1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
(* Copyright 2021 Pierre Courtieu
This file is part of LibHyps. It is distributed under the MIT
"expat license". You should have recieved a LICENSE file with it. *)
Require Import Arith ZArith LibHyps.LibHyps (*LibHyps.LibSpecialize*) List.
Import TacNewHyps.Notations.
Import LibHyps.LegacyNotations.
(* This settings should reproduce the naming scheme of libhypps-1.0.0
and libhypps-1.0.1. *)
Ltac add_suffix ::= constr:(false).
Ltac numerical_names ::= numerical_names_sufx.
Local Open Scope autonaming_scope.
Import ListNotations.
(* From there this is LibHypTest from 1f7a1ed2289e439c291fcbd06c51705547feef1e *)
Ltac rename_hyp_2 n th :=
match th with
| true <> false => name(`_tNEQf`)
| true = false => name(`_tEQf`)
end.
Ltac rename_hyp ::= rename_hyp_2.
(* Suppose I want to add later another naming rule: *)
Ltac rename_hyp_3 n th :=
match th with
| Nat.eqb ?x ?y = true => name(`_Neqb` ++ x#n ++ y#n)
| true = Nat.eqb ?x ?y => name(`_Neqb` ++ x#n ++ y#n)
| _ => rename_hyp_2 n th (* call the previously defined tactic *)
end.
Ltac rename_hyp ::= rename_hyp_3.
Ltac rename_depth ::= constr:(3).
Close Scope Z_scope.
Open Scope nat_scope.
Lemma dummy: forall x y,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
0 = 1 ->
(0 = 1)%Z ->
~x = y ->
true = Nat.eqb 3 4 ->
Nat.eqb 3 4 = true ->
true = Nat.leb 3 4 ->
1 = 0 ->
~x = y ->
~1 < 0 ->
(forall w w':nat , w = w' -> ~true=false) ->
(forall w w':nat , w = w' -> true=false /\ True) ->
(forall w w':nat , w = w' -> False /\ True) ->
(exists w:nat , w = w -> ~(true=(andb false true)) /\ False) ->
(exists w:nat , w = w -> True /\ False) ->
(forall w w':nat , w = w' -> true=false) ->
(forall w w':nat , w = w' -> Nat.eqb 3 4=Nat.eqb 4 3) ->
List.length (cons 3 nil) = (fun x => 0)1 ->
List.length (cons 3 nil) = 0 ->
plus 0 y = y ->
(true=false) ->
(False -> (true=false)) ->
forall (x : nat) (env : list nat),
~ List.In x nil ->
cons x (cons 3 env) = cons 2 env ->
forall z t:nat, IDProp ->
(0 < 1 -> 0 < 0 -> true = false -> ~(true=false)) ->
(~(true=false)) ->
(forall w w',w < w' -> ~(true=false)) ->
(0 < 1 -> ~(1<0)) ->
(0 < 1 -> 1<0) -> 0 < z -> True.
(* auto naming at intro: *)
!intros.
match type of x with nat => idtac | _ => fail "test failed!" end.
match type of y with nat => idtac | _ => fail "test failed!" end.
match type of h_le_0n_1n with 0 <= 1 => idtac | _ => fail "test failed!" end.
match type of h_le_0z_1z with (0 <= 1)%Z => idtac | _ => fail "test failed!" end.
match type of h_le_x_y with x <= y => idtac | _ => fail "test failed!" end.
match type of h_eq_x_y with x = y => idtac | _ => fail "test failed!" end.
match type of h_eq_0n_1n with 0 = 1 => idtac | _ => fail "test failed!" end.
match type of h_eq_0z_1z with 0%Z = 1%Z => idtac | _ => fail "test failed!" end.
match type of h_neq_x_y with x <> y => idtac | _ => fail "test failed!" end.
match type of h_Neqb_3n_4n with true = (3 =? 4) => idtac | _ => fail "test failed!" end.
match type of h_Neqb_3n_4n0 with (3 =? 4) = true => idtac | _ => fail "test failed!" end.
