1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
From iris.algebra Require Import excl agree csum.
From iris.proofmode Require Import tactics.
From iris.program_logic Require Export weakestpre.
From iris.deprecated.program_logic Require Import hoare.
From iris.heap_lang Require Export lang.
From iris.heap_lang Require Import assert proofmode notation adequacy.
From iris.heap_lang.lib Require Import par.
From iris.prelude Require Import options.
(** This is the introductory example from the "Iris from the Ground Up" journal
paper. *)
Unset Mangle Names.
Definition one_shot_example : val := λ: <>,
let: "x" := ref NONE in (
(* tryset *) (λ: "n",
CAS "x" NONE (SOME "n")),
(* check *) (λ: <>,
let: "y" := !"x" in λ: <>,
match: "y" with
NONE => #()
| SOME "n" =>
match: !"x" with
NONE => assert: #false
| SOME "m" => assert: "n" = "m"
end
end)).
Definition one_shotR := csumR (exclR unitO) (agreeR ZO).
Definition Pending : one_shotR := Cinl (Excl ()).
Definition Shot (n : Z) : one_shotR := Cinr (to_agree n).
Class one_shotG Σ := { #[local] one_shot_inG :: inG Σ one_shotR }.
Definition one_shotΣ : gFunctors := #[GFunctor one_shotR].
Global Instance subG_one_shotΣ {Σ} : subG one_shotΣ Σ → one_shotG Σ.
Proof. solve_inG. Qed.
Section proof.
Local Set Default Proof Using "Type*".
Context `{!heapGS Σ, !one_shotG Σ}.
Definition one_shot_inv (γ : gname) (l : loc) : iProp Σ :=
(l ↦ NONEV ∗ own γ Pending ∨ ∃ n : Z, l ↦ SOMEV #n ∗ own γ (Shot n))%I.
Lemma wp_one_shot (Φ : val → iProp Σ) :
(∀ f1 f2 : val,
(∀ n : Z, □ WP f1 #n {{ w, ⌜w = #true⌝ ∨ ⌜w = #false⌝ }}) ∗
□ WP f2 #() {{ (g : val), □ WP g #() {{ _, True }} }} -∗ Φ (f1,f2)%V)
⊢ WP one_shot_example #() {{ Φ }}.
Proof.
iIntros "Hf /=". pose proof (nroot .@ "N") as N.
wp_lam. wp_alloc l as "Hl".
iMod (own_alloc Pending) as (γ) "Hγ"; first done.
iMod (inv_alloc N _ (one_shot_inv γ l) with "[Hl Hγ]") as "#HN".
{ iNext. iLeft. by iSplitL "Hl". }
wp_pures. iModIntro. iApply "Hf"; iSplit.
- iIntros (n) "!>". wp_lam. wp_pures. wp_bind (CmpXchg _ _ _).
iInv N as ">[[Hl Hγ]|H]"; last iDestruct "H" as (m) "[Hl Hγ]".
+ iMod (own_update with "Hγ") as "Hγ".
{ by apply cmra_update_exclusive with (y:=Shot n). }
wp_cmpxchg_suc. iModIntro. iSplitL; last (wp_pures; by eauto).
iNext; iRight; iExists n; by iFrame.
+ wp_cmpxchg_fail. iModIntro. iSplitL; last (wp_pures; by eauto).
rewrite /one_shot_inv; eauto 10.
- iIntros "!> /=". wp_lam. wp_bind (! _)%E.
iInv N as ">Hγ".
iAssert (∃ v, l ↦ v ∗ ((⌜v = NONEV⌝ ∗ own γ Pending) ∨
∃ n : Z, ⌜v = SOMEV #n⌝ ∗ own γ (Shot n)))%I with "[Hγ]" as "Hv".
{ iDestruct "Hγ" as "[[Hl Hγ]|Hl]"; last iDestruct "Hl" as (m) "[Hl Hγ]".
+ iExists NONEV. iFrame. eauto.
+ iExists (SOMEV #m). iFrame. eauto. }
iDestruct "Hv" as (v) "[Hl Hv]". wp_load.
iAssert (one_shot_inv γ l ∗ (⌜v = NONEV⌝ ∨ ∃ n : Z,
⌜v = SOMEV #n⌝ ∗ own γ (Shot n)))%I with "[Hl Hv]" as "[Hinv #Hv]".
{ iDestruct "Hv" as "[[% ?]|Hv]"; last iDestruct "Hv" as (m) "[% ?]"; subst.
+ Show. iSplit.
* iLeft; by iSplitL "Hl".
* eauto.
+ iSplit.
* iRight; iExists m; by iSplitL "Hl".
* eauto. }
iSplitL "Hinv"; first by eauto.
iModIntro. wp_pures. iIntros "!> !>". wp_lam.
iDestruct "Hv" as "[%|Hv]"; last iDestruct "Hv" as (m) "[% Hγ']";
subst; wp_match; [done|].
wp_bind (! _)%E.
iInv N as "[[Hl >Hγ]|H]"; last iDestruct "H" as (m') "[Hl Hγ]".
{ by iCombine "Hγ Hγ'" gives %?. }
wp_load. Show.
iCombine "Hγ Hγ'" gives %?%to_agree_op_inv_L; subst.
iModIntro. iSplitL "Hl".
{ iNext; iRight; by eauto. }
wp_smart_apply wp_assert. wp_pures. by case_bool_decide.
Qed.
Lemma ht_one_shot (Φ : val → iProp Σ) :
⊢ {{ True }} one_shot_example #()
{{ ff,
(∀ n : Z, {{ True }} Fst ff #n {{ w, ⌜w = #true⌝ ∨ ⌜w = #false⌝ }}) ∗
{{ True }} Snd ff #() {{ g, {{ True }} g #() {{ _, True }} }}
}}.
Proof.
iIntros "!> _". iApply wp_one_shot. iIntros (f1 f2) "[#Hf1 #Hf2]"; iSplit.
- iIntros (n) "!> _". wp_smart_apply "Hf1".
- iIntros "!> _". wp_smart_apply (wp_wand with "Hf2"). by iIntros (v) "#? !> _".
Qed.
End proof.
(* Have a client with a closed proof. *)
Definition client : expr :=
let: "ff" := one_shot_example #() in
(Fst "ff" #5 ||| let: "check" := Snd "ff" #() in "check" #()).
Section client.
Context `{!heapGS Σ, !one_shotG Σ, !spawnG Σ}.
Lemma client_safe : ⊢ WP client {{ _, True }}.
Proof using Type*.
rewrite /client. wp_apply wp_one_shot. iIntros (f1 f2) "[#Hf1 #Hf2]".
wp_let. wp_smart_apply wp_par.
- wp_smart_apply "Hf1".
- wp_proj. wp_bind (f2 _)%E. iApply wp_wand; first by iExact "Hf2".
iIntros (check) "Hcheck". wp_pures. iApply "Hcheck".
- auto.
Qed.
End client.
(** Put together all library functors. *)
Definition clientΣ : gFunctors := #[ heapΣ; one_shotΣ; spawnΣ ].
(** This lemma implicitly shows that these functors are enough to meet
all library assumptions. *)
Lemma client_adequate σ : adequate NotStuck client σ (λ _ _, True).
Proof. apply (heap_adequacy clientΣ)=> ?. iIntros "_". iApply client_safe. Qed.
(* Since we check the output of the test files, this means
our test suite will fail if we ever accidentally add an axiom
to anything used by this proof. *)
Print Assumptions client_adequate.
|