1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
|
(* Copyright 2021 Pierre Courtieu
This file is part of LibHyps. It is distributed under the MIT
"expat license". You should have recieved a LICENSE file with it. *)
Require Import Arith ZArith List LibHyps.TacNewHyps.
Import ListNotations.
Local Open Scope list.
(** This file defines a tactic "autorename h" (and "autorename_strict
h") that automatically rename hypothesis h followinh a systematic,
but customizable heuristic.
Comments welcome. *)
(* Comment this and the Z-dependent lines below if you don't want
ZArith to be loaded *)
Require Import ZArith.
(** ** The custom renaming tactic
The tactic "rename_hyp" should be redefined along a coq development,
it should return a fresh name build from a type th and a depth. It
should fail if no name is found, so that the fallback scheme is
called.
Typical use, in increasing order of complexity, approximatively
equivalent to the decreasing order of interest.
<<
Ltac rename_hyp1 n th :=
match th with
| List.In ?e ?l => name ( `_lst_in` ++ e#n ++ l#O)
| InA _ ?e ?l => name( `_inA` ++ e#n ++ l#0)
| @StronglySorted _ ?ord ?l => name ( `_strgSorted` ++ l#(S (S n)))
| @Forall _ ?P ?x => name (`_lst_forall` ++ P#n ++ x#n)
| @Forall2 _ _ ?P ?x ?y => name (`_lst_forall2` ++ P#n ++ x#n ++ y#n)
| NoDupA _ ?l => name (`_NoDupA` ++ l#n)
| NoDup _ ?l => name (`_NoDup` ++ l#n)
end.
>>
(* Overwrite the definition of rename_hyp using the ::= operator. :*)
<<
Ltac rename_hyp ::= my_rename_hyp.
>> *)
(** * Implementation principle:
The name of the hypothesis will be a sequence of chunks. A chunk is
a word generally starting with "_".
Internally (not seen by the user) this sequence is represented by a
list of small terms. One term of the form (∀ <chunk>:Prop, DUMMY
<chunk>) per chunk. For instance the sequence "h_eq_foo" is
represented by the following coq term:
[(∀ h,DUMMY h) ; (∀ _eq,DUMMY _eq) ; (∀ _foo, DUMMY _foo)]
where DUMMY is an opaque (identity) function but we don't care. *)
(** We define DUMMY as an opaque symbol. *)
Definition DUMMY: Prop -> Prop.
exact (fun x:Prop => x).
Qed.
(* ********** CUSTOMIZATION ********** *)
(** If this is true, then all hyps names will have a trailing "_". In
case of names ending with a digit (like in "le_1_2" or "le_x1_x2")
this additional suffix avoids Coq's fresh name generation to
*replace* the digit. Although this is esthetically bad, it makes
things more predictable. You may set this to true for backward
compatility. *)
Ltac add_suffix := constr:(true).
(* This sets the way numerical constants are displayed, default value
is set below to numerical_names_nosufx, which will give the same
name to (O<1)%nat and (O<1)%Z and (O<1)%N, i.e. h_lt_0_1_.
but you can use this in your development to change it
h_lt_0n_1n_/h_lt_0z_1z_/h_lt_0N_1N_:
Ltac numerical_names ::= numerical_names_sufx *)
Ltac numerical_names := fail.
(** This determines the depth of the recursive analysis of a type to
compute the corresponding hypothesis name. generally 2 or 3 is
enough. More gives too log names, less may give identical names
too often. *)
Ltac rename_depth := constr:(3).
(** Default prefix for hypothesis names. *)
Ltac default_prefix :=constr:(forall h, DUMMY h).
(** A few special default chunks, for special cases in the naming heuristic. *)
Ltac impl_prefix := constr:(forall _impl, DUMMY _impl).
Ltac forall_prefix := constr:(forall _all, DUMMY _all).
Ltac exists_prefix := constr:(forall _ex, DUMMY _ex).
(** This is the customizable naming tactic that the user should
REDEFINE along his development. See above for an example of such
redefinition. It should always fail when no name suggestion is
found, to give a chance to the default naming scheme to apply. *)
Ltac rename_hyp stop th := fail.
