1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
(* Copyright 2021 Pierre Courtieu
This file is part of LibHyps. It is distributed under the MIT
"expat license". You should have recieved a LICENSE file with it. *)
Require Import Arith ZArith LibHyps.LibHyps (*LibHyps.LibSpecialize*) List.
Local Open Scope autonaming_scope.
Import ListNotations.
Ltac rename_hyp_2 n th :=
match th with
| true <> false => name(`_tNEQf`)
| true = false => name(`_tEQf`)
end.
Ltac rename_hyp ::= rename_hyp_2.
(* Suppose I want to add later another naming rule: *)
Ltac rename_hyp_3 n th :=
match th with
| Nat.eqb ?x ?y = true => name(`_Neqb` ++ x#n ++ y#n)
| true = Nat.eqb ?x ?y => name(`_Neqb` ++ x#n ++ y#n)
| _ => rename_hyp_2 n th (* call the previously defined tactic *)
end.
Ltac rename_hyp ::= rename_hyp_3.
Ltac rename_depth ::= constr:(3).
Close Scope autonaming_scope.
Close Scope Z_scope.
Open Scope nat_scope.
Ltac test h th :=
match type of h with
| th => idtac
| ?actual => fail "test failed: expected " h ": " th "but got: " h ": " actual
end.
Ltac testg tg :=
match goal with
| |- tg => idtac
| |- ?actual => fail "test failed: expected goal" tg "but got: " actual
end.
Lemma test_autorename: forall x y,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
0 = 1 ->
(0 = 1)%Z ->
~x = y ->
true = Nat.eqb 3 4 ->
Nat.eqb 3 4 = true ->
true = Nat.leb 3 4 ->
1 = 0 ->
~x = y ->
~1 < 0 ->
(forall w w':nat , w = w' -> ~true=false) ->
(forall w w':nat , w = w' -> true=false /\ True) ->
(forall w w':nat , w = w' -> False /\ True) ->
(exists w:nat , w = w -> ~(true=(andb false true)) /\ False) ->
(exists w:nat , w = w -> True /\ False) ->
(forall w w':nat , w = w' -> true=false) ->
(forall w w':nat , w = w' -> Nat.eqb 3 4=Nat.eqb 4 3) ->
List.length (cons 3 nil) = (fun x => 0)1 ->
List.length (cons 3 nil) = 0 ->
plus 0 y = y ->
(true=false) ->
(False -> (true=false)) ->
forall (x : nat) (env : list nat),
~ List.In x nil ->
cons x (cons 3 env) = cons 2 env ->
forall z t:nat, IDProp ->
(0 < 1 -> 0 < 0 -> true = false -> ~(true=false)) ->
(~(true=false)) ->
(forall w w',w < w' -> ~(true=false)) ->
(0 < 1 -> ~(1<0)) ->
(0 < 1 -> 1<0) -> 0 < z -> True.
(* auto naming at intro: *)
intros /n.
test x nat.
test y nat.
test h_le_0_1_ (0 <= 1).
test h_le_0_1_0 ((0 <= 1)%Z).
test h_le_x_y_ (x <= y).
test h_eq_x_y_ (x = y).
test h_eq_0_1_ (0 = 1).
test h_eq_0_1_0 (0%Z = 1%Z).
test h_neq_x_y_ (x <> y).
test h_Neqb_3_4_ (true = (3 =? 4)).
test h_Neqb_3_4_0 ((3 =? 4) = true).
test h_eq_true_leb_3_4_ (true = (3 <=? 4)).
test h_eq_1_0_ (1 = 0).
test h_neq_x_y_ (x <> y).
test h_not_lt_1_0_ (~ 1 < 0).
test h_all_tNEQf_ (forall w w' : nat, w = w' -> true <> false).
test h_all_and_tEQf_True_ (forall w w' : nat, w = w' -> true = false /\ True).
test h_all_and_False_True_ (forall w w' : nat, w = w' -> False /\ True).
test h_ex_and_neq_False_ (exists w : nat, w = w -> true <> (false && true)%bool /\ False).
test h_ex_and_True_False_ (exists w : nat, w = w -> True /\ False).
test h_all_tEQf_ (forall w w' : nat, w = w' -> true = false).
