1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
From iris.base_logic.lib Require Import gen_inv_heap invariants.
From iris.program_logic Require Export weakestpre total_weakestpre.
From iris.heap_lang Require Import lang adequacy total_adequacy proofmode notation.
From iris.prelude Require Import options.
(* For printing tests we want stable names. *)
Unset Mangle Names.
Section tests.
Context `{!heapGS Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val → iProp Σ.
Definition simpl_test :
⌜(10 = 4 + 6)%nat⌝ -∗
WP let: "x" := ref #1 in "x" <- !"x";; !"x" {{ v, ⌜v = #1⌝ }}.
Proof.
iIntros "?". wp_alloc l. repeat wp_pure || wp_load || wp_store.
match goal with
| |- context [ (10 = 4 + 6)%nat ] => done
end.
Qed.
Definition val_scope_test_1 := SOMEV (#(), #()).
Definition heap_e : expr :=
let: "x" := ref #1 in "x" <- !"x" + #1 ;; !"x".
Check "heap_e_spec".
Lemma heap_e_spec E : ⊢ WP heap_e @ E {{ v, ⌜v = #2⌝ }}.
Proof.
iIntros "". rewrite /heap_e. Show.
wp_alloc l as "?". wp_pures. wp_bind (!_)%E. wp_load. Show. (* No fupd was added *)
wp_store. by wp_load.
Qed.
Definition heap_e2 : expr :=
let: "x" := ref #1 in
let: "y" := ref #1 in
"x" <- !"x" + #1 ;; !"x".
Check "heap_e2_spec".
Lemma heap_e2_spec E : ⊢ WP heap_e2 @ E [{ v, ⌜v = #2⌝ }].
Proof.
iIntros "". rewrite /heap_e2.
wp_alloc l as "Hl". Show. wp_alloc l'. do 2 wp_pure.
wp_bind (!_)%E. wp_load. Show. (* No fupd was added *)
wp_store. wp_load. done.
Qed.
Definition heap_e3 : expr :=
let: "x" := #true in
let: "f" := λ: "z", "z" + #1 in
if: "x" then "f" #0 else "f" #1.
Lemma heap_e3_spec E : ⊢ WP heap_e3 @ E [{ v, ⌜v = #1⌝ }].
Proof.
iIntros "". rewrite /heap_e3.
by repeat (wp_pure _).
Qed.
Definition heap_e4 : expr :=
let: "x" := (let: "y" := ref (ref #1) in ref "y") in
! ! !"x".
Lemma heap_e4_spec : ⊢ WP heap_e4 [{ v, ⌜ v = #1 ⌝ }].
Proof.
rewrite /heap_e4. wp_alloc l. wp_alloc l'.
wp_alloc l''. by repeat wp_load.
Qed.
Definition heap_e5 : expr :=
let: "x" := ref (ref #1) in ! ! "x" + FAA (!"x") (#10 + #1).
Lemma heap_e5_spec E : ⊢ WP heap_e5 @ E [{ v, ⌜v = #13⌝ }].
Proof.
rewrite /heap_e5. wp_alloc l. wp_alloc l'.
wp_load. wp_faa. do 2 wp_load. by wp_pures.
Qed.
Definition heap_e6 : val := λ: "v", "v" = "v".
Lemma heap_e6_spec (v : val) :
val_is_unboxed v → ⊢ WP heap_e6 v {{ w, ⌜ w = #true ⌝ }}.
Proof. intros ?. wp_lam. wp_op. by case_bool_decide. Qed.
Definition heap_e7 : val := λ: "v", CmpXchg "v" #0 #1.
Lemma heap_e7_spec_total l : l ↦ #0 -∗ WP heap_e7 #l [{_, l ↦ #1 }].
Proof. iIntros. wp_lam. wp_cmpxchg_suc. auto. Qed.
Check "heap_e7_spec".