(* ************************************** *)
(** Builds an id from a sequence of chunks. fresh is not supposed to
add suffixes anywhere because all the ids we use start with "_".
As long as no constant or hyp name start with "_" it is ok. *)
Ltac build_name_gen suffx l :=
let l := eval lazy beta delta [List.app] iota in l in
match l with
| nil => fail
| (forall id1:Prop, DUMMY id1)::nil =>
match suffx with
| true => fresh id1 "_"
| false => fresh id1
end
| (forall id1:Prop, DUMMY id1)::?l' =>
let recres := build_name_gen suffx l' in
(* id1 starts with "_", so fresh do not add any suffix *)
let res := fresh id1 recres in
res
end.
Ltac build_name l := build_name_gen add_suffix l.
Ltac build_name_no_suffix l := build_name_gen constr:(false) l.
(** Check if t is an eligible argument for fresh function. For instance
if t is (forall foo, ...), it is not eligible. *)
Ltac freshable t :=
let x := fresh t "_dummy_sufx" in
idtac.
(** Generate fresh name for numerical constants.
Warning: problem here: hyps names may end with a digit: Coq may
*replace* the digit in case of name clash. If you are bitten by
this, you should switch to "Ltac add_suffix ::= constr:(true)." so
that every hyp name ends with "_", so that coq never mangle with
the digits *)
Ltac numerical_names_nosufx t :=
match t with
| 0%Z => fresh "_0"
| 1%Z => fresh "_1"
| 2%Z => fresh "_2"
| 3%Z => fresh "_3"
| 4%Z => fresh "_4"
| 5%Z => fresh "_5"
| 6%Z => fresh "_6"
| 7%Z => fresh "_7"
| 8%Z => fresh "_8"
| 9%Z => fresh "_9"
| 10%Z => fresh "_10"
(* | Z0 => fresh "_0" *)
| O%nat => fresh "_0"
| 1%nat => fresh "_1"
| 2%nat => fresh "_2"
| 3%nat => fresh "_3"
| 4%nat => fresh "_4"
| 5%nat => fresh "_5"
| 6%nat => fresh "_6"
| 7%nat => fresh "_7"
| 8%nat => fresh "_8"
| 9%nat => fresh "_9"
| 10%nat => fresh "_10"
| O%N => fresh "_0"
| 1%N => fresh "_1"
| 2%N => fresh "_2"
| 3%N => fresh "_3"
| 4%N => fresh "_4"
| 5%N => fresh "_5"
| 6%N => fresh "_6"
| 7%N => fresh "_7"
| 8%N => fresh "_8"
| 9%N => fresh "_9"
| 10%N => fresh "_10"
end.
Ltac numerical_names_sufx t :=
match t with
| 0%Z => fresh "_0z"
| 1%Z => fresh "_1z"
| 2%Z => fresh "_2z"
| 3%Z => fresh "_3z"
| 4%Z => fresh "_4z"
| 5%Z => fresh "_5z"
| 6%Z => fresh "_6z"
| 7%Z => fresh "_7z"
| 8%Z => fresh "_8z"
| 9%Z => fresh "_9z"
| 10%Z => fresh "_10z"
(* | Z0 => fresh "_0" *)
| O%nat => fresh "_0n"
| 1%nat => fresh "_1n"
| 2%nat => fresh "_2n"
| 3%nat => fresh "_3n"
| 4%nat => fresh "_4n"
| 5%nat => fresh "_5n"
| 6%nat => fresh "_6n"
| 7%nat => fresh "_7n"
| 8%nat => fresh "_8n"
| 9%nat => fresh "_9n"
| 10%nat => fresh "_10n"
| O%N => fresh "_0N"
| 1%N => fresh "_1N"
| 2%N => fresh "_2N"
| 3%N => fresh "_3N"
| 4%N => fresh "_4N"
| 5%N => fresh "_5N"
| 6%N => fresh "_6N"
| 7%N => fresh "_7N"
| 8%N => fresh "_8N"
| 9%N => fresh "_9N"
| 10%N => fresh "_10N"
end.
