1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
Require Import
Coq.Lists.List Coq.Lists.SetoidList MathClasses.implementations.list
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.finite_sets MathClasses.interfaces.orders
MathClasses.theory.lattices MathClasses.orders.lattices.
Import ListNotations.
(*
We define finite sets as unordered lists. This implementation is slow,
but quite convenient as a reference implementation to lift properties to
arbitrary finite set instances.
*)
#[global]
Instance listset A `{Equiv A} : SetType A | 30 := sig (NoDupA (=)).
Section listset.
Context `{Setoid A} `{∀ a₁ a₂ : A, Decision (a₁ = a₂)}.
Instance listset_in_raw: Contains A (list A) := InA (=).
Instance listset_equiv_raw: Equiv (list A) := equivlistA (=).
Instance: Setoid (list A) := {}.
Instance listset_empty_raw: Bottom (list A) := [].
Instance listset_join_raw: Join (list A) := @app A.
Instance: BoundedJoinSemiLattice (list A).
Proof.
split. split. split. split. apply _.
repeat intro. now apply equivlistA_app_ass.
apply _.
repeat intro. now apply equivlistA_app_nil_l.
repeat intro. now apply equivlistA_app_nil_r.
repeat intro. now apply equivlistA_app_comm.
repeat intro. now apply equivlistA_app_idem.
Qed.
Global Instance listset_to_list: Cast (set_type A) (list A) := @proj1_sig _ _.
Global Instance listset_in: SetContains A := λ x l, x ∈ 'l.
Global Instance listset_le: SetLe A := λ l k, ∀ x, x ∈ l → x ∈ k.
Global Instance listset_equiv: SetEquiv A := λ l k, ∀ x, x ∈ l ↔ x ∈ k.
Instance: Setoid (set_type A).
Proof. now apply (setoids.projected_setoid listset_to_list). Qed.
Global Instance: Setoid_Morphism listset_to_list.
Proof. firstorder. Qed.
Global Instance: Injective listset_to_list.
Proof. firstorder. Qed.
Global Instance: Proper ((=) ==> (=) ==> iff) listset_in.
Proof.
intros x y E1 l k E2.
transitivity (listset_in x k). easy.
unfold listset_in. now rewrite E1.
Qed.
Fixpoint listset_add_raw (x : A) (l : list A) : list A :=
match l with
| [] => [x]
| y :: l => y :: if decide_rel (=) x y then l else listset_add_raw x l
end.
Lemma listset_add_raw_cons l x :
x :: l = listset_add_raw x l.
Proof.
induction l; simpl; try reflexivity.
case (decide_rel _); intros E.
now rewrite E, equivlistA_double_head.
now rewrite equivlistA_permute_heads, IHl.
Qed.
Lemma listset_add_raw_InA (l : list A) (x y : A) :
y ∈ listset_add_raw x l → y = x ∨ y ∈ l.
Proof.
unfold contains, listset_in_raw. induction l; simpl.
intros E. inversion_clear E; auto.
case (decide_rel _); auto; intros E1 E2.
inversion_clear E2; intuition.
Qed.
Lemma listset_add_raw_NoDupA (l : list A) (x : A) :
NoDupA (=) l → NoDupA (=) (listset_add_raw x l).
Proof.
intros Pl. induction l; simpl.
now apply NoDupA_singleton.
case (decide_rel _); intros E1; auto.
inversion_clear Pl.
apply NoDupA_cons; auto.
intros E2. destruct (listset_add_raw_InA _ _ _ E2); intuition.
Qed.
Global Program Instance listset_empty: EmptySet A := [].
Global Program Instance listset_singleton: SetSingleton A := λ x, [x].
Next Obligation. now apply NoDupA_singleton. Qed.
Global Program Instance listset_join: SetJoin A := λ l k, fold_right listset_add_raw (`k) (`l)↾_.
Next Obligation.
destruct l as [l Pl], k as [k Pk].
induction l; intros; simpl in *; auto.
apply listset_add_raw_NoDupA, IHl. now inversion Pl.
Qed.
Instance: Setoid_Morphism listset_singleton.
Proof.
split; try apply _. intros ? ? E.
apply (injective listset_to_list). change ([x] = [y]). now rewrite E.
Qed.
