File: program-logic.tex

package info (click to toggle)
coq-iris 4.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,116 kB
  • sloc: python: 130; makefile: 61; sh: 28; sed: 2
file content (596 lines) | stat: -rw-r--r-- 37,772 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
\section{Program Logic}
\label{sec:program-logic}

This section describes how to build a program logic for an arbitrary language (\cf \Sref{sec:language}) on top of the base logic.
So in the following, we assume that some language $\Lang$ was fixed.
Furthermore, we work in the logic with higher-order ghost state as described in \Sref{sec:composable-resources}.

\subsection{Later Credits}
Introducing a later modality is easy (see~\ruleref{later-intro}), but eliminating them can be tricky.
Laters often appear in the middle of our proofs after unfolding a circular construction (\eg by opening an invariant, see~\secref{sec:invariants}).
In these cases, we get to assume $\later \prop$, but we really want $\prop$ to continue in the proof.
Iris offers us four options to do so.
We have seen two of them already: timeless propositions (see~\secref{sec:timeless-props}) and the commuting rules for later.
Together, they can be used to turn $\later \prop$ into $\prop$, or to delay when we have to deal with the later modality by commuting it inward (\eg{} over an existential quantifer and a separating conjunction).
Another option, which we will encounter in~\secref{sec:weakest-pre}, is taking program steps: every program step allows us to eliminate (at least) one later (see~\ruleref{wp-lift-step}).
We now introduce the fourth option: \emph{later credits}.
Later credits turn the right to eliminate a later into an ownable separation-logic resource $\laterCredit{n}$, where $n$ is the number of laters that we can eliminate.

\paragraph{Resources}
We assume that the camera
\[ \textdom{LaterCredits} \eqdef{} \authm{(\nat^{+})} \]
is available (\ie{} part of $\Sigma$), where $\nat^{+}$ is the RA derived from the monoid $\nat$ with operation $+$, and that an instance of it has been created and made globally available at the beginning of verification under the name $\gname_{\textdom{Credits}}$.
We define the following notations for the fragments and authoritative part:
\begin{mathpar}
  \laterCredit{n} \eqdef{} \ownGhost{\gname_{\textdom{Credits}}}{\authfrag{n}}

  \laterCreditSupply{n} \eqdef{} \ownGhost{\gname_{\textdom{Credits}}}{\authfull{n}}
\end{mathpar}

This definition satisfies the following laws:
\begin{mathpar}
  \inferH{Credit-Split}{}{\laterCredit{(n + m)} \Leftrightarrow \laterCredit{n} * \laterCredit{m}}

  \inferH{Credit-Timeless}{}{\timeless{\laterCredit{n}}}\\

  \inferH{Credit-SupplyBound}{}{\laterCreditSupply{m} * \laterCredit{n} \proves m \geq n}

  \inferH{Credit-SupplyDecr}{}{\laterCreditSupply{(n + m)} * \laterCredit{n} \proves \pvs \laterCreditSupply{m}}

  \inferH{Credit-SupplyExcl}{}{\laterCreditSupply{m_1} * \laterCreditSupply{m_2} \proves \FALSE}
\end{mathpar}

\paragraph{Later Elimination Update}%
\label{sec:later-credits}
To eliminate laters by \emph{spending} later credits $\laterCredit{n}$, we define a \emph{later-elimination update} $\creditUpd{}\prop$ on top of the basic update modality.
It satisfies all the properties of basic updates, except for \ruleref{upd-plainly}, but with the additional rule
\begin{mathpar}
  \inferH{credit-upd-use}
  {}
  {\later \prop * \laterCredit{1} \proves \creditUpd{} \prop}
\end{mathpar}
\ruleref{credit-upd-use} allows to \emph{spend} one credit in exchange for stripping one later off of $\prop$.

The later-elimination update is defined by guarded recursion:
\begin{align*}
  \creditUpd{}&\eqdef \MU~\mathit{upd}. \Lam \prop. \All n. \laterCreditSupply{n} \wand \upd{} (\laterCreditSupply{n} * \prop) \lor (\Exists m < n. \laterCreditSupply{m} * \later \mathit{upd}(\prop))
\end{align*}
It threads through the authoritative resource $\laterCreditSupply{n}$, the credit supply, to control how many credits can be spent in total.
The basic update ensures that the later elimination update inherits the ability to update resources.
In the first disjunct (the \enquote{base case}), no credits are spent.
In the second disjunct (the \enquote{recursive case}), a later can be eliminated before going into recursion.
To take the second disjunct, the credit supply $\laterCreditSupply{n}$ has to be decreased, which means giving up at least $\laterCredit{1}$.

The later-elimination update satisfies the following laws:
\begin{mathpar}
  \inferH{credit-upd-mono}
  {\prop \proves \propB}
  {\creditUpd\prop \proves \creditUpd\propB}

  \inferH{credit-upd-intro}
  {}{\prop \proves \creditUpd \prop}

  \inferH{credit-upd-trans}
  {}
  {\creditUpd \creditUpd \prop \proves \creditUpd \prop}

  \inferH{credit-upd-frame}
  {}{\propB * \creditUpd\prop \proves \creditUpd (\propB * \prop)}

  \inferH{credit-upd-update}
  %{}
  %{\upd\creditUpd{} \prop \proves \creditUpd{} \prop}
  {\melt \mupd \meltsB}
  {\ownM\melt \proves \creditUpd \Exists\meltB\in\meltsB. \ownM\meltB}

  \inferH{credit-upd-later}
  {}
  {\laterCredit{1} * \later \creditUpd{} \prop \proves \creditUpd{} \prop}
  %\inferH{credit-upd-use}
  %{}
  %{\later \prop * \laterCredit{1} \proves \creditUpd{} \prop}
\end{mathpar}
The rule \ruleref{credit-upd-use} shown above can be derived from \ruleref{credit-upd-later} and \ruleref{credit-upd-intro}.