(* Default value, see above for another possible one.
Ltac numerical_names ::= numerical_names_sufx *)
Ltac numerical_names ::= numerical_names_nosufx.
Ltac raw_name X := (constr:((forall X, DUMMY X) :: [])).
(** Build a chunk from a simple term: either a number or a freshable
term. *)
Ltac box_name t :=
let id_ :=
match t with
| _ => numerical_names t
| _ =>
let _ := freshable t in
fresh "_" t
end
in constr:(forall id_:Prop, DUMMY id_).
(** This will later contain a few default fallback naming strategy. *)
Ltac rename_hyp_default stop th :=
fail.
Ltac decr n :=
match n with
| S ?n' => n'
| 0 => 0
end.
(* This computes the way we decrement our depth counter when we go
inside of t. For now we forget the idea of traversing Prop sorted
terms indefinitely. It gives too long names. *)
Ltac nextlevel n t :=
let tt := type of t in
match tt with
(* | Prop => n *)
| _ => decr n
end.
(* Determines the number of "head" implicit arguments, i.e. implicit
arguments that are before any explicit one. This shall be ignored
when naming an application. This is done in very ugly way. Any
better solution welcome. *)
Ltac count_impl th :=
lazymatch th with
| (?z ?a ?b ?c ?d ?e ?f ?g ?h ?i ?j ?k) =>
match th with
| _ => let foo := constr:(z _ _ _ _ _ _ _ _ _ _ k) in constr:(1%nat)
| _ => let foo := constr:(z _ _ _ _ _ _ _ _ _ j k) in constr:(2%nat)
| _ => let foo := constr:(z _ _ _ _ _ _ _ _ i j k) in constr:(3%nat)
| _ => let foo := constr:(z _ _ _ _ _ _ _ h i j k) in constr:(4%nat)
| _ => let foo := constr:(z _ _ _ _ _ _ g h i j k) in constr:(5%nat)
| _ => let foo := constr:(z _ _ _ _ _ f g h i j k) in constr:(6%nat)
| _ => let foo := constr:(z _ _ _ _ e f g h i j k) in constr:(7%nat)
| _ => let foo := constr:(z _ _ _ d e f g h i j k) in constr:(8%nat)
| _ => let foo := constr:(z _ _ c d e f g h i j k) in constr:(9%nat)
| _ => let foo := constr:(z _ b c d e f g h i j k) in constr:(10%nat)
| _ => let foo := constr:(z a b c d e f g h i j k) in constr:(10%nat)
end
| (?z ?b ?c ?d ?e ?f ?g ?h ?i ?j ?k) =>
match th with
| _ => let foo := constr:(z _ _ _ _ _ _ _ _ _ k) in constr:(1%nat)
| _ => let foo := constr:(z _ _ _ _ _ _ _ _ j k) in constr:(2%nat)
| _ => let foo := constr:(z _ _ _ _ _ _ _ i j k) in constr:(3%nat)
| _ => let foo := constr:(z _ _ _ _ _ _ h i j k) in constr:(4%nat)
| _ => let foo := constr:(z _ _ _ _ _ g h i j k) in constr:(5%nat)
| _ => let foo := constr:(z _ _ _ _ f g h i j k) in constr:(6%nat)
| _ => let foo := constr:(z _ _ _ e f g h i j k) in constr:(7%nat)
| _ => let foo := constr:(z _ _ d e f g h i j k) in constr:(8%nat)
| _ => let foo := constr:(z _ c d e f g h i j k) in constr:(9%nat)
| _ => let foo := constr:(z b c d e f g h i j k) in constr:(10%nat)
end
| (?z ?c ?d ?e ?f ?g ?h ?i ?j ?k) =>
match th with
| _ => let foo := constr:(z _ _ _ _ _ _ _ _ k) in constr:(1%nat)
| _ => let foo := constr:(z _ _ _ _ _ _ _ j k) in constr:(2%nat)
