File: proofmode_ascii.v

package info (click to toggle)
coq-iris 4.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,116 kB
  • sloc: python: 130; makefile: 61; sh: 28; sed: 2
file content (362 lines) | stat: -rw-r--r-- 11,239 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
From iris.proofmode Require Import tactics monpred.
From iris.base_logic Require Import base_logic.
From iris.base_logic.lib Require Import invariants cancelable_invariants na_invariants.
From iris.prelude Require Import options.

From iris.bi Require Import ascii.

Unset Mangle Names.

(* Remove this and the [Set Printing Raw Literals.] below once we require Coq
8.14. *)
Set Warnings "-unknown-option".

Section base_logic_tests.
  Context {M : ucmra}.
  Implicit Types P Q R : uPred M.

  Lemma test_random_stuff (P1 P2 P3 : nat -> uPred M) :
    |- forall (x y : nat) a b,
      x ≡ y ->
      <#> (uPred_ownM (a ⋅ b) -*
      (exists y1 y2 c, P1 ((x + y1) + y2) /\ True /\ <#> uPred_ownM c) -*
      <#> |> (forall z, P2 z ∨ True -> P2 z) -*
      |> (forall n m : nat, P1 n -> <#> (True /\ P2 n -> <#> (⌜n = n⌝ <-> P3 n))) -*
      |> ⌜x = 0⌝ \/ exists x z, |> P3 (x + z) ** uPred_ownM b ** uPred_ownM (core b)).
  Proof.
    iIntros (i [|j] a b ?) "!> [Ha Hb] H1 #H2 H3"; setoid_subst.
    { iLeft. by iNext. }
    iRight.
    iDestruct "H1" as (z1 z2 c) "(H1&_&#Hc)".
    iPoseProof "Hc" as "foo".
    iRevert (a b) "Ha Hb". iIntros (b a) "Hb {foo} Ha".
    iAssert (uPred_ownM (a ⋅ core a)) with "[Ha]" as "[Ha #Hac]".
    { by rewrite cmra_core_r. }
    iIntros "{$Hac $Ha}".
    iExists (S j + z1), z2.
    iNext.
    iApply ("H3" $! _ 0 with "[$]").
    - iSplit; first done. iApply "H2". iLeft. iApply "H2". by iRight.
    - done.
  Qed.

  Lemma test_iFrame_pure (x y z : M) :
    ✓ x -> ⌜y ≡ z⌝ |-@{uPredI M} ✓ x /\ ✓ x /\ y ≡ z.
  Proof. iIntros (Hv) "Hxy". by iFrame (Hv) "Hxy". Qed.

  Lemma test_iAssert_modality P : (|==> False) -* |==> P.
  Proof. iIntros. iAssert False%I with "[> - //]" as %[]. Qed.

  Lemma test_iStartProof_1 P : P -* P.
  Proof. iStartProof. iStartProof. iIntros "$". Qed.
  Lemma test_iStartProof_2 P : P -* P.
  Proof. iStartProof (uPred _). iStartProof (uPredI _). iIntros "$". Qed.
  Lemma test_iStartProof_3 P : P -* P.
  Proof. iStartProof (uPredI _). iStartProof (uPredI _). iIntros "$". Qed.
  Lemma test_iStartProof_4 P : P -* P.
  Proof. iStartProof (uPredI _). iStartProof (uPred _). iIntros "$". Qed.
End base_logic_tests.

Section iris_tests.
  Context `{!invGS_gen hlc Σ, !cinvG Σ, !na_invG Σ}.
  Implicit Types P Q R : iProp Σ.

  Lemma test_masks  N E P Q R :
    ↑N ⊆ E ->
    (True -* P -* inv N Q -* True -* R) -* P -* |> Q ={E}=* R.
  Proof.
    iIntros (?) "H HP HQ".
    iApply ("H" with "[% //] [$] [> HQ] [> //]").
    by iApply inv_alloc.
  Qed.

  Lemma test_iInv_0 N P: inv N (<pers> P) ={⊤}=* |> P.
  Proof.
    iIntros "#H".
    iInv N as "#H2". Show.
    iModIntro. iSplit; auto.
  Qed.

  Lemma test_iInv_0_with_close N P: inv N (<pers> P) ={⊤}=* |> P.
  Proof.
    iIntros "#H".
    iInv N as "#H2" "Hclose". Show.
    iMod ("Hclose" with "H2").
    iModIntro. by iNext.
  Qed.

  Lemma test_iInv_1 N E P:
    ↑N ⊆ E ->
    inv N (<pers> P) ={E}=* |> P.
  Proof.
    iIntros (?) "#H".
    iInv N as "#H2".
    iModIntro. iSplit; auto.
  Qed.

  Lemma test_iInv_2 γ p N P:
    cinv N γ (<pers> P) ** cinv_own γ p ={⊤}=* cinv_own γ p ** |> P.
  Proof.
    iIntros "(#?&?)".
    iInv N as "(#HP&Hown)". Show.
    iModIntro. iSplit; auto with iFrame.
  Qed.