Note the absence of a rule corresponding to \ruleref{upd-plainly}, which is not validated by the model.
As some existing Iris developments rely on \ruleref{upd-plainly}, we parameterize the logic by a boolean constant $\LaterCreditsFlag$ that determines whether the later-elimination update is used instead of the basic update, in particular in the definition of fancy updates below.

\subsection{World Satisfaction, Invariants, Fancy Updates}
\label{sec:invariants}

To introduce invariants into our logic, we will define weakest precondition to explicitly thread through the proof that all the invariants are maintained throughout program execution.
However, in order to be able to access invariants, we will also have to provide a way to \emph{temporarily disable} (or ``open'') them.
To this end, we use tokens that manage which invariants are currently enabled.

We assume to have the following four cameras available:
\begin{align*}
  \InvName \eqdef{}& \nat \\
  \textdom{Inv} \eqdef{}& \authm(\InvName \fpfn \agm(\latert \iPreProp)) \\
  \textdom{En} \eqdef{}& \pset{\InvName} \\
  \textdom{Dis} \eqdef{}& \finpset{\InvName}
\end{align*}
The last two are the tokens used for managing invariants, $\textdom{Inv}$ is the monoid used to manage the invariants themselves.

We assume that at the beginning of the verification, instances named $\gname_{\textdom{Inv}}$, $\gname_{\textdom{En}}$ and $\gname_{\textdom{Dis}}$ of these cameras have been created, such that these names are globally known.

\paragraph{World Satisfaction.}
We can now define the proposition $W$ (\emph{world satisfaction}) which ensures that the enabled invariants are actually maintained:
\begin{align*}
  W \eqdef{}& \Exists I : \InvName \fpfn \Prop.
  \begin{array}[t]{@{} l}
    \ownGhost{\gname_{\textdom{Inv}}}{\authfull
      \mapComp {\iname}
        {\aginj(\latertinj(\wIso(I(\iname))))}
        {\iname \in \dom(I)}} * \\
    \Sep_{\iname \in \dom(I)} \left( \later I(\iname) * \ownGhost{\gname_{\textdom{Dis}}}{\set{\iname}} \lor \ownGhost{\gname_{\textdom{En}}}{\set{\iname}} \right)
  \end{array}
\end{align*}

\paragraph{Invariants.}
The following proposition states that an invariant with name $\iname$ exists and maintains proposition $\prop$:
\[ \invM\iname\prop \eqdef \ownGhost{\gname_{\textdom{Inv}}}
  {\authfrag \mapsingleton \iname {\aginj(\latertinj(\wIso(\prop)))}} \]

\paragraph{Fancy Updates and View Shifts.}
Next, we define \emph{fancy updates}, which are essentially the same as the basic updates of the base logic ($\Sref{sec:base-logic}$) or later-elimination updates (\Sref{sec:later-credits}), except that they also have access to world satisfaction and can enable and disable invariants.

Depending on how the logic is parameterized with the $\LaterCreditsFlag$, fancy updates are defined on top the basic update or the later-elimination update.
This influences which rules fancy updates satisfy: either fancy updates can be used to eliminate later credits, or they satisfy certain interaction laws with the plainly modality.

\[ \pvs[\mask_1][\mask_2] \prop \eqdef
  \begin{cases}
    W * \ownGhost{\gname_{\textdom{En}}}{\mask_1} \wand \creditUpd\diamond (W * \ownGhost{\gname_{\textdom{En}}}{\mask_2} * \prop) & \text{if } \LaterCreditsFlag = \textsf{true}\\
    W * \ownGhost{\gname_{\textdom{En}}}{\mask_1} \wand \upd\diamond (W * \ownGhost{\gname_{\textdom{En}}}{\mask_2} * \prop) & \text{if } \LaterCreditsFlag = \textsf{false}\\
  \end{cases}
  \]
Here, $\mask_1$ and $\mask_2$ are the \emph{masks} of the view update, defining which invariants have to be (at least!) available before and after the update.
Masks are sets of natural numbers, \ie they are subsets of $\mathbb{N}$.%
\footnote{Actually, in the Coq development masks are restricted to a class of sets of natural numbers that contains all finite sets and is closed under union, intersection, difference and complement.
The restriction is necessary for engineering reasons to still obtain representation independence: two masks should be \emph{propositionally} equal iff they contain the same invariant names.}
We use $\top$ as symbol for the largest possible mask, $\nat$, and $\bot$ for the smallest possible mask $\emptyset$.
We will write $\pvs[\mask] \prop$ for $\pvs[\mask][\mask]\prop$.
%
Fancy updates satisfy the following basic proof rules:
\begin{mathparpagebreakable}
\infer[fup-mono]
{\prop \proves \propB}
{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1][\mask_2] \propB}

\infer[fup-intro-mask]
{\mask_2 \subseteq \mask_1}
{\prop \proves \pvs[\mask_1][\mask_2]\pvs[\mask_2][\mask_1] \prop}

\infer[fup-trans]
{}
{\pvs[\mask_1][\mask_2] \pvs[\mask_2][\mask_3] \prop \proves \pvs[\mask_1][\mask_3] \prop}

\infer[fup-upd]
{}{\upd\prop \proves \pvs[\mask] \prop}

\infer[fup-frame]
{}{\propB * \pvs[\mask_1][\mask_2]\prop \proves \pvs[\mask_1 \uplus \mask_\f][\mask_2 \uplus \mask_\f] \propB * \prop}

\inferH{fup-update}
{\melt \mupd \meltsB}
{\ownM\melt \proves \pvs[\mask] \Exists\meltB\in\meltsB. \ownM\meltB}

\infer[fup-timeless]
{\timeless\prop}
{\later\prop \proves \pvs[\mask] \prop}

\infer[fup-credit-use]
{\LaterCreditsFlag = \textsf{true}}
{\laterCredit{1} * \later \pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1][\mask_2] \prop}
\end{mathparpagebreakable}
(There are no rules related to invariants here. Those rules will be discussed later, in \Sref{sec:namespaces}.)