match type of h_eq_true_leb_3n_4n with true = (3 <=? 4) => idtac | _ => fail "test failed!" end.
match type of h_eq_1n_0n with 1 = 0 => idtac | _ => fail "test failed!" end.
match type of h_neq_x_y0 with x <> y => idtac | _ => fail "test failed!" end.
match type of h_not_lt_1n_0n with ~ 1 < 0 => idtac | _ => fail "test failed!" end.
match type of h_all_tNEQf with forall w w' : nat, w = w' -> true <> false => idtac | _ => fail "test failed!" end.
match type of h_all_and_tEQf_True with forall w w' : nat, w = w' -> true = false /\ True => idtac | _ => fail "test failed!" end.
match type of h_all_and_False_True with forall w w' : nat, w = w' -> False /\ True => idtac | _ => fail "test failed!" end.
match type of h_ex_and_neq_False with exists w : nat, w = w -> true <> (false && true)%bool /\ False => idtac | _ => fail "test failed!" end.
match type of h_ex_and_True_False with exists w : nat, w = w -> True /\ False => idtac | _ => fail "test failed!" end.
match type of h_all_tEQf with forall w w' : nat, w = w' -> true = false => idtac | _ => fail "test failed!" end.
match type of h_all_eq_eqb_eqb with forall w w' : nat, w = w' -> (3 =? 4) = (4 =? 3) => idtac | _ => fail "test failed!" end.
match type of h_eq_length_cons with length [3] = (fun _ : nat => 0) 1 => idtac | _ => fail "test failed!" end.
match type of h_eq_length_cons_0n with length [3] = 0 => idtac | _ => fail "test failed!" end.
match type of h_eq_add_0n_y_y with 0 + y = y => idtac | _ => fail "test failed!" end.
match type of h_tEQf with true = false => idtac | _ => fail "test failed!" end.
match type of h_impl_tEQf with False -> true = false => idtac | _ => fail "test failed!" end.
match type of x0 with nat => idtac | _ => fail "test failed!" end.
match type of env with list nat => idtac | _ => fail "test failed!" end.
match type of h_not_In_x0_nil with ~ In x0 [] => idtac | _ => fail "test failed!" end.
match type of h_eq_cons_x0_3n_cons_2n with x0 :: 3 :: env = 2 :: env => idtac | _ => fail "test failed!" end.
match type of h_IDProp with IDProp => idtac | _ => fail "test failed!" end.
match type of h_impl_tNEQf with 0 < 1 -> 0 < 0 -> true = false -> true <> false => idtac | _ => fail "test failed!" end.
match type of h_tNEQf with true <> false => idtac | _ => fail "test failed!" end.
match type of h_all_tNEQf0 with forall w w' : nat, w < w' -> true <> false => idtac | _ => fail "test failed!" end.
match type of h_impl_not_lt with 0 < 1 -> ~ 1 < 0 => idtac | _ => fail "test failed!" end.
match type of h_impl_lt_1n_0n with 0 < 1 -> 1 < 0 => idtac | _ => fail "test failed!" end.
match type of h_lt_0n_z with 0 < z => idtac | _ => fail "test failed!" end.
exact I.
Qed.
(* BROKEN IN 8.18 *)
(*
Definition eq_one (i:nat) := i = 1.
(* eq_one is delta_reducible but I don't want it to be reduced. *)
Lemma test_espec: (eq_one 2 -> eq_one 3 -> eq_one 1 -> False) -> True.
Proof.
intros h_eqone.
(* let nme := fresh_robust H "hh" "def" in idtac nme.Definition *)
especialize h_eqone as newH at 2;
[ admit | match type of newH with eq_one 2 -> eq_one 1 -> False => idtac end;
match type of h_eqone with eq_one 2 -> eq_one 3 -> eq_one 1 -> False => idtac end].
Undo.
especialize h_eqone at 2 as newH;
[ admit | match type of newH with eq_one 2 -> eq_one 1 -> False => idtac end;
match type of h_eqone with eq_one 2 -> eq_one 3 -> eq_one 1 -> False => idtac end].
