1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
|
Require Import
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.functors.
Definition Empty_map {A: Empty_set → Type} : ∀ x : Empty_set, A x := λ x, match x with end.
Local Notation E := Empty_map.
#[global]
Instance: Arrows Empty_set := E.
#[global]
Instance: CatComp Empty_set := E.
#[global]
Instance: CatId Empty_set := E.
#[global]
Instance: ∀ x y, Equiv (x ⟶ y) := E.
#[global]
Instance: ∀ x y, Setoid (x ⟶ y) := E.
#[global]
Instance: Category Empty_set.
Proof. constructor; exact E. Qed.
Section another_category.
Context `{Category C}.
Global Instance: Fmap (E: _ → C) := E.
Global Instance: Functor (E: _ → C) E.
Proof. constructor; exact E || typeclasses eauto. Qed.
End another_category.
|