| _ => let foo := constr:(z _ _ _ _ _ _ i j k) in constr:(3%nat)
| _ => let foo := constr:(z _ _ _ _ _ h i j k) in constr:(4%nat)
| _ => let foo := constr:(z _ _ _ _ g h i j k) in constr:(5%nat)
| _ => let foo := constr:(z _ _ _ f g h i j k) in constr:(6%nat)
| _ => let foo := constr:(z _ _ e f g h i j k) in constr:(7%nat)
| _ => let foo := constr:(z _ d e f g h i j k) in constr:(8%nat)
| _ => let foo := constr:(z c d e f g h i j k) in constr:(9%nat)
end
| (?z ?d ?e ?f ?g ?h ?i ?j ?k) =>
match th with
| _ => let foo := constr:(z _ _ _ _ _ _ _ k) in constr:(1%nat)
| _ => let foo := constr:(z _ _ _ _ _ _ j k) in constr:(2%nat)
| _ => let foo := constr:(z _ _ _ _ _ i j k) in constr:(3%nat)
| _ => let foo := constr:(z _ _ _ _ h i j k) in constr:(4%nat)
| _ => let foo := constr:(z _ _ _ g h i j k) in constr:(5%nat)
| _ => let foo := constr:(z _ _ f g h i j k) in constr:(6%nat)
| _ => let foo := constr:(z _ e f g h i j k) in constr:(7%nat)
| _ => let foo := constr:(z d e f g h i j k) in constr:(8%nat)
end
| (?z ?e ?f ?g ?h ?i ?j ?k) =>
match th with
| _ => let foo := constr:(z _ _ _ _ _ _ k) in constr:(1%nat)
| _ => let foo := constr:(z _ _ _ _ _ j k) in constr:(2%nat)
| _ => let foo := constr:(z _ _ _ _ i j k) in constr:(3%nat)
| _ => let foo := constr:(z _ _ _ h i j k) in constr:(4%nat)
| _ => let foo := constr:(z _ _ g h i j k) in constr:(5%nat)
| _ => let foo := constr:(z _ f g h i j k) in constr:(6%nat)
| _ => let foo := constr:(z e f g h i j k) in constr:(7%nat)
end
| (?z ?f ?g ?h ?i ?j ?k) =>
match th with
| _ => let foo := constr:(z _ _ _ _ _ k) in constr:(1%nat)
| _ => let foo := constr:(z _ _ _ _ j k) in constr:(2%nat)
| _ => let foo := constr:(z _ _ _ i j k) in constr:(3%nat)
| _ => let foo := constr:(z _ _ h i j k) in constr:(4%nat)
| _ => let foo := constr:(z _ g h i j k) in constr:(5%nat)
| _ => let foo := constr:(z f g h i j k) in constr:(6%nat)
end
| (?z ?g ?h ?i ?j ?k) =>
match th with
| _ => let foo := constr:(z _ _ _ _ k) in constr:(1%nat)
| _ => let foo := constr:(z _ _ _ j k) in constr:(2%nat)
| _ => let foo := constr:(z _ _ i j k) in constr:(3%nat)
| _ => let foo := constr:(z _ h i j k) in constr:(4%nat)
| _ => let foo := constr:(z g h i j k) in constr:(5%nat)
end
| (?z ?h ?i ?j ?k) =>
match th with
| _ => let foo := constr:(z _ _ _ k) in constr:(1%nat)
| _ => let foo := constr:(z _ _ j k) in constr:(2%nat)
| _ => let foo := constr:(z _ i j k) in constr:(3%nat)
| _ => let foo := constr:(z h i j k) in constr:(4%nat)
end
| (?z ?i ?j ?k) =>
match th with
| _ => let foo := constr:(z _ _ k) in constr:(1%nat)
| _ => let foo := constr:(z _ j k) in constr:(2%nat)
| _ => let foo := constr:(z i j k) in constr:(3%nat)
end
| (?z ?j ?k) =>
match th with
| _ => let foo := constr:(z _ k) in constr:(1%nat)
| _ => let foo := constr:(z j k) in constr:(2%nat)
end
| (?z ?j) => constr:(1%nat)
| _ => constr:(0%nat)
end.