We can further define the notions of \emph{view shifts} and \emph{linear view shifts}:
\begin{align*}
  \prop \vsW[\mask_1][\mask_2] \propB \eqdef{}& \prop \wand \pvs[\mask_1][\mask_2] \propB \\
  \prop \vs[\mask_1][\mask_2] \propB \eqdef{}& \always(\prop \wand \pvs[\mask_1][\mask_2] \propB) \\
  \prop \vs[\mask] \propB \eqdef{}& \prop \vs[\mask][\mask] \propB
\end{align*}
These two are useful when writing down specifications and for comparing with previous versions of Iris, but for reasoning, it is typically easier to just work directly with fancy updates.
Still, just to give an idea of what view shifts ``are'', here are some proof rules for them:
\begin{mathparpagebreakable}
\inferH{vs-update}
  {\melt \mupd \meltsB}
  {\ownGhost\gname{\melt} \vs[\emptyset] \exists \meltB \in \meltsB.\; \ownGhost\gname{\meltB}}
\and
\inferH{vs-trans}
  {\prop \vs[\mask_1][\mask_2] \propB \and \propB \vs[\mask_2][\mask_3] \propC}
  {\prop \vs[\mask_1][\mask_3] \propC}
\and
\inferH{vs-imp}
  {\always{(\prop \Ra \propB)}}
  {\prop \vs[\emptyset] \propB}
\and
\inferH{vs-mask-frame}
  {\prop \vs[\mask_1][\mask_2] \propB}
  {\prop \vs[\mask_1 \uplus \mask'][\mask_2 \uplus \mask'] \propB}
\and
\inferH{vs-frame}
  {\prop \vs[\mask_1][\mask_2] \propB}
  {\prop * \propC \vs[\mask_1][\mask_2] \propB * \propC}
\and
\inferH{vs-timeless}
  {\timeless{\prop}}
  {\later \prop \vs[\emptyset] \prop}
\and
\inferHB{vs-disj}
  {\prop \vs[\mask_1][\mask_2] \propC \and \propB \vs[\mask_1][\mask_2] \propC}
  {\prop \lor \propB \vs[\mask_1][\mask_2] \propC}
\and
\inferHB{vs-exist}
  {\All \var. (\prop \vs[\mask_1][\mask_2] \propB)}
  {(\Exists \var. \prop) \vs[\mask_1][\mask_2] \propB}
\and
\inferHB{vs-always}
  {\always\propB \proves \prop \vs[\mask_1][\mask_2] \propC}
  {\prop \land \always{\propB} \vs[\mask_1][\mask_2] \propC}
 \and
\inferH{vs-false}
  {}
  {\FALSE \vs[\mask_1][\mask_2] \prop }
\end{mathparpagebreakable}

\subsection{Weakest Precondition}
\label{sec:weakest-pre}

Finally, we can define the core piece of the program logic, the proposition that reasons about program behavior: Weakest precondition, from which Hoare triples will be derived.

\paragraph{Defining weakest precondition.}
We assume that everything making up the definition of the language, \ie values, expressions, states, the conversion functions, reduction relation and all their properties, are suitably reflected into the logic (\ie they are part of the signature $\Sig$).
We further assume (as a parameter) a predicate $\stateinterp : \State \times \mathbb N \times \List(\Obs) \times \mathbb N \to \iProp$ that interprets the machine state as an Iris proposition, a predicate $\pred_F: \Val \to \iProp$ that serves as postcondition for forked-off threads, and a function $n_\rhd: \mathbb N \to \mathbb N$ specifying the number of additional laters and later credits used for each physical step.
The state interpretation can depend on the current physical state, the number of steps since the beginning of the execution, the list of \emph{future} observations as well as the total number of \emph{forked} threads (that is one less that the total number of threads).
It should be monotone with respect to the step counter: $\stateinterp(\state, n_s, \vec\obs, n_t) \vs[\emptyset] \stateinterp(\state, n_s + 1, \vec\obs, n_t)$.
This can be instantiated, for example, with ownership of an authoritative RA to tie the physical state to fragments that are used for user-level proofs.
Finally, weakest precondition takes a parameter $\stuckness \in \set{\NotStuck, \MaybeStuck}$ indicating whether program execution is allowed to get stuck.