  Lemma test_iInv_2_with_close γ p N P:
    cinv N γ (<pers> P) ** cinv_own γ p ={⊤}=* cinv_own γ p ** |> P.
  Proof.
    iIntros "(#?&?)".
    iInv N as "(#HP&Hown)" "Hclose". Show.
    iMod ("Hclose" with "HP").
    iModIntro. iFrame. by iNext.
  Qed.

  Lemma test_iInv_3 γ p1 p2 N P:
    cinv N γ (<pers> P) ** cinv_own γ p1 ** cinv_own γ p2
      ={⊤}=* cinv_own γ p1 ** cinv_own γ p2  ** |> P.
  Proof.
    iIntros "(#?&Hown1&Hown2)".
    iInv N with "[Hown2 //]" as "(#HP&Hown2)".
    iModIntro. iSplit; auto with iFrame.
  Qed.

  Lemma test_iInv_4 t N E1 E2 P:
    ↑N ⊆ E2 ->
    na_inv t N (<pers> P) ** na_own t E1 ** na_own t E2
         |- |={⊤}=> na_own t E1 ** na_own t E2  ** |> P.
  Proof.
    iIntros (?) "(#?&Hown1&Hown2)".
    iInv N as "(#HP&Hown2)". Show.
    iModIntro. iSplitL "Hown2"; auto with iFrame.
  Qed.

  Lemma test_iInv_4_with_close t N E1 E2 P:
    ↑N ⊆ E2 ->
    na_inv t N (<pers> P) ** na_own t E1 ** na_own t E2
         |- |={⊤}=> na_own t E1 ** na_own t E2  ** |> P.
  Proof.
    iIntros (?) "(#?&Hown1&Hown2)".
    iInv N as "(#HP&Hown2)" "Hclose". Show.
    iMod ("Hclose" with "[HP Hown2]").
    { iFrame. done. }
    iModIntro. iFrame. by iNext.
  Qed.

  (* test named selection of which na_own to use *)
  Lemma test_iInv_5 t N E1 E2 P:
    ↑N ⊆ E2 ->
    na_inv t N (<pers> P) ** na_own t E1 ** na_own t E2
      ={⊤}=* na_own t E1 ** na_own t E2  ** |> P.
  Proof.
    iIntros (?) "(#?&Hown1&Hown2)".
    iInv N with "Hown2" as "(#HP&Hown2)".
    iModIntro. iSplitL "Hown2"; auto with iFrame.
  Qed.

  Lemma test_iInv_6 t N E1 E2 P:
    ↑N ⊆ E1 ->
    na_inv t N (<pers> P) ** na_own t E1 ** na_own t E2
      ={⊤}=* na_own t E1 ** na_own t E2  ** |> P.
  Proof.
    iIntros (?) "(#?&Hown1&Hown2)".
    iInv N with "Hown1" as "(#HP&Hown1)".
    iModIntro. iSplitL "Hown1"; auto with iFrame.
  Qed.

  (* test robustness in presence of other invariants *)
  Lemma test_iInv_7 t N1 N2 N3 E1 E2 P:
    ↑N3 ⊆ E1 ->
    inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2
      ={⊤}=* na_own t E1 ** na_own t E2 ** |> P.
  Proof.
    iIntros (?) "(#?&#?&#?&Hown1&Hown2)".
    iInv N3 with "Hown1" as "(#HP&Hown1)".
    iModIntro. iSplitL "Hown1"; auto with iFrame.
  Qed.

  (* iInv should work even where we have "inv N P" in which P contains an evar *)
  Lemma test_iInv_8 N : ∃ P, inv N P ={⊤}=* P ≡ True /\ inv N P.
  Proof.
    eexists. iIntros "#H".
    iInv N as "HP". iFrame "HP". auto.
  Qed.

  (* test selection by hypothesis name instead of namespace *)
  Lemma test_iInv_9 t N1 N2 N3 E1 E2 P:
    ↑N3 ⊆ E1 ->
    inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2
      ={⊤}=* na_own t E1 ** na_own t E2 ** |> P.
  Proof.
    iIntros (?) "(#?&#HInv&#?&Hown1&Hown2)".
    iInv "HInv" with "Hown1" as "(#HP&Hown1)".
    iModIntro. iSplitL "Hown1"; auto with iFrame.
  Qed.

  (* test selection by hypothesis name instead of namespace *)
  Lemma test_iInv_10 t N1 N2 N3 E1 E2 P:
    ↑N3 ⊆ E1 ->
    inv N1 P ** na_inv t N3 (<pers> P) ** inv N2 P ** na_own t E1 ** na_own t E2
      ={⊤}=* na_own t E1 ** na_own t E2 ** |> P.
  Proof.
    iIntros (?) "(#?&#HInv&#?&Hown1&Hown2)".
    iInv "HInv" as "(#HP&Hown1)".
    iModIntro. iSplitL "Hown1"; auto with iFrame.
  Qed.

  (* test selection by ident name *)
  Lemma test_iInv_11 N P: inv N (<pers> P) ={⊤}=* |> P.
  Proof.
    let H := iFresh in
    (iIntros H; iInv H as "#H2"). auto.
  Qed.

