1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
\section{OFE and COFE Constructions}
\subsection{Trivial Pointwise Lifting}
The (C)OFE structure on many types can be easily obtained by pointwise lifting of the structure of the components.
This is what we do for option $\maybe\cofe$, product $(M_i)_{i \in I}$ (with $I$ some finite index set), sum $\cofe + \cofe'$ and finite partial functions $K \fpfn \monoid$ (with $K$ infinite countable).
\subsection{Next (Type-Level Later)}
Given an OFE $\cofe$, we define $\latert\cofe$ as follows (using a datatype-like notation to define the type):
\begin{align*}
\latert\cofe \eqdef{}& \latertinj(x:\cofe) \\
\latertinj(x) \nequiv{n} \latertinj(y) \eqdef{}& n = 0 \lor x \nequiv{n-1} y
\end{align*}
Note that in the definition of the carrier $\latert\cofe$, $\latertinj$ is a constructor (like the constructors in Coq), \ie this is short for $\setComp{\latertinj(x)}{x \in \cofe}$.
$\latert(-)$ is a locally \emph{contractive} functor from $\OFEs$ to $\OFEs$.
\subsection{Uniform Predicates}
Given a camera $\monoid$, we define the COFE $\UPred(\monoid)$ of \emph{uniform predicates} over $\monoid$ as follows:
\begin{align*}
\monoid \monnra \SProp \eqdef{}& \setComp{\pred: \monoid \nfn \SProp}
{\All n, \melt, \meltB. \melt \mincl[n] \meltB \Ra \pred(\melt) \nincl{n} \pred(\meltB)} \\
\UPred(\monoid) \eqdef{}& \faktor{\monoid \monnra \SProp}{\equiv} \\
\pred \equiv \predB \eqdef{}& \All m, \melt. m \in \mval(\melt) \Ra (m \in \pred(\melt) \iff m \in \predB(\melt)) \\
\pred \nequiv{n} \predB \eqdef{}& \All m \le n, \melt. m \in \mval(\melt) \Ra (m \in \pred(\melt) \iff m \in \predB(\melt))
\end{align*}
You can think of uniform predicates as monotone, step-indexed predicates over a camera that ``ignore'' invalid elements (as defined by the quotient).
$\UPred(-)$ is a locally non-expansive functor from $\CMRAs$ to $\COFEs$.
It is worth noting that the above quotient admits canonical
representatives. More precisely, one can show that every
equivalence class contains exactly one element $P_0$ such that:
\begin{align*}
\All n, \melt. (\mval(\melt) \nincl{n} P_0(\melt)) \Ra n \in P_0(\melt) \tagH{UPred-canonical}
\end{align*}
Intuitively, this says that $P_0$ trivially holds whenever the resource is invalid.
Starting from any element $P$, one can find this canonical
representative by choosing $P_0(\melt) := \setComp{n}{n \in \mval(\melt) \Ra n \in P(\melt)}$.
Hence, as an alternative definition of $\UPred$, we could use the set
of canonical representatives. This alternative definition would
save us from using a quotient. However, the definitions of the various
connectives would get more complicated, because we have to make sure
they all verify \ruleref{UPred-canonical}, which sometimes requires some adjustments. We
would moreover need to prove one more property for every logical
connective.
\clearpage
\section{RA and Camera Constructions}
\subsection{Product}
\label{sec:prodm}
Given a family $(M_i)_{i \in I}$ of cameras ($I$ finite), we construct a camera for the product $\prod_{i \in I} M_i$ by lifting everything pointwise.
Frame-preserving updates on the $M_i$ lift to the product:
\begin{mathpar}
\inferH{prod-update}
{\melt \mupd_{M_i} \meltsB}
{\mapinsert i \melt f \mupd \setComp{ \mapinsert i \meltB f}{\meltB \in \meltsB}}
\end{mathpar}
\subsection{Sum}
\label{sec:summ}
The \emph{sum camera} $\monoid_1 \csumm \monoid_2$ for any cameras $\monoid_1$ and $\monoid_2$ is defined as (again, we use a datatype-like notation):
\begin{align*}
\monoid_1 \csumm \monoid_2 \eqdef{}& \cinl(\melt_1:\monoid_1) \mid \cinr(\melt_2:\monoid_2) \mid \mundef \\
\mval(\mundef) \eqdef{}& \emptyset \\
\mval(\cinl(\melt)) \eqdef{}& \mval_1(\melt) \\
\cinl(\melt_1) \mtimes \cinl(\meltB_1) \eqdef{}& \cinl(\melt_1 \mtimes \meltB_1) \\
% \munit \mtimes \ospending \eqdef{}& \ospending \mtimes \munit \eqdef \ospending \\
% \munit \mtimes \osshot(\melt) \eqdef{}& \osshot(\melt) \mtimes \munit \eqdef \osshot(\melt) \\
\mcore{\cinl(\melt_1)} \eqdef{}& \begin{cases}\mnocore & \text{if $\mcore{\melt_1} = \mnocore$} \\ \cinl({\mcore{\melt_1}}) & \text{otherwise} \end{cases}
\end{align*}
Above, $\mval_1$ refers to the validity of $\monoid_1$.