Lemma heap_e7_spec l : ▷^2 l ↦ #0 -∗ WP heap_e7 #l {{_, l ↦ #1 }}.
Proof. iIntros. wp_lam. Show. wp_cmpxchg_suc. Show. auto. Qed.
Definition FindPred : val :=
rec: "pred" "x" "y" :=
let: "yp" := "y" + #1 in
if: "yp" < "x" then "pred" "x" "yp" else "y".
Definition Pred : val :=
λ: "x",
if: "x" ≤ #0 then -FindPred (-"x" + #2) #0 else FindPred "x" #0.
Lemma FindPred_spec n1 n2 E Φ :
(n1 < n2)%Z →
Φ #(n2 - 1) -∗ WP FindPred #n2 #n1 @ E [{ Φ }].
Proof.
iIntros (Hn) "HΦ".
iInduction (Z.gt_wf n2 n1) as [n1' _ IH] forall (Hn).
wp_rec. wp_pures. case_bool_decide; wp_if.
- iApply ("IH" with "[%] [%] HΦ"); lia.
- by assert (n1' = n2 - 1)%Z as -> by lia.
Qed.
Lemma Pred_spec n E Φ : Φ #(n - 1) -∗ WP Pred #n @ E [{ Φ }].
Proof.
iIntros "HΦ". wp_lam.
wp_op. case_bool_decide.
- wp_smart_apply FindPred_spec; first lia. wp_pures.
by replace (n - 1)%Z with (- (-n + 2 - 1))%Z by lia.
- wp_smart_apply FindPred_spec; eauto with lia.
Qed.
Lemma Pred_user E :
⊢ WP let: "x" := Pred #42 in Pred "x" @ E [{ v, ⌜v = #40⌝ }].
Proof. iIntros "". wp_apply Pred_spec. by wp_smart_apply Pred_spec. Qed.
Definition Id : val :=
rec: "go" "x" :=
if: "x" = #0 then #() else "go" ("x" - #1).
(** These tests specially test the handling of the [vals_compare_safe]
side-condition of the [=] operator. *)
Lemma Id_wp (n : nat) : ⊢ WP Id #n {{ v, ⌜ v = #() ⌝ }}.
Proof.
iInduction n as [|n IH]; wp_rec; wp_pures; first done.
by replace (S n - 1)%Z with (n:Z) by lia.
Qed.
Lemma Id_twp (n : nat) : ⊢ WP Id #n [{ v, ⌜ v = #() ⌝ }].
Proof.
iInduction n as [|n IH]; wp_rec; wp_pures; first done.
by replace (S n - 1)%Z with (n:Z) by lia.
Qed.
Definition compare_pointers : val := λ: <>,
let: "x" := ref #0 in
let: "y" := ref #0 in
("x", "y", "x" ≤ "y").
Lemma wp_compare_pointers E :
⊢ WP compare_pointers #() @ E [{ v, ∃ l1 l2 : loc,
⌜v = (#l1, #l2,
#(bool_decide (loc_car l1 ≤ loc_car l2)))%V⌝ }].
Proof.
rewrite /compare_pointers. wp_pures.
wp_alloc l1 as "H1".
wp_alloc l2 as "H2".
wp_pures. by eauto.
Qed.
(* Make sure [wp_bind] works even when it changes nothing. *)
Lemma wp_bind_nop (e : expr) :
⊢ WP e + #0 {{ _, True }}.
Proof. wp_bind (e + #0)%E. Abort.
Lemma wp_bind_nop (e : expr) :
⊢ WP e + #0 [{ _, True }].
Proof. wp_bind (e + #0)%E. Abort.
Check "wp_load_fail".
Lemma wp_load_fail :
⊢ WP Fork #() {{ _, True }}.
Proof. Fail wp_load. Abort.
Lemma twp_load_fail :
⊢ WP Fork #() [{ _, True }].
Proof. Fail wp_load. Abort.
Check "wp_load_no_ptsto".