(** Default naming of an application: we name the function if possible
or fail, then we name all parameters that can be named either
recursively or simply. Parameters at positions below nonimpl are
considered implicit and not considered. *)
Ltac rename_app nonimpl stop acc th :=
match th with
| ?f => let f'' := box_name f in
constr:(f''::acc)
| (?f ?x) =>
match nonimpl with
| (S ?nonimpl') =>
let newstop := nextlevel stop x in
let namex := match true with
| _ => fallback_rename_hyp newstop x
| _ => constr:(@nil Prop)
end in
let newacc := constr:(namex ++ acc) in
rename_app nonimpl' stop newacc f
| 0%nat => (* don't consider this (implicit) argument *)
rename_app nonimpl stop acc f
end
| _ => constr:(@nil Prop)
end
(* Go under binder and rebuild a term with a good name inside,
catchable by a match context. *)
with build_dummy_quantified stop th :=
lazymatch th with
| forall __z:?A , ?B =>
constr:(
fun __z:A =>
ltac:(
let th' := constr:((fun __z => B) __z) in
let th' := eval lazy beta in th' in
let res := build_dummy_quantified stop th' in
exact res))
| ex ?f =>
match f with
| (fun __z:?A => ?B) =>
constr:(
fun __z:A =>
ltac:(
let th' := constr:((fun __z => B) __z) in
let th' := eval lazy beta in th' in
let res := build_dummy_quantified stop th' in
exact res))
end
| _ => fallback_rename_hyp stop th
end
(** ** Calls the (user-defined) rename_hyp + and fallbacks to some
default namings if needed. [h] is the hypothesis (ident) to
rename, [th] is its type. *)
with fallback_rename_hyp_quantif stop th :=
let prefx :=
match th with
| ?A -> ?B => impl_prefix
| forall _ , _ => forall_prefix
| ex (fun _ => _) => exists_prefix
| _ => fail
end in
let newstop := decr stop in
(* sufx_buried contains a list of dummies *)
let sufx_buried := build_dummy_quantified newstop th in
(* FIXME: a bit fragile *)
let sufx_buried' := eval lazy beta delta [List.app] iota in sufx_buried in
let sufx :=
match sufx_buried' with
| context [ (@cons Prop ?x ?y)] => constr:(x::y)
end
in
constr:(prefx::sufx)
with fallback_rename_hyp_specials stop th :=
let newstop := decr stop in
match th with
(* First see if user has something that applies *)
| _ => rename_hyp newstop th
(* if it fails try default specials *)
| _ => rename_hyp_default newstop th
end
with fallback_rename_hyp stop th :=
match stop with
(*| 0 => constr:(cons ltac:(box_name th) nil)*)
| 0 => constr:(@nil Prop)
| S ?n =>
match th with
| _ => fallback_rename_hyp_specials stop th
| _ => fallback_rename_hyp_quantif stop th
| _ =>
(*let newstop := nextlevel stop th in*)
let numnonimpl := count_impl th in
rename_app numnonimpl stop (@nil Prop) th
end
end.
(** * Notation to define specific naming strategy *)
Declare Scope autonaming_scope.
(** Notation to build a singleton chunk list *)
(* from coq-8.13 we should use name instead of ident. But let us wait
a few versions before this change. *)
Notation "'`' idx '`'" := (@cons Prop (forall idx:Prop, DUMMY idx) (@nil Prop))
(at level 1,idx ident,only parsing): autonaming_scope.
(** Notation to call naming on a term X, with a given depth n. *)
Notation " X '#' n " := ltac:(
let c := fallback_rename_hyp n X in exact c)
(at level 1,X constr, only parsing): autonaming_scope.
Notation " X '##' " :=
ltac:(let c := raw_name X in exact c)
(at level 1,X constr, only parsing): autonaming_scope.
(** It is nicer to write name t than constr:t, see below. *)
Ltac name c := (constr:(c)).
(** * Default fallback renaming strategy
(Re)defining it now that we have everything we need. *)
Local Open Scope autonaming_scope.