test h_all_eq_eqb_eqb_ (forall w w' : nat, w = w' -> (3 =? 4) = (4 =? 3)).
test h_eq_length_cons_ (length [3] = (fun _ : nat => 0) 1).
test h_eq_length_cons_0_ (length [3] = 0).
test h_eq_add_0_y_y_ (0 + y = y).
test h_tEQf_ (true = false).
test h_impl_tEQf_ (False -> true = false).
test x0 (nat).
test env (list nat).
test h_not_In_x0_nil_ (~ In x0 []).
test h_eq_cons_x0_3_cons_2_ (x0 :: 3 :: env = 2 :: env).
test h_IDProp_ (IDProp).
test h_impl_tNEQf_ (0 < 1 -> 0 < 0 -> true = false -> true <> false).
test h_tNEQf_ (true <> false).
test h_all_tNEQf_0 ((forall w w' : nat, w < w' -> true <> false)).
test h_impl_not_lt_ (0 < 1 -> ~ 1 < 0).
test h_impl_lt_1_0_ (0 < 1 -> 1 < 0).
test h_lt_0_z_ (0 < z).
exact I.
Qed.
Import TacNewHyps.Notations.
Lemma test_autorename_failing: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
(* Fails beause the ((fun f => x = y) true) is not renamable. *)
Fail intros /n!.
intros ; { autorename }. (* autorename does not fail if no renaming found *)
test H ((fun _ : bool => x = y) true).
auto.
Qed.
Lemma test_autorename_failing2: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
intros /n. (* /n does not fail, even if a hyp is not renamed *)
test x (nat).
test y (nat).
test H (((fun _ : bool => x = y) true)).
test h_le_0_1_ (0 <= 1).
test h_le_0_1_0 ((0 <= 1)%Z).
test h_le_x_y_ (x <= y).
test h_eq_x_y_ (x = y).
test h_impl_lt_1_0_ (0 < 1 -> 1 < 0).
test h_lt_0_z_ (0 < z).
exact I.
Qed.
Lemma test_rename_or_revert: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
intros ; { rename_or_revert }.
testg ((fun _ : bool => x = y) true -> True).
auto.
Qed.
Lemma test_rename_or_revert2: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
intros /n?.
testg ((fun _ : bool => x = y) true -> True).
test x (nat).
test y (nat).
(* Checking that hyps after the failed rename are introduced. *)
test h_le_0_1_ (0 <= 1).
test h_le_0_1_0 ((0 <= 1)%Z).
test h_le_x_y_ (x <= y).
test h_eq_x_y_ (x = y).
test h_impl_lt_1_0_ (0 < 1 -> 1 < 0).
test h_lt_0_z_ (0 < z).
intro.
exact I.
Qed.
Lemma test_revertHyp: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
(* Wrong order for revert. *)
Fail intros ; { revertHyp }.
intros ; {< revertHyp }.
testg (forall x y : nat,
(fun _ : bool => x = y) true ->
bool ->
bool ->
forall z : nat,
0 <= 1 -> (0 <= 1)%Z -> x <= y -> x = y -> (0 < 1 -> 1 < 0) -> 0 < z -> True).
intros.
exact I.
Qed.
(* group_up_list is faster (called on the whole list of new hyps) and should be prefered. *)
Lemma test_group_up_list2: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
intros ; {! group_up_list }.
lazymatch reverse goal with
| Hb:_, Ha:_,Hz : _ , Hy:_ , Hx:_ |- True =>
let t := constr:((ltac:(reflexivity)): Hb=b) in
let t := constr:((ltac:(reflexivity)): Ha=a) in
let t := constr:((ltac:(reflexivity)): Hz=z) in
let t := constr:((ltac:(reflexivity)): Hy=y) in
let t := constr:((ltac:(reflexivity)): Hx=x) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
lazymatch goal with
| hH1:_, hH2:_,hH3 : _ , hH4:_ , hH5:_ |- True =>
let t := constr:((ltac:(reflexivity)):H1=hH1) in
let t := constr:((ltac:(reflexivity)): H2=hH2) in
let t := constr:((ltac:(reflexivity)): H3=hH3) in
let t := constr:((ltac:(reflexivity)): H4=hH4) in
let t := constr:((ltac:(reflexivity)): H5=hH5) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
exact I.
