1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
From iris.algebra Require Import frac.
From iris.proofmode Require Import tactics monpred.
From iris.base_logic Require Import base_logic.
From iris.base_logic.lib Require Import invariants cancelable_invariants na_invariants ghost_var.
From iris.program_logic Require Import total_weakestpre.
From iris.prelude Require Import options.
Unset Mangle Names.
Set Default Proof Using "Type*".
Section base_logic_tests.
Context {M : ucmra}.
Implicit Types P Q R : uPred M.
Lemma test_random_stuff (P1 P2 P3 : nat → uPred M) :
⊢ ∀ (x y : nat) a b,
x ≡ y →
□ (uPred_ownM (a ⋅ b) -∗
(∃ y1 y2 c, P1 ((x + y1) + y2) ∧ True ∧ □ uPred_ownM c) -∗
□ ▷ (∀ z, P2 z ∨ True → P2 z) -∗
▷ (∀ n m : nat, P1 n → □ ((True ∧ P2 n) → □ (⌜n = n⌝ ↔ P3 n))) -∗
▷ ⌜x = 0⌝ ∨ ∃ x z, ▷ P3 (x + z) ∗ uPred_ownM b ∗ uPred_ownM (core b)).
Proof.
iIntros (i [|j] a b ?) "!> [Ha Hb] H1 #H2 H3"; setoid_subst.
{ iLeft. by iNext. }
iRight.
iDestruct "H1" as (z1 z2 c) "(H1&_&#Hc)".
iPoseProof "Hc" as "foo".
iRevert (a b) "Ha Hb". iIntros (b a) "Hb {foo} Ha".
iAssert (uPred_ownM (a ⋅ core a)) with "[Ha]" as "[Ha #Hac]".
{ by rewrite cmra_core_r. }
iIntros "{$Hac $Ha}".
iExists (S j + z1), z2.
iNext.
iApply ("H3" $! _ 0 with "[$]").
- iSplit; first done. iApply "H2". iLeft. iApply "H2". by iRight.
- done.
Qed.
Lemma test_iFrame_pure (x y z : M) :
✓ x → ⌜y ≡ z⌝ -∗ (✓ x ∧ ✓ x ∧ y ≡ z : uPred M).
Proof. iIntros (Hv) "Hxy". by iFrame (Hv) "Hxy". Qed.
Lemma test_iAssert_modality P : (|==> False) -∗ |==> P.
Proof. iIntros. iAssert False%I with "[> - //]" as %[]. Qed.
Lemma test_iStartProof_1 P : P -∗ P.
Proof. iStartProof. iStartProof. iIntros "$". Qed.
Lemma test_iStartProof_2 P : P -∗ P.
Proof. iStartProof (uPred _). iStartProof (uPredI _). iIntros "$". Qed.
Lemma test_iStartProof_3 P : P -∗ P.
Proof. iStartProof (uPredI _). iStartProof (uPredI _). iIntros "$". Qed.
Lemma test_iStartProof_4 P : P -∗ P.
Proof. iStartProof (uPredI _). iStartProof (uPred _). iIntros "$". Qed.
End base_logic_tests.
Section iris_tests.
Context `{!invGS_gen hlc Σ, !cinvG Σ, !na_invG Σ}.
Implicit Types P Q R : iProp Σ.
Lemma test_except_0_inv N P : ▷ False -∗ inv N P.
Proof.
iIntros "H". by iMod "H". (* works because invariants are [IsExcept0] *)
Qed.
Lemma test_masks N E P Q R :
↑N ⊆ E →
(True -∗ P -∗ inv N Q -∗ True -∗ R) -∗ P -∗ ▷ Q ={E}=∗ R.
Proof.
iIntros (?) "H HP HQ".
iApply ("H" with "[% //] [$] [> HQ] [> //]").
by iApply inv_alloc.
Qed.
Lemma test_iInv_0 N P: inv N (<pers> P) ={⊤}=∗ ▷ P.
Proof.
iIntros "#H".
iInv N as "#H2". Show.
iModIntro. iSplit; auto.
Qed.
Lemma test_iInv_0_with_close N P: inv N (<pers> P) ={⊤}=∗ ▷ P.
Proof.
iIntros "#H".
iInv N as "#H2" "Hclose". Show.
iMod ("Hclose" with "H2").
iModIntro. by iNext.
Qed.
Lemma test_iInv_1 N E P:
↑N ⊆ E →
inv N (<pers> P) ={E}=∗ ▷ P.
Proof.
iIntros (?) "#H".
iInv N as "#H2".
iModIntro. iSplit; auto.
Qed.
Lemma test_iInv_2 γ p N P:
cinv N γ (<pers> P) ∗ cinv_own γ p ={⊤}=∗ cinv_own γ p ∗ ▷ P.