The validity, composition and core for $\cinr$ are defined symmetrically.
The remaining cases of the composition and core are all $\mundef$.
Notice that we added the artificial ``invalid'' (or ``undefined'') element $\mundef$ to this camera just in order to make certain compositions of elements (in this case, $\cinl$ and $\cinr$) invalid.
The step-indexed equivalence is inductively defined as follows:
\begin{mathpar}
\infer{x \nequiv{n} y}{\cinl(x) \nequiv{n} \cinl(y)}
\infer{x \nequiv{n} y}{\cinr(x) \nequiv{n} \cinr(y)}
\axiom{\mundef \nequiv{n} \mundef}
\end{mathpar}
We obtain the following frame-preserving updates, as well as their symmetric counterparts:
\begin{mathpar}
\inferH{sum-update}
{\melt \mupd_{M_1} \meltsB}
{\cinl(\melt) \mupd \setComp{ \cinl(\meltB)}{\meltB \in \meltsB}}
\inferH{sum-swap}
{\All \melt_\f \in M, n. n \notin \mval(\melt \mtimes \melt_\f) \and \mvalFull(\meltB)}
{\cinl(\melt) \mupd \cinr(\meltB)}
\end{mathpar}
Crucially, the second rule allows us to \emph{swap} the ``side'' of the sum that the camera is on if $\mval$ has \emph{no possible frame}.
\subsection{Option}
The definition of the camera/RA axioms already lifted the composition operation on $\monoid$ to one on $\maybe\monoid$.
We can easily extend this to a full camera by defining a suitable core, namely
\begin{align*}
\mcore{\mnocore} \eqdef{}& \mnocore & \\
\mcore{\maybe\melt} \eqdef{}& \mcore\melt & \text{If $\maybe\melt \neq \mnocore$}
\end{align*}
Notice that this core is total, as the result always lies in $\maybe\monoid$ (rather than in $\maybe{\mathord{\maybe\monoid}}$).
\subsection{Finite Partial Functions}
\label{sec:fpfnm}
Given some infinite countable $K$ and some camera $\monoid$, the set of finite partial functions $K \fpfn \monoid$ is equipped with a camera structure by lifting everything pointwise.
We obtain the following frame-preserving updates:
\begin{mathpar}
\inferH{fpfn-alloc-strong}
{\text{$G \subseteq K$ infinite} \and \mvalFull(\melt)}
{\emptyset \mupd \setComp{\mapsingleton i \melt}{i \in G}}
\inferH{fpfn-alloc}
{\mvalFull(\melt)}
{\emptyset \mupd \setComp{\mapsingleton i \melt}{i \in K}}
\inferH{fpfn-update}
{\melt \mupd_\monoid \meltsB}
{\mapinsert i \melt f] \mupd \setComp{ \mapinsert i \meltB f}{\meltB \in \meltsB}}
\end{mathpar}
Above, $\mvalFull$ refers to the (full) validity of $\monoid$.
$K \fpfn (-)$ is a locally non-expansive functor from $\CMRAs$ to $\CMRAs$.
\subsection{Agreement}
Given some OFE $\cofe$, we define the camera $\agm(\cofe)$ as follows:
\begin{align*}
\agm(\cofe) \eqdef{}& \setComp{\melt \in \finpset\cofe}{\melt \neq \emptyset} /\ {\sim} \\[-0.2em]
\melt \nequiv{n} \meltB \eqdef{}& (\All x \in \melt. \Exists y \in \meltB. x \nequiv{n} y) \land (\All y \in \meltB. \Exists x \in \melt. x \nequiv{n} y) \\
\textnormal{where }& \melt \sim \meltB \eqdef{} \All n. \melt \nequiv{n} \meltB \\
~\\
% \All n \in {\melt.V}.\, \melt.x \nequiv{n} \meltB.x \\
\mval(\melt) \eqdef{}& \setComp{n}{ \All x, y \in \melt. x \nequiv{n} y } \\
\mcore\melt \eqdef{}& \melt \\
\melt \mtimes \meltB \eqdef{}& \melt \cup \meltB
\end{align*}
%Note that the carrier $\agm(\cofe)$ is a \emph{record} consisting of the two fields $c$ and $V$.