Lemma wp_load_fail_no_ptsto (l : loc) :
⊢ WP ! #l {{ _, True }}.
Proof. Fail wp_load. Abort.
Check "wp_store_fail".
Lemma wp_store_fail :
⊢ WP Fork #() {{ _, True }}.
Proof. Fail wp_store. Abort.
Lemma twp_store_fail :
⊢ WP Fork #() [{ _, True }].
Proof. Fail wp_store. Abort.
Check "wp_store_no_ptsto".
Lemma wp_store_fail_no_ptsto (l : loc) :
⊢ WP #l <- #0 {{ _, True }}.
Proof. Fail wp_store. Abort.
Check "(t)wp_bind_fail".
Lemma wp_bind_fail : ⊢ WP of_val #() {{ v, True }}.
Proof. Fail wp_bind (!_)%E. Abort.
Lemma twp_bind_fail : ⊢ WP of_val #() [{ v, True }].
Proof. Fail wp_bind (!_)%E. Abort.
Lemma wp_apply_evar e P :
P -∗ (∀ Q Φ, Q -∗ WP e {{ Φ }}) -∗ WP e {{ _, True }}.
Proof. iIntros "HP HW". wp_apply "HW". iExact "HP". Qed.
Lemma wp_pures_val (b : bool) :
⊢ WP of_val #b {{ _, True }}.
Proof. wp_pures. done. Qed.
Lemma twp_pures_val (b : bool) :
⊢ WP of_val #b [{ _, True }].
Proof. wp_pures. done. Qed.
Lemma wp_cmpxchg l v :
val_is_unboxed v →
l ↦ v -∗ WP CmpXchg #l v v {{ _, True }}.
Proof.
iIntros (?) "?". wp_cmpxchg as ? | ?; done.
Qed.
Lemma wp_xchg l (v₁ v₂ : val) :
{{{ l ↦ v₁ }}}
Xchg #l v₂
{{{ RET v₁; l ↦ v₂ }}}.
Proof.
iIntros (Φ) "Hl HΦ".
wp_xchg.
iApply "HΦ" => //.
Qed.
Lemma twp_xchg l (v₁ v₂ : val) :
l ↦ v₁ -∗
WP Xchg #l v₂ [{ v₁, l ↦ v₂ }].
Proof.
iIntros "Hl".
wp_xchg => //.
Qed.
Lemma wp_xchg_inv N l (v : val) :
{{{ inv N (∃ v, l ↦ v) }}}
Xchg #l v
{{{ v', RET v'; True }}}.
Proof.
iIntros (Φ) "Hl HΦ".
iInv "Hl" as (v') "Hl" "Hclose".
wp_xchg.
iApply "HΦ".
iApply "Hclose".
iExists _ => //.
Qed.
Lemma wp_alloc_split :
⊢ WP Alloc #0 {{ _, True }}.
Proof. wp_alloc l as "[Hl1 Hl2]". Show. done. Qed.
Lemma wp_alloc_drop :
⊢ WP Alloc #0 {{ _, True }}.
Proof. wp_alloc l as "_". Show. done. Qed.
Check "wp_nonclosed_value".
Lemma wp_nonclosed_value :
⊢ WP let: "x" := #() in (λ: "y", "x")%V #() {{ _, True }}.
Proof. wp_let. wp_lam. Fail wp_pure _. Show. Abort.
Lemma wp_alloc_array n :
(0 < n)%Z →
⊢ {{{ True }}}
AllocN #n #0
{{{ l, RET #l; l ↦∗ replicate (Z.to_nat n) #0 }}}.
Proof.
iIntros (? Φ) "!> _ HΦ".
wp_alloc l as "?"; first done.
by iApply "HΦ".
Qed.
Lemma twp_alloc_array n :
(0 < n)%Z →
⊢ [[{ True }]]
AllocN #n #0
[[{ l, RET #l; l ↦∗ replicate (Z.to_nat n) #0 }]].