\begin{align*}
  \textdom{wp}(\stateinterp, \pred_F, \stuckness) \eqdef{}& \MU \textdom{wp\any rec}. \Lam \mask, \expr, \pred. \\
        & (\Exists\val. \toval(\expr) = \val \land \pvs[\mask] \pred(\val)) \lor {}\\
        & \Bigl(\toval(\expr) = \bot \land \All \state, n_s, \vec\obs, \vec\obs', n_t. \stateinterp(\state, n_s, \vec\obs \dplus \vec\obs', n_t) \vsW[\mask][\emptyset] {}\\
        &\qquad (s = \NotStuck \Ra \red(\expr, \state)) * \All \expr', \state', \vec\expr. (\expr, \state \step[\vec\obs] \expr', \state', \vec\expr) \wand \laterCredit{(n_\rhd(n_s)+1)} \wand {}\\
        &\qquad\qquad (\pvs[\emptyset]\later\pvs[\emptyset])^{n_\rhd(n_s)+1} \pvs[\emptyset][\mask]\stateinterp(\state', n_s + 1, \vec\obs', n + |\vec\expr|) * \textdom{wp\any rec}(\mask, \expr', \pred) * {}\\
        &\qquad\qquad\qquad \Sep_{\expr'' \in \vec\expr} \textdom{wp\any rec}(\top, \expr'', \pred_F)\Bigr) \\
  \wpre[\stateinterp;\pred_F]\expr[\stuckness;\mask]{\Ret\val. \prop} \eqdef{}& \textdom{wp}(\stateinterp,\pred_F,\stuckness)(\mask, \expr, \Lam\val.\prop)
\end{align*}
The $\stateinterp$ and $\pred_F$ will always be set by the context; typically, when instantiating Iris with a language, we also pick the corresponding state interpretation $\stateinterp$ and fork-postcondition $\pred_F$.
All proof rules leave $\stateinterp$ and $\pred_F$ unchanged.
If we leave away the mask $\mask$, we assume it to default to $\top$.
If we leave away the stuckness $\stuckness$, it defaults to $\NotStuck$.

\paragraph{Laws of weakest precondition.}
The following rules can all be derived:
\begin{mathpar}
\infer[wp-value]
{}{\prop[\val/\var] \proves \wpre{\val}[\stuckness;\mask]{\Ret\var.\prop}}

\infer[wp-mono]
{\mask_1 \subseteq \mask_2 \and \vctx,\var:\textlog{val}\mid\prop \proves \propB \and (\stuckness_2 = \MaybeStuck \lor \stuckness_1 = \stuckness_2)}
{\vctx\mid\wpre\expr[\stuckness_1;\mask_1]{\Ret\var.\prop} \proves \wpre\expr[\stuckness_2;\mask_2]{\Ret\var.\propB}}

\infer[fup-wp]
{}{\pvs[\mask] \wpre\expr[\stuckness;\mask]{\Ret\var.\prop} \proves \wpre\expr[\stuckness;\mask]{\Ret\var.\prop}}

\infer[wp-fup]
{}{\wpre\expr[\stuckness;\mask]{\Ret\var.\pvs[\stuckness;\mask] \prop} \proves \wpre\expr[\stuckness;\mask]{\Ret\var.\prop}}

\infer[wp-atomic]
{\stuckness = \NotStuck \Ra \atomic(\expr) \and
 \stuckness = \MaybeStuck \Ra \stronglyAtomic(\expr)}
{\pvs[\mask_1][\mask_2] \wpre\expr[\stuckness;\mask_2]{\Ret\var. \pvs[\mask_2][\mask_1]\prop}
 \proves \wpre\expr[\stuckness;\mask_1]{\Ret\var.\prop}}

\infer[wp-frame]
{}{\propB * \wpre\expr[\stuckness;\mask]{\Ret\var.\prop} \proves \wpre\expr[\stuckness;\mask]{\Ret\var.\propB*\prop}}

\infer[wp-frame-step]
{\toval(\expr) = \bot \and \mask_2 \subseteq \mask_1}
{\wpre\expr[\stuckness;\mask_2]{\Ret\var.\prop} * \pvs[\mask_1][\mask_2]\later\pvs[\mask_2][\mask_1]\propB \proves \wpre\expr[\stuckness;\mask_1]{\Ret\var.\propB*\prop}}

\infer[wp-frame-n-steps]
{\toval(\expr) = \bot \and \mask_2 \subseteq \mask_1}
{{ {\begin{inbox}
~~(\All \state, n_s, \vec\obs, n_t. \stateinterp(\state, n_s, \vec\obs, n_t) \vsW[\mask_1, \emptyset] n \leq n_\rhd(n_s) + 1) \land {}\\
~~\wpre\expr[\stuckness;\mask_2]{\Ret\var.\prop} * \pvs[\mask_1][\mask_2](\later\pvs[\emptyset])^n\pvs[\mask_2][\mask_1]\propB {}\\
\proves \wpre\expr[\stuckness;\mask_1]{\Ret\var.\propB*\prop}
\end{inbox}} }}

\infer[wp-bind]
{\text{$\lctx$ is a context}}
{\wpre\expr[\stuckness;\mask]{\Ret\var. \wpre{\lctx(\ofval(\var))}[\stuckness;\mask]{\Ret\varB.\prop}} \proves \wpre{\lctx(\expr)}[\stuckness;\mask]{\Ret\varB.\prop}}
\end{mathpar}

We will also want a rule that connect weakest preconditions to the operational semantics of the language.
This basically just copies the second branch (the non-value case) of the definition of weakest preconditions.