Qed.
Lemma test_group_up_list21: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
intros /g.
lazymatch reverse goal with
| Hb:_, Ha:_,Hz : _ , Hy:_ , Hx:_ |- True =>
let t := constr:((ltac:(reflexivity)): Hb=b) in
let t := constr:((ltac:(reflexivity)): Ha=a) in
let t := constr:((ltac:(reflexivity)): Hz=z) in
let t := constr:((ltac:(reflexivity)): Hy=y) in
let t := constr:((ltac:(reflexivity)): Hx=x) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
lazymatch goal with
| hH1:_, hH2:_,hH3 : _ , hH4:_ , hH5:_ |- True =>
let t := constr:((ltac:(reflexivity)):H1=hH1) in
let t := constr:((ltac:(reflexivity)): H2=hH2) in
let t := constr:((ltac:(reflexivity)): H3=hH3) in
let t := constr:((ltac:(reflexivity)): H4=hH4) in
let t := constr:((ltac:(reflexivity)): H5=hH5) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
exact I.
Qed.
(* group_up_list is insensitive to order of hypothesis. It respects
the respective order of variables in each segment. This has changed
in version 2.0.5 together with a bug fix.
Note that the deprecated move_up_types is sensitive to order. *)
Lemma test_group_up_list1_rev: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
intros ; {!< group_up_list }.
lazymatch reverse goal with
| Hb:_, Ha:_,Hz : _ , Hy:_ , Hx:_ |- True =>
let t := constr:((ltac:(reflexivity)): Hb=b) in
let t := constr:((ltac:(reflexivity)): Ha=a) in
let t := constr:((ltac:(reflexivity)): Hz=z) in
let t := constr:((ltac:(reflexivity)): Hy=y) in
let t := constr:((ltac:(reflexivity)): Hx=x) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
lazymatch goal with
| hH1:_, hH2:_,hH3 : _ , hH4:_ , hH5:_ |- True =>
let t := constr:((ltac:(reflexivity)):H1=hH1) in
let t := constr:((ltac:(reflexivity)): H2=hH2) in
let t := constr:((ltac:(reflexivity)): H3=hH3) in
let t := constr:((ltac:(reflexivity)): H4=hH4) in
let t := constr:((ltac:(reflexivity)): H5=hH5) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
exact I.
Qed.
(* Two more tests for the case where the top hyp is Prop-sorted. *)
Lemma test_group_up_list3:
((fun f => 0 = 1) true)
->
forall x y:nat,
forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
intros ; { move_up_types }.
lazymatch reverse goal with
| Hb:_, Ha:_,Hz : _ , Hy:_ , Hx:_ |- True =>
let t := constr:((ltac:(reflexivity)): Hb=b) in
let t := constr:((ltac:(reflexivity)): Ha=a) in
let t := constr:((ltac:(reflexivity)): Hz=z) in
let t := constr:((ltac:(reflexivity)): Hy=y) in
let t := constr:((ltac:(reflexivity)): Hx=x) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
lazymatch goal with
| hH1:_, hH2:_,hH3 : _ , hH4:_ , hH5:_ |- True =>
let t := constr:((ltac:(reflexivity)):H1=hH1) in
let t := constr:((ltac:(reflexivity)): H2=hH2) in
let t := constr:((ltac:(reflexivity)): H3=hH3) in
let t := constr:((ltac:(reflexivity)): H4=hH4) in
let t := constr:((ltac:(reflexivity)): H5=hH5) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
exact I.
Qed.
Lemma test_group_up_list2_rev:
((fun f => 0 = 1) true)
->
forall x y:nat,
forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
intros ; {< move_up_types }.
lazymatch reverse goal with
| Ha:_, Hb:_,Hx : _ , Hy:_ , Hz:_ |- True =>
let t := constr:((ltac:(reflexivity)): Hb=b) in
let t := constr:((ltac:(reflexivity)): Ha=a) in
let t := constr:((ltac:(reflexivity)): Hz=z) in
let t := constr:((ltac:(reflexivity)): Hy=y) in
let t := constr:((ltac:(reflexivity)): Hx=x) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
lazymatch goal with
| hH1:_, hH2:_,hH3 : _ , hH4:_ , hH5:_ |- True =>
let t := constr:((ltac:(reflexivity)):H1=hH1) in
let t := constr:((ltac:(reflexivity)): H2=hH2) in
let t := constr:((ltac:(reflexivity)): H3=hH3) in
let t := constr:((ltac:(reflexivity)): H4=hH4) in
let t := constr:((ltac:(reflexivity)): H5=hH5) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
exact I.