Proof.
Show.
iIntros "(#?&?)".
iInv N as "(#HP&Hown)". Show.
iModIntro. iSplit; auto with iFrame.
Qed.
Check "test_iInv_2_with_close".
Lemma test_iInv_2_with_close γ p N P:
cinv N γ (<pers> P) ∗ cinv_own γ p ={⊤}=∗ cinv_own γ p ∗ ▷ P.
Proof.
iIntros "(#?&?)".
iInv N as "(#HP&Hown)" "Hclose". Show.
iMod ("Hclose" with "HP").
iModIntro. iFrame. by iNext.
Qed.
Lemma test_iInv_3 γ p1 p2 N P:
cinv N γ (<pers> P) ∗ cinv_own γ p1 ∗ cinv_own γ p2
={⊤}=∗ cinv_own γ p1 ∗ cinv_own γ p2 ∗ ▷ P.
Proof.
iIntros "(#?&Hown1&Hown2)".
iInv N with "[Hown2 //]" as "(#HP&Hown2)".
iModIntro. iSplit; auto with iFrame.
Qed.
Check "test_iInv_4".
Lemma test_iInv_4 t N E1 E2 P:
↑N ⊆ E2 →
na_inv t N (<pers> P) ∗ na_own t E1 ∗ na_own t E2
={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ ▷ P.
Proof.
iIntros (?) "(#?&Hown1&Hown2)".
iInv N as "(#HP&Hown2)". Show.
iModIntro. iSplitL "Hown2"; auto with iFrame.
Qed.
Check "test_iInv_4_with_close".
Lemma test_iInv_4_with_close t N E1 E2 P:
↑N ⊆ E2 →
na_inv t N (<pers> P) ∗ na_own t E1 ∗ na_own t E2
={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ ▷ P.
Proof.
iIntros (?) "(#?&Hown1&Hown2)".
iInv N as "(#HP&Hown2)" "Hclose". Show.
iMod ("Hclose" with "[HP Hown2]").
{ iFrame. done. }
iModIntro. iFrame. by iNext.
Qed.
(* test named selection of which na_own to use *)
Lemma test_iInv_5 t N E1 E2 P:
↑N ⊆ E2 →
na_inv t N (<pers> P) ∗ na_own t E1 ∗ na_own t E2
={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ ▷ P.
Proof.
iIntros (?) "(#?&Hown1&Hown2)".
iInv N with "Hown2" as "(#HP&Hown2)".
iModIntro. iSplitL "Hown2"; auto with iFrame.
Qed.
Lemma test_iInv_6 t N E1 E2 P:
↑N ⊆ E1 →
na_inv t N (<pers> P) ∗ na_own t E1 ∗ na_own t E2
={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ ▷ P.
Proof.
iIntros (?) "(#?&Hown1&Hown2)".
iInv N with "Hown1" as "(#HP&Hown1)".
iModIntro. iSplitL "Hown1"; auto with iFrame.
Qed.
(* test robustness in presence of other invariants *)
Lemma test_iInv_7 t N1 N2 N3 E1 E2 P:
↑N3 ⊆ E1 →
inv N1 P ∗ na_inv t N3 (<pers> P) ∗ inv N2 P ∗ na_own t E1 ∗ na_own t E2
={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ ▷ P.
Proof.
iIntros (?) "(#?&#?&#?&Hown1&Hown2)".
iInv N3 with "Hown1" as "(#HP&Hown1)".
iModIntro. iSplitL "Hown1"; auto with iFrame.
Qed.
(* iInv should work even where we have "inv N P" in which P contains an evar *)
Lemma test_iInv_8 N : ∃ P, inv N P ={⊤}=∗ P ≡ True ∧ inv N P.
Proof.
eexists. iIntros "#H".
iInv N as "HP". iFrame "HP". auto.
Qed.
(* test selection by hypothesis name instead of namespace *)
Lemma test_iInv_9 t N1 N2 N3 E1 E2 P:
↑N3 ⊆ E1 →
inv N1 P ∗ na_inv t N3 (<pers> P) ∗ inv N2 P ∗ na_own t E1 ∗ na_own t E2
={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ ▷ P.
Proof.
iIntros (?) "(#?&#HInv&#?&Hown1&Hown2)".
iInv "HInv" with "Hown1" as "(#HP&Hown1)".
iModIntro. iSplitL "Hown1"; auto with iFrame.
Qed.
(* test selection by hypothesis name instead of namespace *)
Lemma test_iInv_10 t N1 N2 N3 E1 E2 P:
↑N3 ⊆ E1 →
inv N1 P ∗ na_inv t N3 (<pers> P) ∗ inv N2 P ∗ na_own t E1 ∗ na_own t E2
={⊤}=∗ na_own t E1 ∗ na_own t E2 ∗ ▷ P.