\begin{mathpar}
  \inferH{wp-lift-step}
  {\toval(\expr_1) = \bot}
  { {\begin{inbox} % for some crazy reason, LaTeX is actually sensitive to the space between the "{ {" here and the "} }" below...
        ~~\All \state_1,\vec\obs,\vec\obs',n. \stateinterp(\state_1,n_s,\vec\obs \dplus \vec\obs', n_t) \vsW[\mask][\emptyset] (\stuckness = \NotStuck \Ra \red(\expr_1,\state_1)) * {}\\
        \qquad~ \All \expr_2, \state_2, \vec\expr.  (\expr_1, \state_1 \step[\vec\obs] \expr_2, \state_2, \vec\expr) \wand \laterCredit{(n_\rhd(n_s) + 1)} \wand (\pvs[\emptyset]\later\pvs[\emptyset])^{n_\rhd(n_s)}\pvs[\emptyset][\mask] {}\\
        \qquad\qquad\left(\stateinterp(\state_2,n_s+1,\vec\obs',n_t+|\vec\expr|) * \wpre[\stateinterp;\pred_F]{\expr_2}[\stuckness;\mask]{\Ret\var.\prop} * \Sep_{\expr_\f \in \vec\expr} \wpre[\stateinterp\pred_F]{\expr_\f}[\stuckness;\top]{\pred_F}\right)  {}\\
        \proves \wpre[\stateinterp\pred_F]{\expr_1}[\stuckness;\mask]{\Ret\var.\prop}
      \end{inbox}} }
\end{mathpar}

\paragraph{Adequacy of weakest precondition.}

\newcommand\metaprop{p}
\newcommand\consstate{C}

The purpose of the adequacy statement is to show that our notion of weakest preconditions is \emph{realistic} in the sense that it actually has anything to do with the actual behavior of the program.
The most general form of the adequacy statement is about proving properties of an arbitrary program execution.

\begin{thm}[Adequacy]
  Assume we are given some $\vec\expr_1$, $\state_1$, $\vec\obs$, $\tpool_2$, $\state_2$ such that $(\vec\expr_1, \state_1) \tpsteps[\vec\obs] (\tpool_2, \state_2)$.
  Moreover, assume we are given a stuckness parameter $\stuckness$ and \emph{meta-level} property $\metaprop$ that we want to show.
  To verify that $\metaprop$ holds, it is sufficient to show the following Iris entailment:
\begin{align*}
 &\TRUE \proves \pvs[\top] \Exists \stateinterp, \vec\pred, \pred_F. \stateinterp(\state_1,0,\vec\obs,0) * \left(\Sep_{\expr,\pred \in \vec\expr_1,\vec\pred} \wpre[\stateinterp;\pred_F]{\expr}[\stuckness;\top]{x.\; \pred(x)}\right) * \left(\consstate^{\stateinterp;\vec\pred;\pred_F}_{\stuckness}(\tpool_2, \state_2) \vs[\top][\emptyset] \hat{\metaprop}\right)
\end{align*}
where $\consstate$ describes states that are consistent with the state interpretation and postconditions:
\begin{align*}
 \consstate^{\stateinterp;\vec\pred;\pred_F}_{\stuckness}(\tpool_2, \state_2) \eqdef{}&\Exists \vec\expr_2, \tpool_2'. \tpool_2 = \vec\expr_2 \dplus \tpool_2' * {}\\
 &\quad |\vec\expr_1| = |\vec\expr_2| *{}\\
 &\quad (s = \NotStuck \Ra \All \expr \in \tpool_2. \toval(\expr) \neq \bot \lor \red(\expr, \state_2) ) *{}\\
 &\quad \stateinterp(\state_2, (), |\tpool_2'|) *{}\\
 &\quad \left(\Sep_{\expr,\pred \in \vec\expr_2,\vec\pred} \toval(\expr) \ne \bot \wand \pred(\toval(\expr))\right) *{}\\
 &\quad \left(\Sep_{\expr \in \tpool_2'} \toval(\expr) \ne \bot \wand \pred_F(\toval(\expr))\right)
\end{align*}
The $\hat\metaprop$ here arises because we need a way to talk about $\metaprop$ inside Iris.
To this end, we assume that the signature $\Sig$ contains some assertion $\hat{\metaprop}$:
\[ \hat{\metaprop} : \Prop \in \SigFn \]
Furthermore, we assume that the \emph{interpretation} $\Sem{\hat{\metaprop}}$ of $\hat{\metaprop}$ reflects $\metaprop$ (also see \Sref{sec:model}):
\[\begin{array}{rMcMl}
  \Sem{\hat{\metaprop}} &:& \Sem\Prop \\
  \Sem{\hat{\metaprop}} &\eqdef& \Lam \any. \setComp{n}{\metaprop}
\end{array}\]
The signature can of course state arbitrary additional properties of $\hat{\metaprop}$, as long as they are proven sound.
\end{thm}

In other words, to show that $\metaprop$ holds, we have to prove an entailment in Iris that, starting from the empty context, chooses some state interpretation, postconditions for the initial threads, forked-thread postcondition and stuckness and then proves:
\begin{itemize}
  \item the initial state interpretation,
  \item a weakest-precondition,
  \item and a view shift showing the desired $\hat\metaprop$ under the extra assumption $\consstate(\tpool_2, \state_2)$.
\end{itemize}
Notice that the state interpretation and the postconditions are chosen \emph{after} doing a fancy update, which allows them to depend on the names of ghost variables that are picked in that initial fancy update.
This gives us a chance to allocate some ``global'' ghost state that state interpretation and postcondition can refer to (\eg the name $\gname_{\textdom{Credits}}$).