Qed.
(* Test for substHyp, the order in which subst are done *)
Lemma test_subst:
((fun f => 0 = 1) true)
->
forall x y:nat,
forall a b: bool, forall z:nat,
0 <= 1 ->
x = z ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
intros ; { substHyp }.
(* x = z is subst first, and y = y remains *)
lazymatch reverse goal with
| H: y <= y |- True => idtac
| _ => fail "test failed!"
end.
exact I.
Qed.
(* Checking the chaining of operators. *)
Lemma test_group_up_after_subst: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
intros ; { subst_or_idtac } ; {! group_up_list }.
lazymatch reverse goal with
| Hb:_, Ha:_,Hz:_ , Hy:_ |- True =>
let t := constr:((ltac:(reflexivity)): Hb=b) in
let t := constr:((ltac:(reflexivity)): Ha=a) in
let t := constr:((ltac:(reflexivity)): Hz=z) in
let t := constr:((ltac:(reflexivity)): Hy=y) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
lazymatch goal with
| hH0:_,hH1:_, hH2:_, hH4:_ , hH5:_ |- True =>
let t := constr:((ltac:(reflexivity)): H0=hH0) in
let t := constr:((ltac:(reflexivity)):H1=hH1) in
let t := constr:((ltac:(reflexivity)): H2=hH2) in
let t := constr:((ltac:(reflexivity)): H4=hH4) in
let t := constr:((ltac:(reflexivity)): H5=hH5) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
exact I.
Qed.
Ltac substHyp H ::=
match type of H with
| Depl => fail 1 (* fail immediately, we are applying on a list of hyps. *)
| ?x = ?y =>
(* subst would maybe subst using another hyp, so use replace to be sure *)
once ((is_var(x); replace x with y in *; [try clear x ; try clear H] )
+ (is_var(y);replace y with x in * ; [ try clear H]))
| _ => idtac
end.
(* Legacy Notations tac ;!; tac2. *)
Lemma test_tactical_semi: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
(* move_up_types is there for backward compatibility. It moves Type-Sorted hyps up. *)
intros ;; move_up_types.
lazymatch reverse goal with
| Hb:_, Ha:_,Hz : _ , Hy:_ , Hx:_ |- True =>
let t := constr:((ltac:(reflexivity)): Hb=b) in
let t := constr:((ltac:(reflexivity)): Ha=a) in
let t := constr:((ltac:(reflexivity)): Hz=z) in
let t := constr:((ltac:(reflexivity)): Hy=y) in
let t := constr:((ltac:(reflexivity)): Hx=x) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
lazymatch goal with
| hH1:_, hH2:_,hH3 : _ , hH4:_ , hH5:_ |- True =>
let t := constr:((ltac:(reflexivity)): H1=hH1) in
let t := constr:((ltac:(reflexivity)): H2=hH2) in
let t := constr:((ltac:(reflexivity)): H3=hH3) in
let t := constr:((ltac:(reflexivity)): H4=hH4) in
let t := constr:((ltac:(reflexivity)): H5=hH5) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
auto.
Qed.
(* Legacy Notations tac ;; tac2. *)
Lemma test_tactical_semi_rev: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z u:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
(* move_up_types is there for backward compatibility. It moves Type-Sorted hyps up. *)
intros ;!; move_up_types.
lazymatch reverse goal with
| Ha:_, Hb:_, Hz: _ , Hu : _ , Hy:_ , Hx:_ |- True =>
let t := constr:((ltac:(reflexivity)): Hb=b) in
let t := constr:((ltac:(reflexivity)): Ha=a) in
let t := constr:((ltac:(reflexivity)): Hu=u) in
let t := constr:((ltac:(reflexivity)): Hz=z) in
let t := constr:((ltac:(reflexivity)): Hy=y) in
let t := constr:((ltac:(reflexivity)): Hx=x) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
lazymatch goal with
| hH1:_, hH2:_,hH3 : _ , hH4:_ , hH5:_ |- True =>
let t := constr:((ltac:(reflexivity)): H1=hH1) in
let t := constr:((ltac:(reflexivity)): H2=hH2) in
let t := constr:((ltac:(reflexivity)): H3=hH3) in
let t := constr:((ltac:(reflexivity)): H4=hH4) in
let t := constr:((ltac:(reflexivity)): H5=hH5) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
auto.
