H. by setoid_rewrite <- H.
Qed.
(* TODO: this implementation uses [idx] as the automatic name for the index. In
theory a monPred could define an appropriate metavariable for indices with an
[ident_name] argument to [MakeMonPredAt], but this is not implemented. *)
Global Instance into_exist_monPred_at_ex P (Ξ¦ : I β PROP) i :
(β i, MakeMonPredAt i P (Ξ¦ i)) β IntoExist ((<subj> P) i) Ξ¦ (to_ident_name idx).
Proof.
rewrite /IntoExist /MakeMonPredAt monPred_at_subjectively=>H. by setoid_rewrite <- H.
Qed.
Global Instance from_forall_monPred_at {A} P (Ξ¦ : A β monPred) name (Ξ¨ : A β PROP) i :
FromForall P Ξ¦ name β (β a, MakeMonPredAt i (Ξ¦ a) (Ξ¨ a)) β FromForall (P i) Ξ¨ name.
Proof.
rewrite /FromForall /MakeMonPredAt=><- H. setoid_rewrite <- H.
by rewrite monPred_at_forall.
Qed.
Global Instance into_forall_monPred_at {A} P (Ξ¦ : A β monPred) (Ξ¨ : A β PROP) i :
IntoForall P Ξ¦ β (β a, MakeMonPredAt i (Ξ¦ a) (Ξ¨ a)) β IntoForall (P i) Ξ¨.
Proof.
rewrite /IntoForall /MakeMonPredAt=>-> H. setoid_rewrite <- H.
by rewrite monPred_at_forall.
Qed.
(* Framing. *)
Global Instance frame_monPred_at_enter p i π‘ P π :
FrameMonPredAt p i π‘ P π β Frame p π‘ (P i) π | 2.
Proof. intros. done. Qed.
Global Instance frame_monPred_at_here p P i j :
IsBiIndexRel i j β FrameMonPredAt p j (P i) P emp | 0.
Proof.
rewrite /FrameMonPredAt /IsBiIndexRel right_id bi.intuitionistically_if_elim=> -> //.
Qed.
Global Instance frame_monPred_at_embed p π‘ π π i :
Frame p π‘ π π β FrameMonPredAt p i π‘ (embed (B:=monPredI) π) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_embed. Qed.
Global Instance frame_monPred_at_sep p P Q π‘ π i :
Frame p π‘ (P i β Q i) π β FrameMonPredAt p i π‘ (P β Q) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_sep. Qed.
Global Instance frame_monPred_at_and p P Q π‘ π i :
Frame p π‘ (P i β§ Q i) π β FrameMonPredAt p i π‘ (P β§ Q) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_and. Qed.
Global Instance frame_monPred_at_or p P Q π‘ π i :
Frame p π‘ (P i β¨ Q i) π β FrameMonPredAt p i π‘ (P β¨ Q) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_or. Qed.
Global Instance frame_monPred_at_wand p P R Q1 Q2 i j :
IsBiIndexRel i j β
Frame p R Q1 Q2 β
FrameMonPredAt p j (R i) (P -β Q1) ((P -β Q2) i).
Proof.
rewrite /IsBiIndexRel /Frame /FrameMonPredAt=>-> Hframe.
rewrite -monPred_at_intuitionistically_if -monPred_at_sep. apply monPred_in_entails.
change ((β‘?p R β (P -β Q2)) β’ P -β Q1). apply bi.wand_intro_r.
rewrite -assoc bi.wand_elim_l. done.
Qed.
Global Instance frame_monPred_at_impl P R Q1 Q2 i j :
IsBiIndexRel i j β
Frame true R Q1 Q2 β
FrameMonPredAt true j (R i) (P β Q1) ((P β Q2) i).
Proof.
rewrite /IsBiIndexRel /Frame /FrameMonPredAt=>-> Hframe.
rewrite -monPred_at_intuitionistically_if -monPred_at_sep. apply monPred_in_entails.
change ((β‘ R β (P β Q2)) β’ P β Q1).
rewrite -bi.persistently_and_intuitionistically_sep_l. apply bi.impl_intro_r.
rewrite -assoc bi.impl_elim_l bi.persistently_and_intuitionistically_sep_l. done.
Qed.
Global Instance frame_monPred_at_forall {X : Type} p (Ξ¨ : X β monPred) π‘ π i :
Frame p π‘ (β x, Ξ¨ x i) π β FrameMonPredAt p i π‘ (β x, Ξ¨ x) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_forall. Qed.
Global Instance frame_monPred_at_exist {X : Type} p (Ξ¨ : X β monPred) π‘ π i :
Frame p π‘ (β x, Ξ¨ x i) π β FrameMonPredAt p i π‘ (β x, Ξ¨ x) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_exist. Qed.
Global Instance frame_monPred_at_absorbingly p P π‘ π i :
Frame p π‘ (<absorb> P i) π β FrameMonPredAt p i π‘ (<absorb> P) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_absorbingly. Qed.
Global Instance frame_monPred_at_affinely p P π‘ π i :
Frame p π‘ (<affine> P i) π β FrameMonPredAt p i π‘ (<affine> P) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_affinely. Qed.
Global Instance frame_monPred_at_persistently p P π‘ π i :
Frame p π‘ (<pers> P i) π β FrameMonPredAt p i π‘ (<pers> P) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_persistently. Qed.
Global Instance frame_monPred_at_intuitionistically p P π‘ π i :
Frame p π‘ (β‘ P i) π β FrameMonPredAt p i π‘ (β‘ P) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_intuitionistically. Qed.
Global Instance frame_monPred_at_objectively p P π‘ π i :
Frame p π‘ (β i, P i) π β FrameMonPredAt p i π‘ (<obj> P) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_objectively. Qed.
Global Instance frame_monPred_at_subjectively p P π‘ π i :
Frame p π‘ (β i, P i) π β FrameMonPredAt p i π‘ (<subj> P) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_subjectively. Qed.
Global Instance frame_monPred_at_bupd `{!BiBUpd PROP} p P π‘ π i :
Frame p π‘ (|==> P i) π β FrameMonPredAt p i π‘ (|==> P) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_bupd. Qed.
Global Instance into_embed_objective P :
Objective P β IntoEmbed P (β i, P i).
Proof.
rewrite /IntoEmbed=> ?.
by rewrite {1}(objective_objectively P) monPred_objectively_unfold.
Qed.
Global Instance elim_modal_at_bupd_goal `{!BiBUpd PROP} Ο p p' π π' Q Q' i :
ElimModal Ο p p' π π' (|==> Q i) (|==> Q' i) β
ElimModal Ο p p' π π' ((|==> Q) i) ((|==> Q') i).
Proof. by rewrite /ElimModal !monPred_at_bupd. Qed.
Global Instance elim_modal_at_bupd_hyp `{!BiBUpd PROP} Ο p p' P π π' π π ' i:
MakeMonPredAt i P π β
ElimModal Ο p p' (|==> π) π' π π ' β
ElimModal Ο p p' ((|==> P) i) π' π π '.
Proof. by rewrite /MakeMonPredAt /ElimModal monPred_at_bupd=><-. Qed.
Global Instance elim_modal_at Ο p p' π π' P P' V:
ElimModal Ο p p' β‘πβ€ β‘π'β€ P P' β ElimModal Ο p p' π π' (P V) (P' V).
Proof.
rewrite /ElimModal -!embed_intuitionistically_if.
iIntros (HH HΟ) "[? HP]". iApply HH; [done|]. iFrame. iIntros (? <-) "?".
by iApply "HP".
Qed.
Global Instance add_modal_at_bupd_goal `{!BiBUpd PROP} Ο π π' Q i :
AddModal π π' (|==> Q i)%I β AddModal π π' ((|==> Q) i).
Proof. by rewrite /AddModal !monPred_at_bupd. Qed.
Global Instance from_forall_monPred_at_plainly `{!BiPlainly PROP} i P Ξ¦ :
(β i, MakeMonPredAt i P (Ξ¦ i)) β
FromForall ((β P) i) (Ξ» j, β (Ξ¦ j))%I (to_ident_name idx).