$\consstate^{\stateinterp;\vec\pred;\pred_F}_{\stuckness}(\tpool_2, \state_2)$ says that:
\begin{itemize}
\item The final thread-pool $\tpool_2$ contains the final state of the initial threads $\vec\expr_2$, and any number of additional forked threads in $\tpool_2'$.
\item If this is a stuck-free weakest precondition, then all threads in the final thread-pool are either values or are reducible in the final state $\state_2$.
\item The state interpretation $\stateinterp$ holds for the final state.
\item If one of the initial threads reduced to a value, the corresponding post-condition $\pred \in \vec\pred$ holds for that value.
\item If any other thread reduced to a value, the forked-thread post-condition $\pred_F$ holds for that value.
\end{itemize}

~\par

As an example for how to use this adequacy theorem, let us say we wanted to prove that a program $\expr_1$ for which we derived a $\NotStuck$ weakest-precondition cannot get stuck:
\begin{cor}[Stuck-freedom]
  Assume we are given some $\expr_1$ such that the following holds:
\[
\TRUE \proves \All\state_1, \vec\obs. \pvs[\top] \Exists \stateinterp, \pred, \pred_F. \stateinterp(\state_1,0,\vec\obs,0) * \wpre[\stateinterp;\pred_F]{\expr_1}[\NotStuck;\top]{x.\; \pred(x)}
\]
  Then it is the case that:
\[
\All \state_1, \vec\obs, \tpool_2, \state_2. ([\expr_1], \state_1) \tpsteps[\vec\obs] (\tpool_2, \state_2) \Ra \All \expr \in \tpool_2. \toval(\expr) \neq \bot \lor \red(\expr, \state_2)
\]
\end{cor}
To prove the conclusion of this corollary, we assume some $\state_1, \vec\obs, \tpool_2, \state_2$ and $([\expr_1], \state_1) \tpsteps[\vec\obs] (\tpool_2, \state_2)$, and we instantiate the main theorem with this execution and $\metaprop \eqdef \All \expr \in \tpool_2. \toval(\expr) \neq \bot \lor \red(\expr, \state_2)$.
We can then show the premise of adequacy using the Iris entailment that we assumed in the corollary and:
\[ \TRUE \proves \consstate^{\stateinterp;[\pred];\pred_F}_{\NotStuck}(\tpool_2, \state_2) \vs[\top][\emptyset] \metaprop \]
This proof, just like the following, also exploits that we can freely swap between meta-level universal quantification ($\All x. \TRUE \proves \prop$) and quantification in Iris ($\TRUE \proves \All x. \prop$).

~\par

Similarly we could show that the postcondition makes adequate statements about the possible final value of the main thread:
\begin{cor}[Adequate postcondition]
  Assume we are given some $\expr_1$ and a set $V \subseteq \Val$ such that the following holds (assuming we can talk about sets like $V$ inside the logic):
\[
\TRUE \proves \All\state_1, \vec\obs. \pvs[\top] \Exists \stateinterp, \pred_F. \stateinterp(\state_1,0,\vec\obs,0) * \wpre[\stateinterp;\pred_F]{\expr_1}[\stuckness;\top]{x.\; x \in V}
\]
  Then it is the case that:
\[
\All \state_1, \vec\obs, \val_2, \tpool_2, \state_2. ([\expr_1], \state_1) \tpsteps[\vec\obs] ([\ofval(\val_2)] \dplus \tpool_2, \state_2) \Ra \val_2 \in V
\]
\end{cor}
To show this, we assume some $\state_1, \vec\obs, \val_2, \tpool_2, \state_2$ such that $([\expr_1], \state_1) \tpsteps[\vec\obs] ([\ofval(\val_2)] \dplus \tpool_2, \state_2)$, and we instantiate adequacy with this execution and $\metaprop \eqdef \val_2 \in \Val$.
Then we only have to show:
$$\TRUE \proves \consstate^{\stateinterp;[(\Lam \val. \val \in \Val)];\pred_F}_{\stuckness}([\ofval(\val_2)] \dplus \tpool_2, \state_2) \vs[\top][\emptyset] \val_2 \in \Val $$

~\par

As a final example, we could use adequacy to show that the state $\state$ of the program is always in some set $\Sigma \subseteq \State$:
\begin{cor}[Adequate state interpretation]
  Assume we are given some $\expr_1$ and a set $\Sigma \subseteq \State$ such that the following holds (assuming we can talk about sets like $\Sigma$ inside the logic):
\[
\TRUE \proves \All\state_1, \vec\obs. \pvs[\top] \Exists \stateinterp, \pred, \pred_F. \stateinterp(\state_1,0,\vec\obs,0) * \wpre[\stateinterp;\pred_F]{\expr_1}[\stuckness;\top]{\pred} * (\All \state_2, n_s, n_t. \stateinterp(\state_2,n_s,(),n_t) \!\vs[\top][\emptyset] \state_2 \in \Sigma)
\]
  Then it is the case that:
\[
\All \state_1, \vec\obs, \tpool_2, \state_2. ([\expr_1], \state_1) \tpsteps[\vec\obs] (\tpool_2, \state_2) \Ra \state_2 \in \Sigma
\]
\end{cor}
To show this, we assume some $\state_1, \vec\obs, \tpool_2, \state_2$ such that $([\expr_1], \state_1) \tpsteps[\vec\obs] (\tpool_2, \state_2)$, and we instantiate adequacy with this execution and $\metaprop \eqdef \state_2 \in \Sigma$.
Then we have to show:
\[
(\All \state_2, n_s, n_t. \stateinterp(\state_2,n_s,(),n_t) \!\vs[\top][\emptyset] \state_2 \in \Sigma) \proves \consstate^{\stateinterp;[\pred];\pred_F}_{\stuckness}(\tpool_2, \state_2) \vs[\top][\emptyset] \state_2 \in \Sigma
\]

\paragraph{Hoare triples.}
It turns out that weakest precondition is actually quite convenient to work with, in particular when performing these proofs in Coq.
Still, for a more traditional presentation, we can easily derive the notion of a Hoare triple:
\[
\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask] \eqdef \always{(\prop \wand \wpre{\expr}[\mask]{\Ret\val.\propB})}
\]
We assume the state interpretation $\stateinterp$ to be fixed by the context.