Qed.
(* Legacy Notations !!!!tac. *)
Import LibHyps.LegacyNotations.
Lemma test_group_up_list_legacy: forall x y:nat,
((fun f => x = y) true)
-> forall a b: bool, forall z:nat,
0 <= 1 ->
(0%Z <= 1%Z)%Z ->
x <= y ->
x = y ->
(0 < 1 -> 1<0) -> 0 < z -> True.
Proof.
(* move_up_types is there for backward compatibility. It moves Type-Sorted hyps up. *)
!!!!intros.
lazymatch reverse goal with
| Hb:_, Ha:_,Hz : _ , Hy:_ |- True =>
let t := constr:((ltac:(reflexivity)): Hb=b) in
let t := constr:((ltac:(reflexivity)): Ha=a) in
let t := constr:((ltac:(reflexivity)): Hz=z) in
let t := constr:((ltac:(reflexivity)): Hy=y) in
(* let t := constr:((ltac:(reflexivity)): Hx=x) in *)
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
lazymatch goal with
| hH1:_, hH2:_,hH3 : _ , hH4:_ , hH5:_ |- True =>
let t := constr:((ltac:(reflexivity)): h_le_0_1_=hH1) in
let t := constr:((ltac:(reflexivity)): h_le_0_1_0=hH2) in
let t := constr:((ltac:(reflexivity)): h_le_y_y_=hH3) in
let t := constr:((ltac:(reflexivity)): h_impl_lt_1_0_=hH4) in
let t := constr:((ltac:(reflexivity)): h_lt_0_z_=hH5) in
idtac
| _ => fail "test failed (wrong order of hypothesis)!"
end.
auto.
Qed.
(* This is supposed to be copy-pasted in README.md *)
Lemma foo: forall x y z:nat,
x = y -> forall a b t : nat, a+1 = t+2 -> b + 5 = t - 7 -> (forall u v, v+1 = 1 -> u+1 = 1 -> a+1 = z+2) -> z = b + x-> True.
Proof.
intros.
(* ugly names *)
Undo.
(* Example of using the iterator on new hyps: this prints each new hyp name. *)
(*intros; {fun h => idtac h}.
Undo.*)
(* This gives sensible names to each new hyp. *)
intros ; { autorename }.
Undo.
(* short syntax: *)
intros /n.
Undo.
(* same thing but use subst if possible, and group non prop hyps to the top. *)
intros ; { substHyp }; { autorename}; {move_up_types}.
Undo.
(* short syntax: *)
intros /s/n/g.
Undo.
(* Even shorter: *)
intros /s/n/g.
(* Let us instantiate the 2nd premis of h_all_eq_add_add without copying its type: *)
(* BROKEN IN COQ 8.18 *)
(* especialize h_all_eq_add_add_ at 2.
{ apply Nat.add_0_l. }
(* now h_all_eq_add_add is specialized *)
Undo 6. *)
Undo 2.
intros until 1.
(** The taticals apply after any tactic. Notice how H:x=y is not new
and hence not substituted, whereas z = b + x is. *)
destruct x eqn:heq;intros /sng.
- apply I.
- apply I.
Qed.
(* Stressing the system with big goals *)
Import TacNewHyps.Notations.
Lemma foo':
forall (_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
: (forall (_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
:nat), True))
(a b:bool), True -> forall y z:nat, True.
(* Time intros. (* .07s *) *)
(* Time intros; { fun x => idtac x}. (* 1,6s *) *)
Time intros /g. (* 3s *)
(* Time intros ; { move_up_types }. (* ~7mn *) *)
(* Time intros /n. (* 19s *) *)
exact I.
Qed.
|