Undo.
especialize (let x:=Nat.le_antisymm in x) at 2 as hhh;
[ admit | match type of hhh with _ <= _ -> _ = _ => idtac | _ => fail "Test failed!" end ].
Undo.
especialize (let x:=Nat.le_antisymm in x)as hhh at 2;
[ admit | match type of hhh with _ <= _ -> _ = _ => idtac | _ => fail "Test failed!" end ].
Undo.
especialize h_eqone at 2;
[ admit | match type of h_eqone with eq_one 2 -> eq_one 1 -> False => idtac end].
Undo.
especialize (let x:=Nat.le_antisymm in x) at 2;
[ admit | match goal with |- (_ <= _ -> _ = _) -> True => idtac | _ => fail "Test failed!" end ].
Undo.
especialize h_eqone as ? at 2;
[ admit | match type of h_eqone_spec with eq_one 2 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end;
match type of h_eqone with eq_one 2 -> eq_one 3 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 2 as ? ;
[ admit | match type of h_eqone_spec with eq_one 2 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end;
match type of h_eqone with eq_one 2 -> eq_one 3 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) as ? at 2;
[ admit | match type of H_spec with _ <= _ -> _ = _ => idtac | _ => fail "Test failed!" end;
match type of h_eqone with eq_one 2 -> eq_one 3 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) at 2 as ? ;
[ admit | match type of H_spec with _ <= _ -> _ = _ => idtac | _ => fail "Test failed!" end;
match type of h_eqone with eq_one 2 -> eq_one 3 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 2 : h;
[ admit | match type of h_eqone with eq_one 2 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end;
match type of h with 3=1 => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) at 2 : h;
[ admit | match goal with |- (_ <= _ -> _ = _) -> True => idtac | _ => fail "Test failed!" end;
match type of h with _ <= _ => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 2 : ? ;
[ admit | match type of h_eqone with eq_one 2 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end;
match type of h_eqone_prem with 3=1 => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) at 2 : ? ;
[ admit | match goal with |- (_ <= _ -> _ = _) -> True => idtac | _ => fail "Test failed!" end;
match type of H_prem with _ <= _ => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 2 as newH : h;
[ admit | match type of newH with eq_one 2 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end;
match type of h with 3=1 => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) at 2 as newH : h;
[ admit | match type of newH with (_ <= _ -> _ = _) => idtac | _ => fail "Test failed!" end;
match type of h with _ <= _ => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone as newH at 2 : h;
[ admit | match type of newH with eq_one 2 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end;
match type of h with 3=1 => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) as newH at 2 : h;
[ admit |
match type of newH with (_ <= _ -> _ = _) => idtac | _ => fail "Test failed!" end;
match type of h with _ <= _ => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 2 as ? : h;
[ admit | match type of h_eqone_spec with eq_one 2 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end;
match type of h with 3=1 => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) at 2 as ? : h;
[ admit |
match type of H_spec with (_ <= _ -> _ = _) => idtac | _ => fail "Test failed!" end;
match type of h with _ <= _ => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone as ? at 2 : h;
[ admit | match type of h_eqone_spec with eq_one 2 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end;
match type of h with 3=1 => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) as ? at 2 : h;
[ admit |
match type of H_spec with (_ <= _ -> _ = _) => idtac | _ => fail "Test failed!" end;
match type of h with _ <= _ => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 2 as ? : ? ;
[ admit | match type of h_eqone_spec with eq_one 2 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end;
match type of h_eqone_prem with 3=1 => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) at 2 as ? : ? ;
[ admit |
match type of H_spec with (_ <= _ -> _ = _) => idtac | _ => fail "Test failed!" end;
match type of H_prem with _ <= _ => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone as ? at 2 : ? ;
[ admit | match goal with h_eqone_spec:eq_one 2 -> eq_one 1 -> False,
h_eqone_prem : 3 = 1 |- _ => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) as ? at 2 : ? ;
[ admit |
match type of H_spec with (_ <= _ -> _ = _) => idtac | _ => fail "Test failed!" end;
match type of H_prem with _ <= _ => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 2,3;
[ admit | admit| match type of h_eqone with eq_one 2 -> False=> idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) at 1,2;
[ admit | admit | match goal with |- (_ = _) -> True => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 3,2;
[ admit | admit| match type of h_eqone with eq_one 2 -> False=> idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) at 2,1;
[ admit | admit | match goal with |- (_ = _) -> True => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone as h at 2,3;
[ admit | admit| match type of h with eq_one 2 -> False=> idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) at 2,1 as h;
[ admit | admit |
match type of h with (_ = _) => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 2,3 as h;
[ admit | admit| match type of h with eq_one 2 -> False=> idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=Nat.le_antisymm in x) as h at 2,1;
[ admit | admit |
match type of h with (_ = _) => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 3,2,1;
[ admit | admit | admit | match type of h_eqone with False=> idtac | _ => fail "Test failed!" end ].
