1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
From iris.proofmode Require Import tactics monpred.
From iris.base_logic Require Import base_logic.
From iris.base_logic.lib Require Import invariants cancelable_invariants na_invariants.
From iris.prelude Require Import options.
From iris.bi Require Import ascii.
Unset Mangle Names.
(* Remove this and the [Set Printing Raw Literals.] below once we require Coq
8.14. *)
Set Warnings "-unknown-option".
Section base_logic_tests.
Context {M : ucmra}.
Implicit Types P Q R : uPred M.
Lemma test_random_stuff (P1 P2 P3 : nat -> uPred M) :
|- forall (x y : nat) a b,
x ≡ y ->
<#> (uPred_ownM (a ⋅ b) -*
(exists y1 y2 c, P1 ((x + y1) + y2) /\ True /\ <#> uPred_ownM c) -*
<#> |> (forall z, P2 z ∨ True -> P2 z) -*
|> (forall n m : nat, P1 n -> <#> (True /\ P2 n -> <#> (⌜n = n⌝ <-> P3 n))) -*
|> ⌜x = 0⌝ \/ exists x z, |> P3 (x + z) ** uPred_ownM b ** uPred_ownM (core b)).
Proof.
iIntros (i [|j] a b ?) "!> [Ha Hb] H1 #H2 H3"; setoid_subst.
{ iLeft. by iNext. }
iRight.
iDestruct "H1" as (z1 z2 c) "(H1&_&#Hc)".
iPoseProof "Hc" as "foo".
iRevert (a b) "Ha Hb". iIntros (b a) "Hb {foo} Ha".
iAssert (uPred_ownM (a ⋅ core a)) with "[Ha]" as "[Ha #Hac]".
{ by rewrite cmra_core_r. }
iIntros "{$Hac $Ha}".
iExists (S j + z1), z2.
iNext.
iApply ("H3" $! _ 0 with "[$]").
- iSplit; first done. iApply "H2". iLeft. iApply "H2". by iRight.
- done.
Qed.
Lemma test_iFrame_pure (x y z : M) :
✓ x -> ⌜y ≡ z⌝ |-@{uPredI M} ✓ x /\ ✓ x /\ y ≡ z.
Proof. iIntros (Hv) "Hxy". by iFrame (Hv) "Hxy". Qed.
Lemma test_iAssert_modality P : (|==> False) -* |==> P.
Proof. iIntros. iAssert False%I with "[> - //]" as %[]. Qed.
Lemma test_iStartProof_1 P : P -* P.
Proof. iStartProof. iStartProof. iIntros "$". Qed.
Lemma test_iStartProof_2 P : P -* P.
Proof. iStartProof (uPred _). iStartProof (uPredI _). iIntros "$". Qed.
Lemma test_iStartProof_3 P : P -* P.
Proof. iStartProof (uPredI _). iStartProof (uPredI _). iIntros "$". Qed.
Lemma test_iStartProof_4 P : P -* P.
Proof. iStartProof (uPredI _). iStartProof (uPred _). iIntros "$". Qed.
End base_logic_tests.
Section iris_tests.
Context `{!invGS_gen hlc Σ, !cinvG Σ, !na_invG Σ}.
Implicit Types P Q R : iProp Σ.
Lemma test_masks N E P Q R :
↑N ⊆ E ->
(True -* P -* inv N Q -* True -* R) -* P -* |> Q ={E}=* R.
Proof.
iIntros (?) "H HP HQ".
iApply ("H" with "[% //] [$] [> HQ] [> //]").
by iApply inv_alloc.
Qed.
Lemma test_iInv_0 N P: inv N (<pers> P) ={⊤}=* |> P.
Proof.
iIntros "#H".
iInv N as "#H2". Show.
iModIntro. iSplit; auto.
Qed.
Lemma test_iInv_0_with_close N P: inv N (<pers> P) ={⊤}=* |> P.
Proof.
iIntros "#H".
iInv N as "#H2" "Hclose". Show.
iMod ("Hclose" with "H2").
iModIntro. by iNext.
Qed.
Lemma test_iInv_1 N E P:
↑N ⊆ E ->
inv N (<pers> P) ={E}=* |> P.
Proof.
iIntros (?) "#H".
iInv N as "#H2".
iModIntro. iSplit; auto.
Qed.
Lemma test_iInv_2 γ p N P:
cinv N γ (<pers> P) ** cinv_own γ p ={⊤}=* cinv_own γ p ** |> P.
Proof.
iIntros "(#?&?)".
iInv N as "(#HP&Hown)". Show.
iModIntro. iSplit; auto with iFrame.
Qed.