  (* error messages *)
  Check "test_iInv_12".
  Lemma test_iInv_12 N P: inv N (<pers> P) ={⊤}=* True.
  Proof.
    iIntros "H".
    Fail iInv 34 as "#H2".
    Fail iInv nroot as "#H2".
    Fail iInv "H2" as "#H2".
    done.
  Qed.

  (* test destruction of existentials when opening an invariant *)
  Lemma test_iInv_13 N:
    inv N (∃ (v1 v2 v3 : nat), emp ** emp ** emp) ={⊤}=* |> emp.
  Proof.
    iIntros "H"; iInv "H" as (v1 v2 v3) "(?&?&_)".
    eauto.
  Qed.

  Theorem test_iApply_inG `{!inG Σ A} γ (x x' : A) :
    x' ≼ x ->
    own γ x -* own γ x'.
  Proof. intros. by iApply own_mono. Qed.
End iris_tests.

Section monpred_tests.
  Context `{!invGS_gen hlc Σ}.
  Context {I : biIndex}.
  Local Notation monPred := (monPred I (iPropI Σ)).
  Local Notation monPredI := (monPredI I (iPropI Σ)).
  Implicit Types P Q R : monPred.
  Implicit Types 𝓟 𝓠 𝓡 : iProp Σ.

  Check "test_iInv".
  Lemma test_iInv N E 𝓟 :
    ↑N ⊆ E ->
    ⎡inv N 𝓟⎤ |-@{monPredI} |={E}=> emp.
  Proof.
    iIntros (?) "Hinv".
    iInv N as "HP". Show.
    iFrame "HP". auto.
  Qed.

  Check "test_iInv_with_close".
  Lemma test_iInv_with_close N E 𝓟 :
    ↑N ⊆ E ->
    ⎡inv N 𝓟⎤ |-@{monPredI} |={E}=> emp.
  Proof.
    iIntros (?) "Hinv".
    iInv N as "HP" "Hclose". Show.
    iMod ("Hclose" with "HP"). auto.
  Qed.

End monpred_tests.

(** Test specifically if certain things parse correctly. *)
Section parsing_tests.
Context {PROP : bi}.
Implicit Types P : PROP.

Lemma test_bi_emp_valid : |-@{PROP} True.
Proof. naive_solver. Qed.

Lemma test_bi_emp_valid_parens : (|-@{PROP} True) /\ ((|-@{PROP} True)).
Proof. naive_solver. Qed.

Lemma test_bi_emp_valid_parens_space_open : ( |-@{PROP} True).
Proof. naive_solver. Qed.

Lemma test_bi_emp_valid_parens_space_close : (|-@{PROP} True ).
Proof. naive_solver. Qed.

Lemma test_entails_annot_sections P :
  (P |-@{PROP} P) /\ (|-@{PROP}) P P /\
  (P -|-@{PROP} P) /\ (-|-@{PROP}) P P.
Proof. naive_solver. Qed.

Lemma test_entails_annot_sections_parens P :
  ((P |-@{PROP} P)) /\ ((|-@{PROP})) P P /\
  ((P -|-@{PROP} P)) /\ ((-|-@{PROP})) P P.
Proof. naive_solver. Qed.

Lemma test_entails_annot_sections_space_open P :
  ( P |-@{PROP} P) /\
  ( P -|-@{PROP} P).
Proof. naive_solver. Qed.

Lemma test_entails_annot_sections_space_close P :
  (P |-@{PROP} P ) /\ (|-@{PROP} ) P P /\
  (P -|-@{PROP} P ) /\ (-|-@{PROP} ) P P.
Proof. naive_solver. Qed.

(* Make sure these all parse as they should.
To make the [Check] print correctly, we need to set and reset the printing
settings each time. *)
Check "p1".
Lemma p1 : forall P, True -> P |- P.
Proof.
  Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.

Check "p2".
Lemma p2 : forall P, True /\ (P |- P).
Proof.
  Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.

Check "p3".
Lemma p3 : exists P, P |- P.
Proof.
  Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.

Check "p4".
Lemma p4 : |-@{PROP} exists (x : nat), ⌜x = 0⌝.
Proof.
  Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.

Check "p5".
Lemma p5 : |-@{PROP} exists (x : nat), ⌜forall y : nat, y = y⌝.
Proof.
  Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.

Check "p6".
Lemma p6 : exists! (z : nat), |-@{PROP} exists (x : nat), ⌜forall y : nat, y = y⌝ ** ⌜z = 0⌝.
Proof.
  Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.

Check "p7".
Lemma p7 : forall (a : nat), a = 0 -> forall y, True |-@{PROP} ⌜y >= 0⌝.
Proof.
  Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.

Check "p8".
Lemma p8 : forall (a : nat), a = 0 -> forall y, |-@{PROP} ⌜y >= 0⌝.
Proof.
  Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.

Check "p9".
Lemma p9 : forall (a : nat), a = 0 -> forall y : nat, |-@{PROP} forall z : nat, ⌜z >= 0⌝.
Proof.
  Unset Printing Notations. Set Printing Raw Literals. Show. Set Printing Notations. Unset Printing Raw Literals.
Abort.

End parsing_tests.