Proof.
rewrite /FromForall /MakeMonPredAt=>HPΦ. rewrite monPred_at_plainly.
by setoid_rewrite HPΦ.
Qed.
Global Instance into_forall_monPred_at_plainly `{!BiPlainly PROP} i P Ξ¦ :
(β i, MakeMonPredAt i P (Ξ¦ i)) β
IntoForall ((β P) i) (Ξ» j, β (Ξ¦ j))%I.
Proof.
rewrite /IntoForall /MakeMonPredAt=>HPΦ. rewrite monPred_at_plainly.
by setoid_rewrite HPΦ.
Qed.
Global Instance is_except_0_monPred_at i P :
IsExcept0 P β IsExcept0 (P i).
Proof. rewrite /IsExcept0=>- [/(_ i)]. by rewrite monPred_at_except_0. Qed.
Global Instance make_monPred_at_internal_eq `{!BiInternalEq PROP} {A : ofe} (x y : A) i :
MakeMonPredAt i (x β‘ y) (x β‘ y).
Proof. by rewrite /MakeMonPredAt monPred_at_internal_eq. Qed.
Global Instance make_monPred_at_except_0 i P π :
MakeMonPredAt i P π β MakeMonPredAt i (β P) (β π ).
Proof. by rewrite /MakeMonPredAt monPred_at_except_0=><-. Qed.
Global Instance make_monPred_at_later i P π :
MakeMonPredAt i P π β MakeMonPredAt i (β· P) (β· π ).
Proof. by rewrite /MakeMonPredAt monPred_at_later=><-. Qed.
Global Instance make_monPred_at_laterN i n P π :
MakeMonPredAt i P π β MakeMonPredAt i (β·^n P) (β·^n π ).
Proof. rewrite /MakeMonPredAt=> <-. elim n=>//= ? <-. by rewrite monPred_at_later. Qed.
Global Instance make_monPred_at_fupd `{!BiFUpd PROP} i E1 E2 P π :
MakeMonPredAt i P π β MakeMonPredAt i (|={E1,E2}=> P) (|={E1,E2}=> π).
Proof. by rewrite /MakeMonPredAt monPred_at_fupd=> <-. Qed.
Global Instance into_internal_eq_monPred_at `{!BiInternalEq PROP}
{A : ofe} (x y : A) P i :
IntoInternalEq P x y β IntoInternalEq (P i) x y.
Proof. rewrite /IntoInternalEq=> ->. by rewrite monPred_at_internal_eq. Qed.
Global Instance into_except_0_monPred_at_fwd i P Q π :
IntoExcept0 P Q β MakeMonPredAt i Q π β IntoExcept0 (P i) π .
Proof. rewrite /IntoExcept0 /MakeMonPredAt=> -> <-. by rewrite monPred_at_except_0. Qed.
Global Instance into_except_0_monPred_at_bwd i P π Q :
IntoExcept0 P Q β MakeMonPredAt i P π β IntoExcept0 π (Q i).
Proof. rewrite /IntoExcept0 /MakeMonPredAt=> H <-. by rewrite H monPred_at_except_0. Qed.
Global Instance maybe_into_later_monPred_at i n P Q π :
IntoLaterN false n P Q β MakeMonPredAt i Q π β
IntoLaterN false n (P i) π .
Proof.
rewrite /IntoLaterN /MaybeIntoLaterN /MakeMonPredAt=> -> <-. elim n=>//= ? <-.
by rewrite monPred_at_later.
Qed.
Global Instance from_later_monPred_at i Ο `(sel : A) n P Q π :
FromModal Ο (modality_laterN n) sel P Q β
MakeMonPredAt i Q π β
FromModal Ο (modality_laterN n) sel (P i) π .
Proof.
rewrite /FromModal /MakeMonPredAt=> HPQ <- ?. rewrite -HPQ //.
elim n=>//= ? ->.
by rewrite monPred_at_later.