Undo.
especialize h_eqone as h at 3,2,1;
[ admit | admit | admit | match type of h with False=> idtac | _ => fail "Test failed!" end ].
Undo.
especialize h_eqone at 3,2,1 as h;
[ admit | admit | admit | match type of h with False=> idtac | _ => fail "Test failed!" end ].
Undo.
exact I.
Qed.
Lemma foo2: (eq_one 2 -> eq_one 3 ->eq_one 4 ->eq_one 5 ->eq_one 6 -> eq_one 1 -> False) -> True.
Proof.
intros h_eqone.
especialize h_eqone at 3,1,4,5 as h;
[ admit | admit | admit | admit | match type of h with eq_one 3 -> eq_one 1 ->False=> idtac | _ => fail "Test failed!" end ].
Undo.
especialize h_eqone as h at 3,1,4,5;
[ admit | admit | admit | admit | match type of h with eq_one 3 -> eq_one 1 ->False=> idtac | _ => fail "Test failed!" end ].
Undo.
especialize h_eqone at 3,1,4,5;
[ admit | admit | admit | admit | match type of h_eqone with eq_one 3 -> eq_one 1 ->False=> idtac | _ => fail "Test failed!" end ].
Undo.
especialize h_eqone at 3,1,4,5,2;
[ admit | admit | admit | admit | admit | match type of h_eqone with eq_one 1 ->False=> idtac | _ => fail "Test failed!" end ].
Undo.
especialize h_eqone at 3,1,4,5,2 as h;
[ admit | admit | admit | admit | admit | match type of h with eq_one 1 ->False=> idtac | _ => fail "Test failed!" end ].
Undo.
especialize h_eqone as h at 3,1,4,5,2;
[ admit | admit | admit | admit | admit | match type of h with eq_one 1 ->False=> idtac | _ => fail "Test failed!" end ].
Undo.
exact I.
Qed.
Lemma test_espec_namings: forall n:nat, (eq_one n -> eq_one 1 -> False) -> True.
Proof.
intros n h_eqone.
especialize Nat.quadmul_le_squareadd at 1 as hh : h.
{ apply le_n. }
especialize min_l at 1 as ? : ?.
{ apply (le_n O). }
especialize h_eqone at 2 as h1 : h2.
{ reflexivity. }
match type of h2 with 1 = 1 => idtac | _ => fail end.
match type of h1 with eq_one n -> False => idtac | _ => fail end.
exact I.
Qed.
Lemma test_esepec_6_7: (eq_one 2 -> eq_one 3 ->eq_one 4 ->eq_one 5 ->eq_one 6 ->eq_one 7 ->eq_one 8 -> eq_one 9 -> eq_one 1 -> False) -> True.