Proof.
iIntros (? Φ) "!> _ HΦ".
wp_alloc l as "?"; first done. Show.
by iApply "HΦ".
Qed.
Lemma wp_load_array l :
{{{ l ↦∗ [ #0;#1;#2 ] }}} !(#l +ₗ #1) {{{ RET #1; True }}}.
Proof.
iIntros (Φ) "Hl HΦ". wp_op.
wp_apply (wp_load_offset _ _ _ _ 1 with "Hl"); first done.
iIntros "Hl". by iApply "HΦ".
Qed.
Check "test_array_fraction_destruct".
Lemma test_array_fraction_destruct l vs :
l ↦∗ vs -∗ l ↦∗{#1/2} vs ∗ l ↦∗{#1/2} vs.
Proof.
iIntros "[Hl1 Hl2]". Show.
by iFrame.
Qed.
Lemma test_array_fraction_combine l vs :
l ↦∗{#1/2} vs -∗ l↦∗{#1/2} vs -∗ l ↦∗ vs.
Proof.
iIntros "Hl1 Hl2".
iSplitL "Hl1"; by iFrame.
Qed.
Lemma test_array_app l vs1 vs2 :
l ↦∗ (vs1 ++ vs2) -∗ l ↦∗ (vs1 ++ vs2).
Proof.
iIntros "H". iDestruct (array_app with "H") as "[H1 H2]".
iApply array_app. iSplitL "H1"; done.
Qed.
Lemma test_array_app_split l vs1 vs2 :
l ↦∗ (vs1 ++ vs2) -∗ l ↦∗{#1/2} (vs1 ++ vs2).
Proof.
iIntros "[$ _]". (* splits the fraction, not the app *)
Qed.
Lemma test_wp_free l v :
{{{ l ↦ v }}} Free #l {{{ RET #(); True }}}.
Proof.
iIntros (Φ) "Hl HΦ". wp_free. iApply "HΦ". done.
Qed.
Lemma test_twp_free l v :
[[{ l ↦ v }]] Free #l [[{ RET #(); True }]].
Proof.
iIntros (Φ) "Hl HΦ". wp_free. iApply "HΦ". done.
Qed.
Check "test_wp_finish_fupd".
Lemma test_wp_finish_fupd (v : val) :
⊢ WP of_val v {{ v, |={⊤}=> True }}.
Proof.
wp_pures. Show. (* No second fupd was added. *)
Abort.
Check "test_twp_finish_fupd".
Lemma test_twp_finish_fupd (v : val) :
⊢ WP of_val v [{ v, |={⊤}=> True }].
Proof.
wp_pures. Show. (* No second fupd was added. *)
Abort.
Check "test_heaplang_not_unfolded".
Lemma test_heaplang_not_unfolded :
⊢@{iPropI Σ} |={⊤}=> True.
Proof.
cbn.
Set Printing All.
Show.
Unset Printing All.
Abort.
Check "test_wp_pure_credit_succeed".
Lemma test_wp_pure_credit_succeed P :
⊢ WP #42 + #420 {{ v, ▷ P ={∅}=∗ P }}.
Proof.
wp_pure credit:"Hcred". Show.
iIntros "!> HP". iMod (lc_fupd_elim_later with "Hcred HP"). auto.
Qed.
Check "test_wp_pure_credit_fail".
Lemma test_wp_pure_credit_fail :
⊢ True -∗ WP #42 + #420 {{ v, True }}.
Proof.
iIntros "Hcred".
Fail wp_pure credit:"Hcred".
Abort.
End tests.
Section pointsto_tests.
Context `{!heapGS Σ}.
(* Test that the different versions of pointsto work with the tactics, parses,
and prints correctly. *)
(* Loading from a persistent points-to predicate in the _persistent_ context. *)
Lemma persistent_pointsto_load_persistent l v :
{{{ l ↦□ v }}} ! #l {{{ RET v; True }}}.