Lemma test_iInv_2_with_close γ p N P:
cinv N γ (<pers> P) ** cinv_own γ p ={⊤}=* cinv_own γ p ** |> P.
Proof.
iIntros "(#?&?)".
iInv N as "(#HP&Hown)" "Hclose". Show.
iMod ("Hclose" with "HP").
iModIntro. iFrame. by iNext.
Qed.
Lemma test_iInv_3 γ p1 p2 N P:
cinv N γ (<pers> P) ** cinv_own γ p1 ** cinv_own γ p2
={⊤}=* cinv_own γ p1 ** cinv_own γ p2 ** |> P.
Proof.
iIntros "(#?&Hown1&Hown2)".
iInv N with "[Hown2 //]" as "(#HP&Hown2)".
iModIntro. iSplit; auto with iFrame.
Qed.
Lemma test_iInv_4 t N E1 E2 P:
↑N ⊆ E2 ->
na_inv t N (<pers> P) ** na_own t E1 ** na_own t E2
|- |={⊤}=> na_own t E1 ** na_own t E2 ** |> P.
Proof.
iIntros (?) "(#?&Hown1&Hown2)".
iInv N as "(#HP&Hown2)". Show.
iModIntro. iSplitL "Hown2"; auto with iFrame.
Qed.
Lemma test_iInv_4_with_close t N E1 E2 P:
↑N ⊆ E2 ->
na_inv t N (<pers> P) ** na_own t E1 ** na_own t E2
|- |={⊤}=> na_own t E1 ** na_own t E2 ** |> P.
Proof.
iIntros (?) "(#?&Hown1&Hown2)".
iInv N as "(#HP&Hown2)" "Hclose". Show.
iMod ("Hclose" with "[HP Hown2]").
{ iFrame. done. }
iModIntro. iFrame. by iNext.
Qed.
(* test named selection of which na_own to use *)
Lemma test_iInv_5 t N E1 E2 P:
↑N ⊆ E2 ->
na_inv t N (<pers> P) ** na_own t E1 ** na_own t E2
={⊤}=* na_own t E1 ** na_own t E2 ** |> P.
Proof.
iIntros (?) "(#?&Hown1&Hown2)".
iInv N with "Hown2" as "(#HP&Hown2)".
iModIntro. iSplitL "Hown2"; auto with iFrame.
Qed.
Lemma test_iInv_6 t N E1 E2 P:
↑N ⊆ E1 ->
na_inv t N (<pers> P) ** na_own t E1 ** na_own t E2
={⊤}=* na_own t E1 ** na_own t E2 ** |> P.
Proof.
iIntros (?) "(#?&Hown1&Hown2)".
iInv N with "Hown1" as "(#HP&Hown1)".
iModIntro. iSplitL "Hown1"; auto with iFrame.
Qed.
(* test robustness in presence of other invariants *)
Lemma test_iInv_7 t N1 N2 N3 E1 E2 P:
↑N3 ⊆ E1 ->
inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2
={⊤}=* na_own t E1 ** na_own t E2 ** |> P.
Proof.
iIntros (?) "(#?&#?&#?&Hown1&Hown2)".
iInv N3 with "Hown1" as "(#HP&Hown1)".
iModIntro. iSplitL "Hown1"; auto with iFrame.
Qed.
(* iInv should work even where we have "inv N P" in which P contains an evar *)
Lemma test_iInv_8 N : ∃ P, inv N P ={⊤}=* P ≡ True /\ inv N P.
Proof.
eexists. iIntros "#H".
iInv N as "HP". iFrame "HP". auto.
Qed.
(* test selection by hypothesis name instead of namespace *)
Lemma test_iInv_9 t N1 N2 N3 E1 E2 P:
↑N3 ⊆ E1 ->
inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2
={⊤}=* na_own t E1 ** na_own t E2 ** |> P.
Proof.
iIntros (?) "(#?&#HInv&#?&Hown1&Hown2)".
iInv "HInv" with "Hown1" as "(#HP&Hown1)".
iModIntro. iSplitL "Hown1"; auto with iFrame.
Qed.
(* test selection by hypothesis name instead of namespace *)
Lemma test_iInv_10 t N1 N2 N3 E1 E2 P:
↑N3 ⊆ E1 ->
inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2
={⊤}=* na_own t E1 ** na_own t E2 ** |> P.
Proof.
iIntros (?) "(#?&#HInv&#?&Hown1&Hown2)".
iInv "HInv" as "(#HP&Hown1)".
iModIntro. iSplitL "Hown1"; auto with iFrame.
Qed.
(* test selection by ident name *)
Lemma test_iInv_11 N P: inv N (<pers> P) ={⊤}=* |> P.