Lemma listset_to_list_preserves_join l k :
listset_to_list (l ⊔ k) = listset_to_list l ⊔ listset_to_list k.
Proof.
destruct l as [l Pl], k as [k Pk].
unfold join, listset_join, listset_join_raw. simpl. clear Pk Pl.
induction l; simpl; intros; [easy|].
now rewrite <-IHl, listset_add_raw_cons.
Qed.
Instance: BoundedJoinSemiLattice (set_type A).
Proof.
apply (projected_bounded_sl listset_to_list).
intros. now apply listset_to_list_preserves_join.
reflexivity.
Qed.
Lemma listset_in_join l k x : x ∈ l ⊔ k ↔ x ∈ l ∨ x ∈ k.
Proof.
unfold contains, listset_in_raw, listset_in.
rewrite listset_to_list_preserves_join.
now apply InA_app_iff.
Qed.
Instance: JoinSemiLatticeOrder listset_le.
Proof.
apply alt_Build_JoinSemiLatticeOrder. intros l k.
unfold le, listset_le, equiv, listset_equiv.
setoid_rewrite listset_in_join. firstorder auto.
Qed.
Lemma listset_induction (P : set_type A → Prop) `{proper : !Proper ((=) ==> iff) P} :
P ∅ → (∀ x l, x ∉ l → P l → P ({{ x }} ⊔ l)) → ∀ l, P l.
Proof.
intros Pempty Padd.
intros [l Pl]. induction l as [|x l].
apply proper with ∅; firstorder.
inversion_clear Pl as [|??? Pl'].
apply proper with ({{ x }} ⊔ l↾Pl'); auto.
intros z. change (z ∈ x :: l ↔ z ∈ listset_add_raw x l).
now rewrite listset_add_raw_cons.
Qed.
Fixpoint listset_extend_raw `{Bottom B} `{Join B} (f : A → B) (l : list A) : B :=
match l with
| [] => ⊥
| x :: l => f x ⊔ listset_extend_raw f l
end.
Global Instance list_extend: FSetExtend A := λ _ _ _ f l, listset_extend_raw f (`l).
Section listset_extend.
Context `{BoundedJoinSemiLattice B} `{!Setoid_Morphism (f : A → B)}.
Lemma listset_extend_raw_permute (l k : list A) :
PermutationA (=) l k → listset_extend_raw f l = listset_extend_raw f k.
Proof.
induction 1; simpl.
reflexivity.
apply sg_op_proper. now apply sm_proper. easy.
now rewrite !associativity, (commutativity (f _)).
etransitivity; eassumption.
Qed.
Instance list_extend_proper: Proper (equiv ==> equiv) (fset_extend f).
Proof.
intros [??][??] ?.
apply listset_extend_raw_permute. now apply NoDupA_equivlistA_PermutationA.
Qed.
Lemma list_extend_empty:
fset_extend f ∅ = ⊥.
Proof. reflexivity. Qed.
Lemma list_extend_add x l :
fset_extend f ({{x}} ⊔ l) = f x ⊔ fset_extend f l.
Proof.
destruct l as [l Pl]. unfold fset_extend, list_extend. simpl. clear Pl.
induction l; simpl; [easy|].
case (decide_rel _); intros E.
now rewrite E, associativity, (idempotency (&) _).
now rewrite IHl, 2!associativity, (commutativity (f _)).
Qed.
Instance list_extend_mor:
BoundedJoinSemiLattice_Morphism (fset_extend f).
Proof.
repeat (split; try apply _).
intros l k. change (fset_extend f (l ⊔ k) = fset_extend f l ⊔ fset_extend f k).
pattern l. apply listset_induction; clear l.
solve_proper.
now rewrite list_extend_empty, 2!left_identity.
intros x l E1 E2.
now rewrite <-associativity, 2!list_extend_add, E2, associativity.
reflexivity.
Qed.
End listset_extend.
Local Existing Instance list_extend_mor.
Global Instance: FSet A.
Proof.
split; try apply _.
intros B ???? f ? x y E.
unfold compose, fset_extend, list_extend. simpl.
now rewrite E, right_identity.
intros B ??? f ? h ? E1 k l E2.
pose proof (bounded_join_slmor_b (f:=h)).
rewrite E2. clear k E2. pattern l.
apply listset_induction; clear l.
solve_proper.
now rewrite preserves_bottom.
intros x l E2 E3. rewrite list_extend_add, preserves_join, E3.
apply sg_op_proper; [|easy]. symmetry. now apply E1.
Qed.
Instance: FSetContainsSpec A.
Proof.
split; try apply _. unfold le, listset_le.
intros x X; split; intros E1.
intros z E2. inversion_clear E2 as [?? E3|?? E3].
now rewrite E3.
now inversion E3.
apply E1. now rapply InA_cons_hd.
Qed.
Instance listset_in_raw_dec: ∀ x (l : list A), Decision (x ∈ l) := λ x l, InA_dec (decide_rel (=)) x l.
Global Instance listset_in_dec: ∀ x (l : set_type A), Decision (x ∈ l) := λ x l, InA_dec (decide_rel (=)) x ('l).
Instance listset_meet_raw: Meet (list A) :=
fix listset_meet_raw l k :=
match l with
| [] => []
| x :: l => if decide_rel (∈) x k then x :: listset_meet_raw l k else listset_meet_raw l k
end.
Lemma listset_in_meet_raw l k x :
x ∈ l ⊓ k ↔ x ∈ l ∧ x ∈ k.
Proof.
unfold meet, contains, listset_in_raw. split.
intros E; split; revert E.
induction l; simpl.
intuition.
case (decide_rel); intros ? E; intuition.
inversion_clear E; intuition.
induction l; simpl.
intros E1; inversion E1.
case (decide_rel); intros ? E1; intuition.
inversion_clear E1 as [?? E2|]; auto. now rewrite E2.
intros [E1 E2]. induction l; simpl; [easy|].
case (decide_rel); intros E3.
inversion_clear E1; intuition.
inversion_clear E1 as [?? E4|]; intuition.
destruct E3. now rewrite <-E4.
Qed.
Lemma listset_meet_raw_NoDupA (l k : list A) :
NoDupA (=) l → NoDupA (=) (l ⊓ k).
Proof.
unfold meet. intros Pl. induction l; simpl; auto.
inversion_clear Pl as [|? ? E1].
case (decide_rel); intros; auto.
apply NoDupA_cons; auto.
intros E2. destruct E1. now apply (listset_in_meet_raw l k _).
Qed.
Global Program Instance listset_meet: SetMeet A := λ l k, listset_meet_raw l k.
Next Obligation. apply listset_meet_raw_NoDupA. now destruct l. Qed.
Instance listset_diff_raw: Difference (list A) :=
fix listset_diff_raw l k :=
match l with
| [] => []
| x :: l => if decide_rel (∈) x k then listset_diff_raw l k else x :: listset_diff_raw l k
end.
Lemma listset_in_diff_raw l k x :
x ∈ l ∖ k ↔ x ∈ l ∧ x ∉ k.
Proof.
unfold difference, contains, listset_in_raw. split.
intros E; split; revert E.
induction l; simpl.
intuition.
case (decide_rel); intros ? E; intuition.
inversion_clear E; intuition.
induction l; simpl.
intros E1; inversion E1.
case (decide_rel); intros ? E1.
intuition.
inversion_clear E1 as [?? E2|]; auto. now rewrite E2.
intros [E1 E2]. induction l; simpl; [easy|].
case (decide_rel); intros E3.
inversion_clear E1 as [?? E4|]; intuition.
destruct E2. now rewrite E4.
inversion_clear E1; intuition.
Qed.
Lemma listset_diff_raw_NoDupA (l k : list A) :
NoDupA (=) l → NoDupA (=) (l ∖ k).
Proof.
unfold difference. intros Pl. induction l; simpl; auto.
inversion_clear Pl as [|? ? E1].
case (decide_rel); intros; auto.
apply NoDupA_cons; auto.
intros E2. destruct E1. now apply (listset_in_diff_raw l k _).
Qed.
Global Program Instance listset_diff: SetDifference A := λ l k, listset_diff_raw l k.
Next Obligation. apply listset_diff_raw_NoDupA. now destruct l. Qed.
Global Instance: FullFSet A | 30.
Proof.
split; try apply _.
intros [??] [??]. now rapply listset_in_meet_raw.
intros [??] [??]. now rapply listset_in_diff_raw.
Qed.
End listset.
|