1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
Require
MathClasses.implementations.stdlib_binary_integers MathClasses.theory.integers MathClasses.orders.semirings.
Require Import
Coq.Setoids.Setoid Bignums.SpecViaZ.NSig Bignums.SpecViaZ.NSigNAxioms Coq.NArith.NArith Coq.ZArith.ZArith Coq.Program.Program Coq.Classes.Morphisms
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.naturals MathClasses.interfaces.integers
MathClasses.interfaces.orders MathClasses.interfaces.additional_operations.
Module NType_Integers (Import anyN: NType).
Module axioms := NTypeIsNAxioms anyN.
#[global]
Instance NType_equiv : Equiv t := eq.
#[global]
Instance NType_plus : Plus t := add.
#[global]
Instance NType_0 : Zero t := zero.
#[global]
Instance NType_1 : One t := one.
#[global]
Instance NType_mult : Mult t := mul.
#[global]
Instance: Setoid t | 10 := {}.
#[global]
Program Instance: ∀ x y: t, Decision (x = y) := λ x y, match compare x y with
| Eq => left _
| _ => right _
end.
Next Obligation.
apply Zcompare_Eq_eq. now rewrite <-spec_compare.
Qed.
Next Obligation.
rewrite spec_compare in *. intros E.
apply Zcompare_Eq_iff_eq in E. auto.
Qed.
Ltac unfold_equiv := unfold equiv, NType_equiv, eq in *.
Lemma NType_semiring_theory: semi_ring_theory zero one add mul eq.
Proof. repeat split; repeat intro; axioms.zify; auto with zarith. Qed.
#[global]
Instance: SemiRing t | 10 := rings.from_stdlib_semiring_theory NType_semiring_theory.
#[global]
Instance inject_NType_N: Cast t N := to_N.
#[global]
Instance: Proper ((=) ==> (=)) to_N.
Proof. intros x y E. unfold equiv, NType_equiv, eq in E. unfold to_N. now rewrite E. Qed.
#[global]
Instance: SemiRing_Morphism to_N.
Proof.
repeat (split; try apply _); unfold to_N; intros.
now rewrite spec_add, Z2N.inj_add by apply spec_pos.
unfold mon_unit, zero_is_mon_unit, NType_0. now rewrite spec_0.
now rewrite spec_mul, Z2N.inj_mul by apply spec_pos.
unfold mon_unit, one_is_mon_unit, NType_1. now rewrite spec_1.
Qed.
#[global]
Instance inject_N_NType: Cast N t := of_N.
#[global]
Instance: Inverse to_N := of_N.
#[global]
Instance: Surjective to_N.
Proof.
split; try apply _. intros x y E.
rewrite <-E. unfold to_N, inverse, compose. rewrite spec_of_N.
apply N2Z.id.
Qed.
#[global]
Instance: Injective to_N.
Proof.
split; try apply _. intros x y E.
unfold equiv, NType_equiv, eq. unfold to_N in E.
rewrite <-(Z2N.id (to_Z x)), <-(Z2N.id (to_Z y)) by now apply spec_pos.
now rewrite E.
Qed.
#[global]
Instance: Bijective to_N := {}.
#[global]
Instance: Inverse of_N := to_N.
#[global]
Instance: Bijective of_N.
Proof. apply jections.flip_bijection. Qed.
#[global]
Instance: SemiRing_Morphism of_N.
Proof. change (SemiRing_Morphism (to_N⁻¹)). split; apply _. Qed.
#[global]
Instance: NaturalsToSemiRing t := naturals.retract_is_nat_to_sr of_N.
#[global]
Instance: Naturals t := naturals.retract_is_nat of_N.
#[global]
Instance inject_NType_Z: Cast t Z := to_Z.
#[global]
Instance: Proper ((=) ==> (=)) to_Z.
Proof. now intros x y E. Qed.
#[global]
Instance: SemiRing_Morphism to_Z.
Proof.
repeat (split; try apply _).
exact spec_add.
exact spec_0.
exact spec_mul.
exact spec_1.
Qed.
(* Order *)
#[global]
Instance NType_le: Le t := le.
#[global]
Instance NType_lt: Lt t := lt.
#[global]
Instance: Proper ((=) ==> (=) ==> iff) NType_le.
Proof.
intros ? ? E1 ? ? E2. unfold NType_le, le. unfold equiv, NType_equiv, eq in *.
now rewrite E1, E2.
Qed.
#[global]
Instance: SemiRingOrder NType_le.
Proof.
apply (semirings.projected_srorder to_Z).
reflexivity.
intros x y E. exists (sub y x).
unfold_equiv. rewrite spec_add, spec_sub.
rewrite Z.max_r by now apply Z.le_0_sub.
ring.
Qed.
#[global]
Instance: OrderEmbedding to_Z.
Proof. now repeat (split; try apply _). Qed.
#[global]
Instance: TotalRelation NType_le.
Proof. now apply (maps.projected_total_order to_Z). Qed.
#[global]
Instance: FullPseudoSemiRingOrder NType_le NType_lt.
Proof.
rapply semirings.dec_full_pseudo_srorder.
intros x y. split.
intro. split.
apply axioms.lt_eq_cases. now left.
intros E. destruct (irreflexivity (<) (to_Z x)). now rewrite E at 2.
intros [E1 E2].
now destruct (proj1 (axioms.lt_eq_cases _ _) E1).
Qed.
(* Efficient comparison *)
#[global]
Program Instance: ∀ x y: t, Decision (x ≤ y) := λ x y, match (compare x y) with
| Gt => right _
| _ => left _
end.
Next Obligation.
rewrite spec_compare in *.
destruct (Z.compare_spec (to_Z x) (to_Z y)); try discriminate.
now apply orders.lt_not_le_flip.
Qed.
Next Obligation.
rewrite spec_compare in *.
destruct (Z.compare_spec (to_Z x) (to_Z y)); try discriminate; try intuition.
now apply Zeq_le.
now apply orders.lt_le.
Qed.
Lemma NType_succ_1_plus x : succ x = 1 + x.
Proof.
unfold_equiv. rewrite spec_succ, rings.preserves_plus, rings.preserves_1.
now rewrite commutativity.
Qed.
Lemma NType_two_2 : two = 2.
Proof.
unfold_equiv. rewrite spec_2.
now rewrite rings.preserves_plus, rings.preserves_1.
Qed.
(* Efficient [nat_pow] *)
#[global]
Program Instance NType_pow: Pow t t := pow.
#[global]
Instance: NatPowSpec t t NType_pow.
Proof.
split.
intros x1 y1 E1 x2 y2 E2.
now apply axioms.pow_wd.
intros x1. apply axioms.pow_0_r.
intros x n.
unfold_equiv. unfold "^", NType_pow.
rewrite <-axioms.pow_succ_r by (red; rewrite spec_0; apply spec_pos).
now rewrite NType_succ_1_plus.
Qed.
(* Efficient [shiftl] *)
#[global]
Program Instance NType_shiftl: ShiftL t t := shiftl.
#[global]
Instance: ShiftLSpec t t NType_shiftl.
Proof.
apply shiftl_spec_from_nat_pow.
intros x y.
unfold additional_operations.pow, NType_pow, additional_operations.shiftl, NType_shiftl.
unfold_equiv. simpl.
rewrite rings.preserves_mult, spec_pow.
rewrite spec_shiftl, Z.shiftl_mul_pow2 by apply spec_pos.
now rewrite <-NType_two_2, spec_2.
Qed.
(* Efficient [shiftr] *)
#[global]
Program Instance: ShiftR t t := shiftr.
End NType_Integers.
|