Qed.
Global Instance frame_monPred_at_later p P π‘ π i :
Frame p π‘ (β· P i) π β FrameMonPredAt p i π‘ (β· P) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_later. Qed.
Global Instance frame_monPred_at_laterN p n P π‘ π i :
Frame p π‘ (β·^n P i) π β FrameMonPredAt p i π‘ (β·^n P) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_laterN. Qed.
Global Instance frame_monPred_at_fupd `{!BiFUpd PROP} E1 E2 p P π‘ π i :
Frame p π‘ (|={E1,E2}=> P i) π β FrameMonPredAt p i π‘ (|={E1,E2}=> P) π .
Proof. rewrite /Frame /FrameMonPredAt=> ->. by rewrite monPred_at_fupd. Qed.
End bi.
(* When P and/or Q are evars when doing typeclass search on [IntoWand
(R i) P Q], we use [MakeMonPredAt] in order to normalize the
result of unification. However, when they are not evars, we want to
propagate the known information through typeclass search. Hence, we
do not want to use [MakeMonPredAt].
As a result, depending on P and Q being evars, we use a different
version of [into_wand_monPred_at_xx_xx]. *)
Global Hint Extern 3 (IntoWand _ _ (monPred_at _ _) ?P ?Q) =>
is_evar P; is_evar Q;
eapply @into_wand_monPred_at_unknown_unknown
: typeclass_instances.
Global Hint Extern 2 (IntoWand _ _ (monPred_at _ _) ?P (monPred_at ?Q _)) =>
eapply @into_wand_monPred_at_unknown_known
: typeclass_instances.
Global Hint Extern 2 (IntoWand _ _ (monPred_at _ _) (monPred_at ?P _) ?Q) =>
eapply @into_wand_monPred_at_known_unknown_le
: typeclass_instances.
Global Hint Extern 2 (IntoWand _ _ (monPred_at _ _) (monPred_at ?P _) ?Q) =>
eapply @into_wand_monPred_at_known_unknown_ge
: typeclass_instances.
Section modal.
Context {I : biIndex} {PROP : bi}.
Local Notation monPred := (monPred I PROP).
Implicit Types P Q R : monPred.
Implicit Types π π π‘ : PROP.
Implicit Types Ο : Prop.
Implicit Types i j : I.
Global Instance elim_modal_at_fupd_goal `{!BiFUpd PROP} Ο p p' E1 E2 E3 π π' Q Q' i :
ElimModal Ο p p' π π' (|={E1,E3}=> Q i) (|={E2,E3}=> Q' i) β
ElimModal Ο p p' π π' ((|={E1,E3}=> Q) i) ((|={E2,E3}=> Q') i).
Proof. by rewrite /ElimModal !monPred_at_fupd. Qed.
Global Instance elim_modal_at_fupd_hyp `{!BiFUpd PROP} Ο p p' E1 E2 P π π' π π ' i :
MakeMonPredAt i P π β
ElimModal Ο p p' (|={E1,E2}=> π) π' π π ' β
ElimModal Ο p p' ((|={E1,E2}=> P) i) π' π π '.
Proof. by rewrite /MakeMonPredAt /ElimModal monPred_at_fupd=><-. Qed.
Global Instance elim_acc_at_None `{!BiFUpd PROP} {X} Ο E1 E2 E3 E4 Ξ± Ξ±' Ξ² Ξ²' P P'x i :
(β x, MakeEmbed (Ξ± x) (Ξ±' x)) β (β x, MakeEmbed (Ξ² x) (Ξ²' x)) β
ElimAcc (X:=X) Ο (fupd E1 E2) (fupd E3 E4) Ξ±' Ξ²' (Ξ» _, None) P P'x β
ElimAcc (X:=X) Ο (fupd E1 E2) (fupd E3 E4) Ξ± Ξ² (Ξ» _, None) (P i) (Ξ» x, P'x x i).
Proof.
rewrite /ElimAcc /MakeEmbed. iIntros (HΞ± HΞ² HEA ?) "Hinner Hacc".
iApply (HEA with "[Hinner]"); first done.