We only give some of the proof rules for Hoare triples here, since we usually do all our reasoning directly with weakest preconditions and use Hoare triples only to write specifications.
\begin{mathparpagebreakable}
\inferH{Ht-ret}
  {}
  {\hoare{\TRUE}{\valB}{\Ret\val. \val = \valB}[\mask]}
\and
\inferH{Ht-bind}
  {\text{$\lctx$ is a context} \and \hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \\
   \All \val. \hoare{\propB}{\lctx(\val)}{\Ret\valB.\propC}[\mask]}
  {\hoare{\prop}{\lctx(\expr)}{\Ret\valB.\propC}[\mask]}
\and
\inferH{Ht-csq}
  {\prop \vs \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\
   \All \val. \propB' \vs \propB}
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
% \inferH{Ht-mask-weaken}
%   {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
%   {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask \uplus \mask']}
% \\\\
\inferH{Ht-frame}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
  {\hoare{\prop * \propC}{\expr}{\Ret\val. \propB * \propC}[\mask]}
\and
% \inferH{Ht-frame-step}
%   {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \and \toval(\expr) = \bot \and \mask_2 \subseteq \mask_2 \\\\ \propC_1 \vs[\mask_1][\mask_2] \later\propC_2 \and \propC_2 \vs[\mask_2][\mask_1] \propC_3}
%   {\hoare{\prop * \propC_1}{\expr}{\Ret\val. \propB * \propC_3}[\mask \uplus \mask_1]}
% \and
\inferH{Ht-atomic}
  {\prop \vs[\mask \uplus \mask'][\mask] \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\
   \All\val. \propB' \vs[\mask][\mask \uplus \mask'] \propB \\
   \atomic(\expr)
  }
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \mask']}
\and
\inferH{Ht-false}
  {}
  {\hoare{\FALSE}{\expr}{\Ret \val. \prop}[\mask]}
\and
\inferHB{Ht-disj}
  {\hoare{\prop}{\expr}{\Ret\val.\propC}[\mask] \and \hoare{\propB}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \lor \propB}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferHB{Ht-exist}
  {\All \var. \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
  {\hoare{\Exists \var. \prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferHB{Ht-box}
  {\always\propB \proves \hoare{\prop}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \land \always{\propB}}{\expr}{\Ret\val.\propC}[\mask]}
\end{mathparpagebreakable}

\subsection{Invariant Namespaces}
\label{sec:namespaces}

In \Sref{sec:invariants}, we defined a proposition $\invM\iname\prop$ expressing knowledge (\ie the proposition is persistent) that $\prop$ is maintained as invariant with name $\iname$.
The concrete name $\iname$ is picked when the invariant is allocated, so it cannot possibly be statically known -- it will always be a variable that's threaded through everything.
However, we hardly care about the actual, concrete name.
All we need to know is that this name is \emph{different} from the names of other invariants that we want to open at the same time.
Keeping track of the $n^2$ mutual inequalities that arise with $n$ invariants quickly gets in the way of the actual proof.

To solve this issue, instead of remembering the exact name picked for an invariant, we will keep track of the \emph{namespace} the invariant was allocated in.
Namespaces are sets of invariants, following a tree-like structure:
Think of the name of an invariant as a sequence of identifiers, much like a fully qualified Java class name.
A \emph{namespace} $\namesp$ then is like a Java package: it is a sequence of identifiers that we think of as \emph{containing} all invariant names that begin with this sequence. For example, \texttt{org.mpi-sws.iris} is a namespace containing the invariant name \texttt{org.mpi-sws.iris.heap}.

The crux is that all namespaces contain infinitely many invariants, and hence we can \emph{freely pick} the namespace an invariant is allocated in -- no further, unpredictable choice has to be made.
Furthermore, we will often know that namespaces are \emph{disjoint} just by looking at them.
The namespaces $\namesp.\texttt{iris}$ and $\namesp.\texttt{gps}$ are disjoint no matter the choice of $\namesp$.
As a result, there is often no need to track disjointness of namespaces, we just have to pick the namespaces that we allocate our invariants in accordingly.

Formally speaking, let $\namesp \in \textlog{InvNamesp} \eqdef \List(\nat)$ be the type of \emph{invariant namespaces}.
We use the notation $\namesp.\iname$ for the namespace $[\iname] \dplus \namesp$.
(In other words, the list is ``backwards''. This is because cons-ing to the list, like the dot does above, is easier to deal with in Coq than appending at the end.)

The elements of a namespaces are \emph{structured invariant names} (think: Java fully qualified class name).
They, too, are lists of $\nat$, the same type as namespaces.
In order to connect this up to the definitions of \Sref{sec:invariants}, we need a way to map structured invariant names to $\InvName$, the type of ``plain'' invariant names.
Any injective mapping $\textlog{namesp\_inj}$ will do; and such a mapping has to exist because $\List(\nat)$ is countable and $\InvName$ is infinite.
Whenever needed, we (usually implicitly) coerce $\namesp$ to its encoded suffix-closure, \ie to the set of encoded structured invariant names contained in the namespace: \[\namecl\namesp \eqdef \setComp{\iname}{\Exists \namesp'. \iname = \textlog{namesp\_inj}(\namesp' \dplus \namesp)}\]