Proof.
iIntros (?) "(#?&#HInv&#?&Hown1&Hown2)".
iInv "HInv" as "(#HP&Hown1)".
iModIntro. iSplitL "Hown1"; auto with iFrame.
Qed.
(* test selection by ident name *)
Lemma test_iInv_11 N P: inv N (<pers> P) ={⊤}=∗ ▷ P.
Proof.
let H := iFresh in
(iIntros H; iInv H as "#H2"). auto.
Qed.
(* error messages *)
Check "test_iInv_12".
Lemma test_iInv_12 N P: inv N (<pers> P) ={⊤}=∗ True.
Proof.
iIntros "H".
Fail iInv 34 as "#H2".
Fail iInv nroot as "#H2".
Fail iInv "H2" as "#H2".
done.
Qed.
Check "test_iInv_error_no_update".
Lemma test_iInv_error_no_update N P : inv N P -∗ True.
Proof.
iIntros "H".
Fail iInv N as "H".
Abort.
(* test destruction of existentials when opening an invariant *)
Lemma test_iInv_13 N:
inv N (∃ (v1 v2 v3 : nat), emp ∗ emp ∗ emp) ={⊤}=∗ ▷ emp.
Proof.
iIntros "H"; iInv "H" as (v1 v2 v3) "(?&?&_)".
eauto.
Qed.
(* Test [iInv] with accessor variables. *)
Section iInv_accessor_variables.
(** We consider a kind of invariant that does not take a proposition, but
a predicate. The invariant accessor gives the predicate existentially. *)
Context (INV : (bool → iProp Σ) → iProp Σ).
Context `{!∀ Φ,
IntoAcc (INV Φ) True True (fupd ⊤ ∅) (fupd ∅ ⊤) Φ Φ (λ b, Some (INV Φ))}.
Check "test_iInv_accessor_variable".
Lemma test_iInv_accessor_variable Φ : INV Φ ={⊤}=∗ INV Φ.
Proof.
iIntros "HINV".
(* There are 4 variants of [iInv] that we have to test *)
(* No selection pattern, no closing view shift *)
Fail iInv "HINV" as "HINVinner".
iInv "HINV" as (b) "HINVinner"; rename b into b_exists. Undo.
(* Both sel.pattern and closing view shift *)
Fail iInv "HINV" with "[//]" as "HINVinner" "Hclose".
iInv "HINV" with "[//]" as (b) "HINVinner" "Hclose";
rename b into b_exists. Undo.
(* Sel.pattern but no closing view shift *)
Fail iInv "HINV" with "[//]" as "HINVinner".
iInv "HINV" with "[//]" as (b) "HINVinner"; rename b into b_exists. Undo.
(* Closing view shift, no selection pattern *)
Fail iInv "HINV" as "HINVinner" "Hclose".
iInv "HINV" as (b) "HINVinner" "Hclose"; rename b into b_exists.
by iApply "Hclose".
Qed.
End iInv_accessor_variables.
Theorem test_iApply_inG `{!inG Σ A} γ (x x' : A) :
x' ≼ x →
own γ x -∗ own γ x'.
Proof. intros. by iApply own_mono. Qed.
Check "test_frac_split_combine".
Lemma test_frac_split_combine `{!inG Σ fracR} γ :
own γ 1%Qp -∗ own γ 1%Qp.
Proof.
iIntros "[H1 H2]". Show.
iCombine "H1 H2" as "H". Show.
iExact "H".
Qed.
Check "test_iDestruct_mod_not_fresh".
Lemma test_iDestruct_mod_not_fresh P Q :
P -∗ (|={⊤}=> Q) -∗ (|={⊤}=> False).
Proof.
iIntros "H H'". Fail iDestruct "H'" as ">H".
Abort.
(** Make sure that the splitting rule for [+] gets preferred over the one for
[S]. See issue #470. *)
Check "test_iIntros_lc".
Lemma test_iIntros_lc n m : £ (S n + m) -∗ £ (S n).
Proof. iIntros "[Hlc1 Hlc2]". Show. iExact "Hlc1". Qed.
Check "lc_iSplit_lc".
Lemma lc_iSplit_lc n m : £ (S n) -∗ £ m -∗ £ (S n + m).
Proof. iIntros "Hlc1 Hlc2". iSplitL "Hlc1". Show. all: done. Qed.
(** Make sure [iCombine] doesn't leave behind beta redexes. *)
Check "test_iCombine_pointsto_no_beta".
Lemma test_iCombine_ghost_var_no_beta `{!ghost_varG Σ nat} l (v : nat) q1 q2 :
ghost_var l q1 v -∗ ghost_var l q2 v -∗ ghost_var l (q1+q2) v.
Proof.
iIntros "H1 H2". iCombine "H1 H2" as "H". Show. done.
Qed.
End iris_tests.
Section WP_tests.
Context `{!irisGS_gen hlc Λ Σ}.
Implicit Types P Q R : iProp Σ.
Check "iMod_WP_mask_mismatch".
Lemma iMod_WP_mask_mismatch E1 E2 P (e : expr Λ) :
(|={E2}=> P) ⊢ WP e @ E1 {{ _, True }}.
Proof.
Fail iIntros ">HP".
iIntros "HP". Fail iMod "HP".
iApply fupd_wp; iMod (fupd_mask_subseteq E2).
Abort.
Check "iMod_WP_atomic_mask_mismatch".
Lemma iMod_WP_atomic_mask_mismatch E1 E2 E2' P (e : expr Λ) :
(|={E2,E2'}=> P) ⊢ WP e @ E1 {{ _, True }}.
Proof.
Fail iIntros ">HP".
iIntros "HP". Fail iMod "HP".
iMod (fupd_mask_subseteq E2).
Abort.
Check "iFrame_WP_no_instantiate".
Lemma iFrame_WP_no_instantiate (e : expr Λ) (Φ : nat → iProp Σ) :
□ Φ 0 ⊢ WP e {{ _, Φ 0 ∗ ∃ n, Φ n }}.
Proof.
iIntros "#$".
(* [Φ 0] should get framed, [∃ n, Φ n] should remain untouched *)
Show.
Abort.
Check "iInv_WP".
Lemma iInv_WP (e : expr Λ) N E P :
↑N ⊆ E →
inv N P ⊢ WP e @ E {{ _, True }}.
Proof.
iIntros (?) "Hinv".
iInv N as "HP". Show.
Abort.
End WP_tests.
Section TWP_tests.
Context `{!irisGS_gen hlc Λ Σ}.
Implicit Types P Q R : iProp Σ.
Check "iMod_TWP_mask_mismatch".
Lemma iMod_TWP_mask_mismatch E1 E2 P (e : expr Λ) :
(|={E2}=> P) ⊢ WP e @ E1 [{ _, True }].
Proof.
Fail iIntros ">HP".
iIntros "HP". Fail iMod "HP".
iApply fupd_twp; iMod (fupd_mask_subseteq E2).
Abort.
Check "iMod_TWP_atomic_mask_mismatch".
Lemma iMod_TWP_atomic_mask_mismatch E1 E2 E2' P (e : expr Λ) :
(|={E2,E2'}=> P) ⊢ WP e @ E1 [{ _, True }].
Proof.
Fail iIntros ">HP".
iIntros "HP". Fail iMod "HP".
iMod (fupd_mask_subseteq E2).
Abort.
Check "iFrame_TWP_no_instantiate".
Lemma iFrame_TWP_no_instantiate (e : expr Λ) (Φ : nat → iProp Σ) :
□ Φ 0 ⊢ WP e [{ _, Φ 0 ∗ ∃ n, Φ n }].
Proof.
iIntros "#$".
(* [Φ 0] should get framed, [∃ n, Φ n] should remain untouched *)
Show.
Abort.
Check "iInv_TWP".
Lemma iInv_TWP (e : expr Λ) N E P :
↑N ⊆ E →
inv N P ⊢ WP e @ E [{ _, True }].
Proof.
iIntros (?) "Hinv".
iInv N as "HP". Show.
Abort.
End TWP_tests.
Section monpred_tests.
Context `{!invGS_gen hlc Σ}.
Context {I : biIndex}.
Local Notation monPred := (monPred I (iPropI Σ)).
Local Notation monPredI := (monPredI I (iPropI Σ)).
Implicit Types P Q R : monPred.
Implicit Types 𝓟 𝓠 𝓡 : iProp Σ.
Check "test_iInv".
Lemma test_iInv N E 𝓟 :
↑N ⊆ E →
⎡inv N 𝓟⎤ ⊢@{monPredI} |={E}=> emp.
Proof.
iIntros (?) "Hinv".
iInv N as "HP". Show.
iFrame "HP". auto.
Qed.
Check "test_iInv_with_close".
Lemma test_iInv_with_close N E 𝓟 :
↑N ⊆ E →
⎡inv N 𝓟⎤ ⊢@{monPredI} |={E}=> emp.
Proof.
iIntros (?) "Hinv".
iInv N as "HP" "Hclose". Show.
iMod ("Hclose" with "HP"). auto.
Qed.
End monpred_tests.
|