Proof.
let H := iFresh in
(iIntros H; iInv H as "#H2"). auto.
Qed.
(* error messages *)
Check "test_iInv_12".
Lemma test_iInv_12 N P: inv N (<pers> P) ={⊤}=* True.
Proof.
iIntros "H".
Fail iInv 34 as "#H2".
Fail iInv nroot as "#H2".
Fail iInv "H2" as "#H2".
done.
Qed.
(* test destruction of existentials when opening an invariant *)
Lemma test_iInv_13 N:
inv N (∃ (v1 v2 v3 : nat), emp ** emp ** emp) ={⊤}=* |> emp.
Proof.
iIntros "H"; iInv "H" as (v1 v2 v3) "(?&?&_)".
eauto.
Qed.
Theorem test_iApply_inG `{!inG Σ A} γ (x x' : A) :
x' ≼ x ->
own γ x -* own γ x'.
Proof. intros. by iApply own_mono. Qed.
End iris_tests.
Section monpred_tests.
Context `{!invGS_gen hlc Σ}.
Context {I : biIndex}.
Local Notation monPred := (monPred I (iPropI Σ)).
Local Notation monPredI := (monPredI I (iPropI Σ)).
Implicit Types P Q R : monPred.
Implicit Types 𝓟 𝓠 𝓡 : iProp Σ.
Check "test_iInv".
Lemma test_iInv N E 𝓟 :
↑N ⊆ E ->
⎡inv N 𝓟⎤ |-@{monPredI} |={E}=> emp.
Proof.
iIntros (?) "Hinv".
iInv N as "HP". Show.
iFrame "HP". auto.
Qed.
Check "test_iInv_with_close".
Lemma test_iInv_with_close N E 𝓟 :
↑N ⊆ E ->
⎡inv N 𝓟⎤ |-@{monPredI} |={E}=> emp.
Proof.
iIntros (?) "Hinv".
iInv N as "HP" "Hclose". Show.
iMod ("Hclose" with "HP"). auto.
Qed.
End monpred_tests.
(** Test specifically if certain things parse correctly. *)
Section parsing_tests.
Context {PROP : bi}.
Implicit Types P : PROP.
Lemma test_bi_emp_valid : |-@{PROP} True.
Proof. naive_solver. Qed.
Lemma test_bi_emp_valid_parens : (|-@{PROP} True) /\ ((|-@{PROP} True)).
Proof. naive_solver. Qed.
Lemma test_bi_emp_valid_parens_space_open : ( |-@{PROP} True).
Proof. naive_solver. Qed.
Lemma test_bi_emp_valid_parens_space_close : (|-@{PROP} True ).
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections P :
(P |-@{PROP} P) /\ (|-@{PROP}) P P /\
(P -|-@{PROP} P) /\ (-|-@{PROP}) P P.
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections_parens P :
((P |-@{PROP} P)) /\ ((|-@{PROP})) P P /\
((P -|-@{PROP} P)) /\ ((-|-@{PROP})) P P.
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections_space_open P :
( P |-@{PROP} P) /\
( P -|-@{PROP} P).
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections_space_close P :
(P |-@{PROP} P ) /\ (|-@{PROP} ) P P /\
(P -|-@{PROP} P ) /\ (-|-@{PROP} ) P P.
Proof. naive_solver. Qed.
(* Make sure these all parse as they should.
To make the [Check] print correctly, we need to set and reset the printing
settings each time. *)
Check "p1".
Lemma p1 : forall P, True -> P |- P.
Proof.
Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.
Check "p2".
Lemma p2 : forall P, True /\ (P |- P).
Proof.
Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.
Check "p3".
Lemma p3 : exists P, P |- P.
Proof.
Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.
Check "p4".
Lemma p4 : |-@{PROP} exists (x : nat), ⌜x = 0⌝.
Proof.
Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.
Check "p5".
Lemma p5 : |-@{PROP} exists (x : nat), ⌜forall y : nat, y = y⌝.
Proof.
Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.
Check "p6".
Lemma p6 : exists! (z : nat), |-@{PROP} exists (x : nat), ⌜forall y : nat, y = y⌝ ** ⌜z = 0⌝.
Proof.
Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.
Check "p7".
Lemma p7 : forall (a : nat), a = 0 -> forall y, True |-@{PROP} ⌜y >= 0⌝.
Proof.
Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.
Check "p8".
Lemma p8 : forall (a : nat), a = 0 -> forall y, |-@{PROP} ⌜y >= 0⌝.
Proof.
Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.
Check "p9".
Lemma p9 : forall (a : nat), a = 0 -> forall y : nat, |-@{PROP} forall z : nat, ⌜z >= 0⌝.
Proof.
Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.
End parsing_tests.
|