We will overload the notation for invariant propositions for using namespaces instead of names:
\[ \invM\namesp\prop \eqdef \Exists \iname \in \namecl\namesp. \invM\iname{\prop} \]
We can now derive the following rules (this involves unfolding the definition of fancy updates):
\begin{mathpar}
  \axiomH{inv-persist}{\invM\namesp\prop \proves \always\invM\namesp\prop}

  \axiomH{inv-alloc}{\later\prop \proves \pvs[\emptyset] \invM\namesp\prop}

  \inferH{inv-open}
  {\namesp \subseteq \mask}
  {\invM\namesp\prop \vs[\mask][\mask\setminus\namesp] \later\prop * (\later\prop \vsW[\mask\setminus\namesp][\mask] \TRUE)}

  \inferH{inv-open-timeless}
  {\namesp \subseteq \mask \and \timeless\prop}
  {\invM\namesp\prop \vs[\mask][\mask\setminus\namesp] \prop * (\prop \vsW[\mask\setminus\namesp][\mask] \TRUE)}
\end{mathpar}

\subsection{Accessors}

The two rules \ruleref{inv-open} and \ruleref{inv-open-timeless} above may look a little surprising, in the sense that it is not clear on first sight how they would be applied.
The rules are the first \emph{accessors} that show up in this document.
Accessors are propositions of the form
\[ \prop \vs[\mask_1][\mask_2] \Exists\var. \propB * (\All\varB. \propB' \vsW[\mask_2][\mask_1] \propC) \]

One way to think about such propositions is as follows:
Given some accessor, if during our verification we have the proposition $\prop$ and the mask $\mask_1$ available, we can use the accessor to \emph{access} $\propB$ and obtain the witness $\var$.
We call this \emph{opening} the accessor, and it changes the mask to $\mask_2$.
Additionally, opening the accessor provides us with $\All\varB. \propB' \vsW[\mask_2][\mask_1] \propC$, a \emph{linear view shift} (\ie a view shift that can only be used once).
This linear view shift tells us that in order to \emph{close} the accessor again and go back to mask $\mask_1$, we have to pick some $\varB$ and establish the corresponding $\propB'$.
After closing, we will obtain $\propC$.

Using \ruleref{vs-trans} and \ruleref{Ht-atomic} (or the corresponding proof rules for fancy updates and weakest preconditions), we can show that it is possible to open an accessor around any view shift and any \emph{atomic} expression:
\begin{mathpar}
  \inferH{Acc-vs}
  {\prop \vs[\mask_1][\mask_2] \Exists\var. \propB * (\All\varB. \propB' \vsW[\mask_2][\mask_1] \propC) \and
   \All\var. \propB * \prop_F \vs[\mask_2] \Exists\varB. \propB' * \prop_F}
  {\prop * \prop_F \vs[\mask_1] \propC * \prop_F}

  \inferH{Acc-Ht}
  {\prop \vs[\mask_1][\mask_2] \Exists\var. \propB * (\All\varB. \propB' \vsW[\mask_2][\mask_1] \propC) \and
   \All\var. \hoare{\propB * \prop_F}\expr{\Exists\varB. \propB' * \prop_F}[\mask_2] \and
   \atomic(\expr)}
  {\hoare{\prop * \prop_F}\expr{\propC * \prop_F}[\mask_1]}
\end{mathpar}

Furthermore, in the special case that $\mask_1 = \mask_2$, the accessor can be opened around \emph{any} expression.
For this reason, we also call such accessors \emph{non-atomic}.

The reasons accessors are useful is that they let us talk about ``opening X'' (\eg ``opening invariants'') without having to care what X is opened around.
Furthermore, as we construct more sophisticated and more interesting things that can be opened (\eg invariants that can be ``cancelled'', or STSs), accessors become a useful interface that allows us to mix and match different abstractions in arbitrary ways.

For the symmetric case where $\prop = \propC$ and $\propB = \propB'$, we use the following notation that avoids repetition:
\[ \Acc[\mask_1][\mask_2]\prop{\Ret x. \propB} \eqdef \prop \vs[\mask_1][\mask_2] \Exists\var. \propB * (\propB \vsW[\mask_2][\mask_1] \prop)  \]
This accessor is ``idempotent'' in the sense that it does not actually change the state.  After applying it, we get our $\prop$ back so we end up where we started.

\paragraph{Accessor-style invariants.}
In fact, the user-visible notion of invariants $\knowInv\namesp\prop$ is defined via \ruleref{inv-open}:
\begin{align*}
  \knowInv\namesp\prop \eqdef \always\All\mask. \pvs[\mask][\mask\setminus\namesp] \later\prop * (\later\prop \vsW[\mask\setminus\namesp][\mask] \TRUE)
\end{align*}
All the invariant laws shown above for $\invM\namesp\prop$ also hold for $\knowInv\namesp\prop$, but we can also show some additional laws that would otherwise not hold:
\begin{mathpar}
  \inferH{inv-combine}
  {\namesp_1 \disj \namesp_2 \and \namesp_1 \cup \namesp_2 \subseteq \namesp}
  {\knowInv{\namesp_1}{\prop_1} * \knowInv{\namesp_2}{\prop_2} \vdash \knowInv{\namesp}{\prop_1 * \prop_2}}

  \inferH{inv-split}
  {}
  {\knowInv{\namesp}{\prop_1 * \prop_2} \vdash \knowInv{\namesp}{\prop_1} * \knowInv{\namesp}{\prop_2}}

  \inferH{inv-alter}
  {}
  {\later\always(\prop \wand \propB * (\propB \wand \prop)) \vdash \knowInv\namesp\prop \wand \knowInv\namesp\propB}
\end{mathpar}

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: