1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
|
From iris.proofmode Require Export tactics.
From iris.program_logic Require Export weakestpre total_weakestpre.
From iris.heap_lang Require Export lang.
From iris.heap_lang Require Import proofmode notation.
From iris.prelude Require Import options.
Inductive tree :=
| leaf : Z → tree
| node : tree → tree → tree.
Fixpoint is_tree `{!heapGS Σ} (v : val) (t : tree) : iProp Σ :=
match t with
| leaf n => ⌜v = InjLV #n⌝
| node tl tr =>
∃ (ll lr : loc) (vl vr : val),
⌜v = InjRV (#ll,#lr)⌝ ∗ ll ↦ vl ∗ is_tree vl tl ∗ lr ↦ vr ∗ is_tree vr tr
end%I.
Fixpoint sum (t : tree) : Z :=
match t with
| leaf n => n
| node tl tr => sum tl + sum tr
end.
Definition sum_loop : val :=
rec: "sum_loop" "t" "l" :=
match: "t" with
InjL "n" => "l" <- "n" + !"l"
| InjR "tt" => "sum_loop" !(Fst "tt") "l" ;; "sum_loop" !(Snd "tt") "l"
end.
Definition sum' : val := λ: "t",
let: "l" := ref #0 in
sum_loop "t" "l";;
!"l".
Lemma sum_loop_wp `{!heapGS Σ} v t l (n : Z) :
[[{ l ↦ #n ∗ is_tree v t }]]
sum_loop v #l
[[{ RET #(); l ↦ #(sum t + n) ∗ is_tree v t }]].
Proof.
iIntros (Φ) "[Hl Ht] HΦ".
iInduction t as [n'|tl IHl tr IHr] forall (v l n Φ); simpl; wp_rec; wp_let.
- iDestruct "Ht" as "%"; subst.
wp_load. wp_store.
by iApply ("HΦ" with "[$Hl]").
- iDestruct "Ht" as (ll lr vl vr ->) "(Hll & Htl & Hlr & Htr)".
wp_load. wp_apply ("IHl" with "Hl Htl"). iIntros "[Hl Htl]".
wp_load. wp_apply ("IHr" with "Hl Htr"). iIntros "[Hl Htr]".
iApply "HΦ". iSplitL "Hl".
{ by replace (sum tl + sum tr + n)%Z with (sum tr + (sum tl + n))%Z by lia. }
iExists ll, lr, vl, vr. by iFrame.
Qed.
Lemma sum_wp `{!heapGS Σ} v t :
[[{ is_tree v t }]] sum' v [[{ RET #(sum t); is_tree v t }]].
Proof.
iIntros (Φ) "Ht HΦ". rewrite /sum' /=.
wp_lam. wp_alloc l as "Hl".
wp_smart_apply (sum_loop_wp with "[$Hl $Ht]").
rewrite Z.add_0_r.
iIntros "[Hl Ht]". wp_load. by iApply "HΦ".
Qed.
|