- iIntros (x). iSpecialize ("Hinner" $! x). rewrite -HΞ±. by iIntros (? <-).
- iMod "Hacc". iDestruct "Hacc" as (x) "[HΞ± Hclose]". iModIntro. iExists x.
rewrite -HΞ± -HΞ². iFrame. iIntros (? _) "HΞ²". by iApply "Hclose".
Qed.
Global Instance elim_acc_at_Some `{!BiFUpd PROP} {X} Ο E1 E2 E3 E4 Ξ± Ξ±' Ξ² Ξ²' Ξ³ Ξ³' P P'x i :
(β x, MakeEmbed (Ξ± x) (Ξ±' x)) β
(β x, MakeEmbed (Ξ² x) (Ξ²' x)) β
(β x, MakeEmbed (Ξ³ x) (Ξ³' x)) β
ElimAcc (X:=X) Ο (fupd E1 E2) (fupd E3 E4) Ξ±' Ξ²' (Ξ» x, Some (Ξ³' x)) P P'x β
ElimAcc (X:=X) Ο (fupd E1 E2) (fupd E3 E4) Ξ± Ξ² (Ξ» x, Some (Ξ³ x)) (P i) (Ξ» x, P'x x i).
Proof.
rewrite /ElimAcc /MakeEmbed. iIntros (HΞ± HΞ² HΞ³ HEA ?) "Hinner Hacc".
iApply (HEA with "[Hinner]"); first done.
- iIntros (x). iSpecialize ("Hinner" $! x). rewrite -HΞ±. by iIntros (? <-).
- iMod "Hacc". iDestruct "Hacc" as (x) "[HΞ± Hclose]". iModIntro. iExists x.
rewrite -HΞ± -HΞ² -HΞ³. iFrame. iIntros (? _) "HΞ² /=". by iApply "Hclose".
Qed.
Global Instance add_modal_at_fupd_goal `{!BiFUpd PROP} E1 E2 π π' Q i :
AddModal π π' (|={E1,E2}=> Q i) β AddModal π π' ((|={E1,E2}=> Q) i).
Proof. by rewrite /AddModal !monPred_at_fupd. Qed.
(* This hard-codes the fact that ElimInv with_close returns a
[(Ξ» _, ...)] as Q'. *)
Global Instance elim_inv_embed_with_close {X : Type} Ο
πinv πin (πout πclose : X β PROP)
Pin (Pout Pclose : X β monPred)
Q Q' :
(β i, ElimInv Ο πinv πin πout (Some πclose) (Q i) (Ξ» _, Q' i)) β
MakeEmbed πin Pin β (β x, MakeEmbed (πout x) (Pout x)) β
(β x, MakeEmbed (πclose x) (Pclose x)) β
ElimInv (X:=X) Ο β‘πinvβ€ Pin Pout (Some Pclose) Q (Ξ» _, Q').
Proof.
rewrite /MakeEmbed /ElimInv=>H <- Hout Hclose ?. iStartProof PROP.
setoid_rewrite <-Hout. setoid_rewrite <-Hclose.
iIntros (?) "(?&?&HQ')". iApply H; [done|]. iFrame. iIntros (x) "?".
by iApply "HQ'".
Qed.
Global Instance elim_inv_embed_without_close {X : Type}
Ο πinv πin (πout : X β PROP) Pin (Pout : X β monPred) Q (Q' : X β monPred) :
(β i, ElimInv Ο πinv πin πout None (Q i) (Ξ» x, Q' x i)) β
MakeEmbed πin Pin β (β x, MakeEmbed (πout x) (Pout x)) β
ElimInv (X:=X) Ο β‘πinvβ€ Pin Pout None Q Q'.
Proof.
rewrite /MakeEmbed /ElimInv=>H <-Hout ?. iStartProof PROP.
setoid_rewrite <-Hout.
iIntros (?) "(?&?&HQ')". iApply H; [done|]. iFrame. iIntros (x) "?".
by iApply "HQ'".
Qed.
End modal.
|