Proof. iIntros (Φ) "#Hl HΦ". Show. wp_load. by iApply "HΦ". Qed.
(* Loading from a persistent points-to predicate in the _spatial_ context. *)
Lemma persistent_pointsto_load_spatial l v :
{{{ l ↦□ v }}} ! #l {{{ RET v; True }}}.
Proof. iIntros (Φ) "Hl HΦ". wp_load. by iApply "HΦ". Qed.
Lemma persistent_pointsto_twp_load_persistent l v :
[[{ l ↦□ v }]] ! #l [[{ RET v; True }]].
Proof. iIntros (Φ) "#Hl HΦ". wp_load. by iApply "HΦ". Qed.
Lemma persistent_pointsto_twp_load_spatial l v :
[[{ l ↦□ v }]] ! #l [[{ RET v; True }]].
Proof. iIntros (Φ) "Hl HΦ". wp_load. by iApply "HΦ". Qed.
Lemma persistent_pointsto_load l (n : nat) :
{{{ l ↦ #n }}} Store #l (! #l + #5) ;; ! #l {{{ RET #(n + 5); l ↦□ #(n + 5) }}}.
Proof.
iIntros (Φ) "Hl HΦ".
wp_load. wp_store.
iMod (pointsto_persist with "Hl") as "#Hl".
wp_load. by iApply "HΦ".
Qed.
(* Loading from the general pointsto for any [dfrac]. *)
Lemma general_pointsto dq l v :
[[{ l ↦{dq} v }]] ! #l [[{ RET v; True }]].
Proof.
iIntros (Φ) "Hl HΦ". Show. wp_load. by iApply "HΦ".
Qed.
(* Failing [CmpXchg] from a persistent points-to predicate in the _persistent_
context. *)
Lemma persistent_pointsto_cmpxchg_persistent l :
{{{ l ↦□ #1 }}} CmpXchg #l #0 #1 {{{ v, RET v; True }}}.
Proof. iIntros (Φ) "#Hl HΦ". wp_cmpxchg_fail. by iApply "HΦ". Qed.
(* Failing [CmpXchg] from a persistent points-to predicate in the _spatial_
context. *)
Lemma persistent_pointsto_cmpxchg_spatial l :
{{{ l ↦□ #1 }}} CmpXchg #l #0 #1 {{{ v, RET v; True }}}.
Proof. iIntros (Φ) "Hl HΦ". wp_cmpxchg_fail. by iApply "HΦ". Qed.
(* Make sure that we can split a pointsto containing an evar. *)
Lemma pointsto_evar_iSplit l v :
l ↦{#1 / 2} v -∗ ∃ q, l ↦{#1 / 2 + q} v.
Proof. iIntros "H". iExists _. iSplitL; first by iAssumption. Abort.
Lemma pointsto_frame_1 l v q1 q2 :
l ↦{#q1} v -∗ l ↦{#q2} v -∗ l ↦{#q1 + q2} v.
Proof. iIntros "H1 H2". iFrame "H1". iExact "H2". Qed.
Lemma pointsto_frame_2 l v q :
l ↦{#q/2} v -∗ l ↦{#q/2} v -∗ l ↦{#q} v.
Proof. iIntros "H1 H2". iFrame "H1". iExact "H2". Qed.
Lemma pointsto_combine_2 l v1 q1 v2 q2 :
l ↦{#q1} v1 -∗ l ↦{#q2} v2 -∗
l ↦{#(q1 + q2)} v1 ∗ ⌜q1 + q2 ≤ 1⌝%Qp ∗ ⌜v1 = v2⌝.
Proof. iIntros "H1 H2". by iCombine "H1 H2" as "$" gives %[? ->]. Qed.