$\agm(-)$ is a locally non-expansive functor from $\OFEs$ to $\CMRAs$.
We define a non-expansive injection $\aginj$ into $\agm(\cofe)$ as follows:
\[ \aginj(x) \eqdef \set{x} \]
There are no interesting frame-preserving updates for $\agm(\cofe)$, but we can show the following:
\begin{mathpar}
\axiomH{ag-val}{\mvalFull(\aginj(x))}
\axiomH{ag-dup}{\aginj(x) = \aginj(x)\mtimes\aginj(x)}
\axiomH{ag-agree}{n \in \mval(\aginj(x) \mtimes \aginj(y)) \Ra x \nequiv{n} y}
\end{mathpar}
\subsection{Exclusive Camera}
Given an OFE $\cofe$, we define a camera $\exm(\cofe)$ such that at most one $x \in \cofe$ can be owned:
\begin{align*}
\exm(\cofe) \eqdef{}& \exinj(\cofe) \mid \mundef \\
\mval(\melt) \eqdef{}& \setComp{n}{\melt \notnequiv{n} \mundef}
\end{align*}
All cases of composition go to $\mundef$.
\begin{align*}
\mcore{\exinj(x)} \eqdef{}& \mnocore &
\mcore{\mundef} \eqdef{}& \mundef
\end{align*}
Remember that $\mnocore$ is the ``dummy'' element in $\maybe\monoid$ indicating (in this case) that $\exinj(x)$ has no core.
The step-indexed equivalence is inductively defined as follows:
\begin{mathpar}
\infer{x \nequiv{n} y}{\exinj(x) \nequiv{n} \exinj(y)}
\axiom{\mundef \nequiv{n} \mundef}
\end{mathpar}
$\exm(-)$ is a locally non-expansive functor from $\OFEs$ to $\CMRAs$.
We obtain the following frame-preserving update:
\begin{mathpar}
\inferH{ex-update}{}
{\exinj(x) \mupd \exinj(y)}
\end{mathpar}
\subsection{Fractions}
We define an RA structure on the rational numbers in $(0, 1]$ as follows:
\begin{align*}
\fracm \eqdef{}& \fracinj(\mathbb{Q} \cap (0, 1]) \mid \mundef \\
\mvalFull(\melt) \eqdef{}& \melt \neq \mundef \\
\fracinj(q_1) \mtimes \fracinj(q_2) \eqdef{}& \fracinj(q_1 + q_2) \quad \text{if $q_1 + q_2 \leq 1$} \\
\mcore{\fracinj(x)} \eqdef{}& \bot \\
\mcore{\mundef} \eqdef{}& \mundef
\end{align*}
All remaining cases of composition go to $\mundef$.
Frequently, we will write just $x$ instead of $\fracinj(x)$.
The most important property of this RA is that $1$ has no frame.
This is useful in combination with \ruleref{sum-swap}, and also when used with pairs:
\begin{mathpar}
\inferH{pair-frac-change}{}
{(1, a) \mupd (1, b)}
\end{mathpar}
%TODO: These need syncing with Coq
% \subsection{Finite Powerset Monoid}
% Given an infinite set $X$, we define a monoid $\textdom{PowFin}$ with carrier $\mathcal{P}^{\textrm{fin}}(X)$ as follows:
% \[
% \melt \cdot \meltB \;\eqdef\; \melt \cup \meltB \quad \mbox{if } \melt \cap \meltB = \emptyset
% \]
% We obtain:
% \begin{mathpar}
% \inferH{PowFinUpd}{}
% {\emptyset \mupd \{ \{x\} \mid x \in X \}}
% \end{mathpar}
% \begin{proof}[Proof of \ruleref{PowFinUpd}]
% Assume some frame $\melt_\f \sep \emptyset$. Since $\melt_\f$ is finite and $X$ is infinite, there exists an $x \notin \melt_\f$.
% Pick that for the result.
% \end{proof}
% The powerset monoids is cancellative.
% \begin{proof}[Proof of cancellativity]
% Let $\melt_\f \mtimes \melt = \melt_\f \mtimes \meltB \neq \mzero$.
% So we have $\melt_\f \sep \melt$ and $\melt_\f \sep \meltB$, and we have to show $\melt = \meltB$.
% Assume $x \in \melt$. Hence $x \in \melt_\f \mtimes \melt$ and thus $x \in \melt_\f \mtimes \meltB$.
% By disjointness, $x \notin \melt_\f$ and hence $x \in meltB$.
% The other direction works the same way.
% \end{proof}
\subsection{Authoritative}
\label{sec:auth-camera}
Given a camera $M$, we construct $\authm(M)$ modeling someone owning an \emph{authoritative} element $\melt$ of $M$, and others potentially owning fragments $\meltB \mincl \melt$ of $\melt$.
We assume that $M$ has a unit $\munit$, and hence its core is total.
(If $M$ is an exclusive monoid, the construction is very similar to a half-ownership monoid with two asymmetric halves.)
\begin{align*}
\authm(M) \eqdef{}& \maybe{\exm(M)} \times M \\
\mval( (x, \meltB ) ) \eqdef{}& \setComp{ n }{ (x = \mnocore \land n \in \mval(\meltB)) \lor (\Exists \melt. x = \exinj(\melt) \land \meltB \mincl_n \melt \land n \in \mval(\melt)) } \\
(x_1, \meltB_1) \mtimes (x_2, \meltB_2) \eqdef{}& (x_1 \mtimes x_2, \meltB_2 \mtimes \meltB_2) \\
\mcore{(x, \meltB)} \eqdef{}& (\mnocore, \mcore\meltB) \\
(x_1, \meltB_1) \nequiv{n} (x_2, \meltB_2) \eqdef{}& x_1 \nequiv{n} x_2 \land \meltB_1 \nequiv{n} \meltB_2
\end{align*}
Note that $(\mnocore, \munit)$ is the unit and asserts no ownership whatsoever, but $(\exinj(\munit), \munit)$ asserts that the authoritative element is $\munit$.
Let $\melt, \meltB \in M$.
We write $\authfull \melt$ for full ownership $(\exinj(\melt), \munit)$ and $\authfrag \meltB$ for fragmental ownership $(\mnocore, \meltB)$ and $\authfull \melt , \authfrag \meltB$ for combined ownership $(\exinj(\melt), \meltB)$.
The frame-preserving update involves the notion of a \emph{local update}:
\begin{defn}
It is possible to do a \emph{local update} from $\melt_1$ and $\meltB_1$ to $\melt_2$ and $\meltB_2$, written $(\melt_1, \meltB_1) \lupd (\melt_2, \meltB_2)$, if
\[ \All n, \maybe{\melt_\f}. n \in \mval(\melt_1) \land \melt_1 \nequiv{n} \meltB_1 \mtimes \maybe{\melt_\f} \Ra n \in \mval(\melt_2) \land \melt_2 \nequiv{n} \meltB_2 \mtimes \maybe{\melt_\f} \]
\end{defn}
In other words, the idea is that for every possible frame $\maybe{\melt_\f}$ completing $\meltB_1$ to $\melt_1$, the same frame also completes $\meltB_2$ to $\melt_2$.
We then obtain
\begin{mathpar}
\inferH{auth-update}
{(\melt_1, \meltB_1) \lupd (\melt_2, \meltB_2)}
{\authfull \melt_1 , \authfrag \meltB_1 \mupd \authfull \melt_2 , \authfrag \meltB_2}
\end{mathpar}
\subsection{STS with Tokens}
\label{sec:sts-camera}
Given a state-transition system~(STS, \ie a directed graph) $(\STSS, {\stsstep} \subseteq \STSS \times \STSS)$, a set of tokens $\STST$, and a labeling $\STSL: \STSS \ra \wp(\STST)$ of \emph{protocol-owned} tokens for each state, we construct an RA modeling an authoritative current state and permitting transitions given a \emph{bound} on the current state and a set of \emph{locally-owned} tokens.
The construction follows the idea of STSs as described in CaReSL \cite{caresl}.
We first lift the transition relation to $\STSS \times \wp(\STST)$ (implementing a \emph{law of token conservation}) and define a stepping relation for the \emph{frame} of a given token set:
\begin{align*}
(s, T) \stsstep (s', T') \eqdef{}& s \stsstep s' \land \STSL(s) \uplus T = \STSL(s') \uplus T' \\
s \stsfstep{T} s' \eqdef{}& \Exists T_1, T_2. T_1 \disj \STSL(s) \cup T \land (s, T_1) \stsstep (s', T_2)
\end{align*}
We further define \emph{closed} sets of states (given a particular set of tokens) as well as the \emph{closure} of a set:
\begin{align*}
\STSclsd(S, T) \eqdef{}& \All s \in S. \STSL(s) \disj T \land \left(\All s'. s \stsfstep{T} s' \Ra s' \in S\right) \\
\upclose(S, T) \eqdef{}& \setComp{ s' \in \STSS}{\Exists s \in S. s \stsftrans{T} s' }
\end{align*}
The STS RA is defined as follows
\begin{align*}
\monoid \eqdef{}& \STSauth(s:\STSS, T:\wp(\STST) \mid \STSL(s) \disj T) \mid{}\\& \STSfrag(S: \wp(\STSS), T: \wp(\STST) \mid \STSclsd(S, T) \land S \neq \emptyset) \mid \mundef \\
\mvalFull(\melt) \eqdef{}& \melt \neq \mundef \\
\STSfrag(S_1, T_1) \mtimes \STSfrag(S_2, T_2) \eqdef{}& \STSfrag(S_1 \cap S_2, T_1 \cup T_2) \qquad\qquad\qquad \text{if $T_1 \disj T_2$ and $S_1 \cap S_2 \neq \emptyset$} \\
\STSfrag(S, T) \mtimes \STSauth(s, T') \eqdef{}& \STSauth(s, T') \mtimes \STSfrag(S, T) \eqdef \STSauth(s, T \cup T') \qquad \text{if $T \disj T'$ and $s \in S$} \\
\mcore{\STSfrag(S, T)} \eqdef{}& \STSfrag(\upclose(S, \emptyset), \emptyset) \\
\mcore{\STSauth(s, T)} \eqdef{}& \STSfrag(\upclose(\set{s}, \emptyset), \emptyset)
\end{align*}
The remaining cases are all $\mundef$.
We will need the following frame-preserving update:
\begin{mathpar}
\inferH{sts-step}{(s, T) \ststrans (s', T')}
{\STSauth(s, T) \mupd \STSauth(s', T')}
\inferH{sts-weaken}
{\STSclsd(S_2, T_2) \and S_1 \subseteq S_2 \and T_2 \subseteq T_1}
{\STSfrag(S_1, T_1) \mupd \STSfrag(S_2, T_2)}
\end{mathpar}
\paragraph{The core is not a homomorphism.}
The core of the STS construction is only satisfying the RA axioms because we are \emph{not} demanding the core to be a homomorphism---all we demand is for the core to be monotone with respect the \ruleref{ra-incl}.
In other words, the following does \emph{not} hold for the STS core as defined above:
\[ \mcore\melt \mtimes \mcore\meltB = \mcore{\melt\mtimes\meltB} \]
To see why, consider the following STS:
\newcommand\st{\textlog{s}}
\newcommand\tok{\textlog{t}}
\begin{center}
\begin{tikzpicture}[every node/.style=sts_state]
\node at (0,0) (s1) {$\st_1$};
\node at (3,0) (s2) {$\st_2$};
\node at (9,0) (s3) {$\st_3$};
\node at (6,0) (s4) {$\st_4$\\$[\tok_1, \tok_2]$};
\path[sts_arrows] (s2) edge (s4);
\path[sts_arrows] (s3) edge (s4);
\end{tikzpicture}
\end{center}
Now consider the following two elements of the STS RA:
\[ \melt \eqdef \STSfrag(\set{\st_1,\st_2}, \set{\tok_1}) \qquad\qquad
\meltB \eqdef \STSfrag(\set{\st_1,\st_3}, \set{\tok_2}) \]
We have:
\begin{mathpar}
{\melt\mtimes\meltB = \STSfrag(\set{\st_1}, \set{\tok_1, \tok_2})}
{\mcore\melt = \STSfrag(\set{\st_1, \st_2, \st_4}, \emptyset)}
{\mcore\meltB = \STSfrag(\set{\st_1, \st_3, \st_4}, \emptyset)}
{\mcore\melt \mtimes \mcore\meltB = \STSfrag(\set{\st_1, \st_4}, \emptyset) \neq
\mcore{\melt \mtimes \meltB} = \STSfrag(\set{\st_1}, \emptyset)}
\end{mathpar}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End:
|