Proof.
intros h_eqone.
especialize h_eqone at 3,1,4,5,2,7 as h;
[ admit | admit | admit | admit | admit | admit | match type of h with eq_one 7 -> eq_one 9 -> eq_one 1 ->False=> idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone as h at 3,1,4,5,2,7;
[ admit | admit | admit | admit | admit | admit | match type of h with eq_one 7 -> eq_one 9 -> eq_one 1 ->False=> idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 3,1,4,5,2,7;
[ admit | admit | admit | admit | admit | admit | match type of h_eqone with eq_one 7 -> eq_one 9 -> eq_one 1 ->False=> idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 3,1,4,5,2,7,9 as h;
[ admit | admit | admit | admit | admit | admit | admit | match type of h with eq_one 7 -> eq_one 9 -> False => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone as h at 3,1,4,5,2,7,9;
[ admit | admit | admit | admit | admit | admit | admit | match type of h with eq_one 7 -> eq_one 9 -> False => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at 3,1,4,5,2,7,9;
[ admit | admit | admit | admit | admit | admit | admit | match type of h_eqone with eq_one 7 -> eq_one 9 -> False => idtac | _ => fail "Test failed!" end].
Undo.
exact I.
Qed.
(* "until i" and "at *" *)
Lemma test_esepec_until_star: (eq_one 2 -> eq_one 3 ->eq_one 4 ->eq_one 5 ->eq_one 6 ->eq_one 7 ->eq_one 8 -> eq_one 9 -> eq_one 1 -> False) -> True.
Proof.
intros h_eqone.
(* specialize on term ==> create a new hyp *)
especialize (let x:=not_eq_S in x) at *;
[ intro ; admit | match type of H_spec with (S _)<>(S _) => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=not_eq_S in x) at * as h;
[ intro ; admit | match type of h with (S _)<>(S _) => idtac | _ => fail "Test failed!" end].
Undo.
especialize (let x:=h_eqone in x) at *;
[ admit |admit |admit |admit |admit |admit |admit |admit |admit | match type of H_spec with False => idtac | _ => fail "Test failed!" end].
Undo.
(* proveprem_until h_eqone 4. *)
especialize (let x:= h_eqone in x) until 4;
[ admit |admit |admit |admit | match type of H_spec with eq_one 6 -> eq_one 7 -> eq_one 8 -> eq_one 9 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end ].
Undo.
(* behavior when acting on a hypothesis: replace the hyp by its specialize version *)
especialize h_eqone until 4 ;
[ admit |admit |admit |admit | match type of h_eqone with eq_one 6 -> eq_one 7 -> eq_one 8 -> eq_one 9 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone at * ;
[ admit |admit |admit |admit |admit |admit |admit |admit |admit | match type of h_eqone with False => idtac | _ => fail "Test failed!" end].
Undo.
(* unless we give the "as" option *)
especialize h_eqone at * as h ;
[ admit |admit |admit |admit |admit |admit |admit |admit |admit | match type of h with False => idtac | _ => fail "Test failed!" end;
match type of h_eqone with eq_one 2 -> eq_one 3 -> eq_one 4 -> eq_one 5 -> eq_one 6 -> eq_one 7 -> eq_one 8 -> eq_one 9 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end].
Undo.
especialize h_eqone until 4 as h;
[ admit |admit |admit |admit | match type of h with eq_one 6 -> eq_one 7 -> eq_one 8 -> eq_one 9 -> eq_one 1 -> False => idtac | _ => fail "Test failed!" end].
Undo.
exact I.
Qed.
*)
Require Import LibHyps.LibDecomp.
Goal forall l1 l2 l3:list nat, List.length l1 = List.length l2 /\ List.length l1 = List.length l3 -> True.
Proof.
intros l1 l2 l3 h.
(* then_allnh_gen ltac:(fun x => all_hyps) ltac:(fun _ => decomp_logicals h) ltac:(fun lh => idtac lh) . *)
(* Set Ltac Debug. *)
decomp_logicals h /sng.
match goal with
|- _ =>
match type of h_eq_length_l1_length_l2 with
length l1 = length l2 => idtac
| _ => fail "Test failed (wrong type)!"
end
| _ => fail "Test failed (wrong name)!"
end.
exact I.
Qed.
|