Lemma pointsto_combine_3 l v1 q1 v2 q2 v3 q3 :
l ↦{#q1} v1 -∗ l ↦{#q2} v2 -∗ l ↦{#q3} v3 -∗
l ↦{#(q1 + (q2 + q3))} v1 ∗ ⌜q1 + (q2 + q3) ≤ 1⌝%Qp ∗ ⌜v1 = v2⌝ ∗ ⌜v2 = v3⌝.
Proof.
iIntros "H1 H2 H3".
by iCombine "H1 H2 H3" as "$" gives %[[_ ->] [? ->]].
Qed.
Lemma pointsto_combine_4 l v1 q1 v2 q2 v3 q3 v4 q4 :
l ↦{#q1} v1 -∗ l ↦{#q2} v2 -∗ l ↦{#q3} v3 -∗ l ↦{#q4} v4 -∗
l ↦{#(q1 + (q2 + (q3 + q4)))} v1 ∗ ⌜q1 + (q2 + (q3 + q4)) ≤ 1⌝%Qp ∗
⌜v1 = v2⌝ ∗ ⌜v2 = v3⌝ ∗ ⌜v3 = v4⌝.
Proof.
iIntros "H1 H2 H3 H4".
iCombine "H1 H2 H3 H4" as "$" gives %H. Show.
by destruct H as [[[_ ->] [_ ->]] [? ->]].
Qed.
End pointsto_tests.
Section inv_pointsto_tests.
Context `{!heapGS Σ}.
(* Make sure these parse and type-check. *)
Lemma inv_pointsto_own_test (l : loc) : ⊢ l ↦_(λ _, True) #5. Abort.
Lemma inv_pointsto_test (l : loc) : ⊢ l ↦_(λ _, True) □. Abort.
(* Make sure [setoid_rewrite] works. *)
Lemma inv_pointsto_setoid_rewrite (l : loc) (I : val → Prop) :
(∀ v, I v ↔ I #true) →
⊢ l ↦_(λ v, I v) □.
Proof.
iIntros (Heq). setoid_rewrite Heq. Show.
Abort.
End inv_pointsto_tests.
Section atomic.
Context `{!heapGS Σ}.
Implicit Types P Q : iProp Σ.
(* These tests check if a side-condition for [Atomic] is generated *)
Check "wp_iMod_fupd_atomic".
Lemma wp_iMod_fupd_atomic E1 E2 P :
(|={E1,E2}=> P) -∗ WP #() #() @ E1 {{ _, True }}.
Proof.
iIntros "H". iMod "H". Show.
Abort.
Check "wp_iInv_atomic".
Lemma wp_iInv_atomic N E P :
↑ N ⊆ E →
inv N P -∗ WP #() #() @ E {{ _, True }}.
Proof.
iIntros (?) "H". iInv "H" as "H" "Hclose". Show.
Abort.
Check "wp_iInv_atomic_acc".
Lemma wp_iInv_atomic_acc N E P :
↑ N ⊆ E →
inv N P -∗ WP #() #() @ E {{ _, True }}.
Proof.
(* Test if a side-condition for [Atomic] is generated *)
iIntros (?) "H". iInv "H" as "H". Show.
Abort.
End atomic.
Section error_tests.
Context `{!heapGS Σ}.
Check "not_cmpxchg".
Lemma not_cmpxchg :
⊢ WP #() #() {{ _, True }}.
Proof.
Fail wp_cmpxchg_suc.
Abort.
End error_tests.
(* Test a closed proof *)
Lemma heap_e_adequate σ : adequate NotStuck heap_e σ (λ v _, v = #2).
Proof. eapply (heap_adequacy heapΣ). iIntros (?) "_". by iApply heap_e_spec. Qed.
Lemma heap_e_totally_adequate σ : sn erased_step ([heap_e], σ).
Proof.
eapply (heap_total heapΣ NotStuck _ _ (const True)).
iIntros (?) "_". rewrite /heap_e /=.
wp_alloc l. wp_load. wp_store. wp_load. auto.
Qed.
|