Ltac rename_hyp_default n th ::=
let res :=
match th with
(* | (@eq _ ?x ?y) => name (`_eq` ++ x#n ++ y#n) *)
(* | Z.le ?A ?B => name (`_Zle` ++ A#n ++ B#n) *)
| ?x <> ?y => name ( `_neq` ++ x#(decr n) ++ y#(decr n))
| @cons _ ?x (cons ?y ?l) =>
match n with
| S ?n' => name (`_cons` ++ x#n ++ y#n ++ l#n')
| 0 => name (`_cons` ++ x#n)
end
| @cons _ ?x ?l =>
match n with
| S ?n' => name (`_cons` ++ x#n ++ l#n')
| 0 => name (`_cons` ++ x#n)
end
| (@Some _ ?x) => name (x#(S n))
| (@None _) => name (`_None`)
| _ => fail
end in
res.
(* Call this in your own renaming scheme if you want the "hneg" prefix
on negated properties *)
Ltac rename_hyp_neg n th :=
match th with
| ~ (_ = _) => fail 1(* h_neq already dealt by fallback *)
| ~ ?th' => name (`not` ++ th'#(S n))
| _ => fail
end.
Local Close Scope autonaming_scope.
(* Entry point of the renaming code. *)
Ltac fallback_rename_hyp_name th :=
let depth := rename_depth in
let h := constr:(ltac:(let x := default_prefix in exact x)) in
let l := fallback_rename_hyp depth th in
match l with
nil => fail 1
| _ => let nme := build_name (h::l) in
fresh nme
end.
(* Formating Error message *)
Inductive LHMsg t (h:t) := LHMsgC: LHMsg t h.
Notation "h : t" := (LHMsgC t h) (at level 1,only printing, format
"'[ ' h ':' '/' '[' t ']' ']'").
Ltac rename_hyp_with_name h th := fail.
(* Tactic renaming hypothesis H. Ignore Type-sorted hyps, fails if no
renaming can be computed. Example of failing type: H:((fun x => True) true). *)
Ltac autorename_strict H :=
match type of H with
| ?th =>
match type of th with
| _ =>
let l := rename_hyp_with_name H th in
let dummy_name := fresh "dummy" in
rename H into dummy_name; (* frees current name of H, in case of idempotency *)
let newname := build_name_no_suffix l in
rename dummy_name into newname
| Prop =>
let dummy_name := fresh "dummy" in
rename H into dummy_name; (* frees current name of H, in case of idempotency *)
let newname := fallback_rename_hyp_name th in
rename dummy_name into newname
| Prop =>
let c := constr:(LHMsgC th H) in
fail 1 "no renaming pattern for " c (* "no renaming pattern for " H *)
| _ => idtac (* not in Prop or "no renaming pattern for " H *)
end
end.
(* Tactic renaming hypothesis H. *)
Ltac autorename H := try autorename_strict H.
(*
(* Tests *)
Print Visibility.
Local Open Scope autonaming_scope.
Ltac rename_hyp1 n th :=
match th with
(* | (?min <= ?x) /\ (?x < ?max) => name (x#n ++ `_bounded_` ++ min#n ++ `_` ++ max#n) *)
| ((?min <= ?x) /\ (?x <= ?max))%nat => name (x#n ++ `_bounded` ++ min#n ++ max#n)
end.
(* example of adhoc naming from hyp name: *)
Ltac rename_hyp_with_name h th ::=
match reverse goal with
| H: ?A = h |- _ =>
name ( A## ++ `_same`)
(* let _ := freshable A in *)
(* name (`same_as` ++ A#1) *)
end.
Local Close Scope autonaming_scope.
Ltac rename_hyp n th ::=
match th with
| _ => rename_hyp1 n th
end.
Goal forall x1 x3:bool, forall a z e : nat,
z+e = a
-> z = a
-> forall SEP:(True -> True),
a = z+z
-> z+z <= a <= e + e
-> ((fun f => z = e) true)
-> forall b1 b2 b3 b4: bool,
True -> True.
Proof.
intros.
autorename a.
autorename H2.
autorename H1.
Fail autorename_strict H2.
*)
|