1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
Require Import
Coq.setoid_ring.Ring MathClasses.interfaces.abstract_algebra MathClasses.interfaces.orders MathClasses.orders.rings.
Inductive SRpair (SR : Type) := C { pos : SR ; neg : SR }.
Arguments C {SR} _ _.
Arguments pos {SR} _.
Arguments neg {SR} _.
Section semiring_pairs.
Context `{SemiRing SR} `{Apart SR}.
Context `{∀ z, LeftCancellation (+) z}.
Add Ring SR : (rings.stdlib_semiring_theory SR).
(* Equivalence *)
Global Instance SRpair_equiv : Equiv (SRpair SR) | 4 := λ x y, pos x + neg y = pos y + neg x.
Global Instance SRpair_apart `{Apart SR} : Apart (SRpair SR) := λ x y, pos x + neg y ≶ pos y + neg x.
Global Instance SRpair_trivial_apart `{!TrivialApart SR} : TrivialApart (SRpair SR).
Proof. intros x y. now Tactics.rapply trivial_apart. Qed.
Instance: Setoid (SRpair SR).
Proof.
split; red; unfold equiv, SRpair_equiv.
reflexivity.
intros. now symmetry.
intros x y z E E'.
rewrite commutativity.
rewrite (commutativity (pos z)).
apply (left_cancellation (+) (pos y)).
rewrite 2!associativity.
rewrite <- E, E'. ring.
Qed.
Instance: Proper ((=) ==> (=) ==> (=)) C.
Proof.
intros x1 y1 E1 x2 y2 E2. unfold equiv, SRpair_equiv. simpl.
now rewrite E1, E2.
Qed.
(* injection from SR *)
Global Instance SRpair_inject: Cast SR (SRpair SR) := λ r, C r 0.
Global Instance: Proper ((=) ==> (=)) SRpair_inject.
Proof. intros x1 x2 E. unfold equiv, SRpair_equiv. simpl. now rewrite E. Qed.
(* Relations, operations and constants *)
Global Instance SRpair_plus: Plus (SRpair SR) := λ x y, C (pos x + pos y) (neg x + neg y).
Global Instance SRpair_negate: Negate (SRpair SR) := λ x, C (neg x) (pos x).
Global Instance SRpair_0: Zero (SRpair SR) := ('0 : SRpair SR).
Global Instance SRpair_mult: Mult (SRpair SR) := λ x y, C (pos x * pos y + neg x * neg y) (pos x * neg y + neg x * pos y).
Global Instance SRpair_1: One (SRpair SR) := ('1 : SRpair SR).
Ltac unfolds := unfold SRpair_negate, SRpair_plus, equiv, SRpair_equiv in *; simpl in *.
Ltac ring_on_sr := repeat intro; unfolds; try ring.
Instance: Proper ((=) ==> (=)) SRpair_negate.
Proof.
intros x y E. unfolds.
rewrite commutativity, <- E. ring.
Qed.
Instance: Proper ((=) ==> (=) ==> (=)) SRpair_plus.
Proof with try ring.
intros x1 y1 E1 x2 y2 E2. unfolds.
transitivity (pos x1 + neg y1 + (pos x2 + neg y2))...
rewrite E1, E2...
Qed.
Let SRpair_mult_proper_r (x y z : SRpair SR) : x = y → z * x = z * y.
Proof with try ring.
intros E. unfolds.
transitivity (pos z * (pos x + neg y) + neg z * (pos y + neg x))...
transitivity (pos z * (pos y + neg x) + neg z * (pos x + neg y))...
now rewrite E.
Qed.
Instance: Commutative SRpair_mult.
Proof. repeat intro. ring_on_sr. Qed.
Instance: Proper ((=) ==> (=) ==> (=)) SRpair_mult.
Proof.
intros x1 y1 E1 x2 y2 E2.
transitivity (x1 * y2).
now apply SRpair_mult_proper_r.
rewrite !(commutativity _ y2).
now apply SRpair_mult_proper_r.
Qed.
Global Instance: Ring (SRpair SR).
Proof. repeat (split; try apply _); ring_on_sr. Qed.
(* A final word about inject *)
Global Instance: SemiRing_Morphism SRpair_inject.
Proof.
repeat (constructor; try apply _); try reflexivity.
intros x y. change (x + y + (0 + 0) = x + y + 0). ring.
intros x y. change (x * y + (x * 0 + 0 * y) = x * y + 0 * 0 + 0). ring.
Qed.
Global Instance: Injective SRpair_inject.
Proof.
repeat (constructor; try apply _).
intros x y. unfolds. now rewrite 2!rings.plus_0_r.
Qed.
Lemma SRpair_splits n m : C n m = 'n + -'m.
Proof. ring_on_sr. Qed.
Global Instance SRpair_le `{Le SR} : Le (SRpair SR) := λ x y, pos x + neg y ≤ pos y + neg x.
Global Instance SRpair_lt `{Lt SR} : Lt (SRpair SR) := λ x y, pos x + neg y < pos y + neg x.
Ltac unfold_le := unfold le, SRpair_le, equiv, SRpair_equiv; simpl.
Ltac unfold_lt := unfold lt, SRpair_lt, equiv, SRpair_equiv; simpl.
Section with_semiring_order.
Context `{!SemiRingOrder SRle}.
Instance: Proper ((=) ==> (=) ==> iff) SRpair_le.
Proof.
assert (∀ x1 y1 : SRpair SR, x1 = y1 → ∀ x2 y2, x2 = y2 → x1 ≤ x2 → y1 ≤ y2) as E.
unfold_le. intros [xp1 xn1] [yp1 yn1] E1 [xp2 xn2] [yp2 yn2] E2 F. simpl in *.
apply (order_reflecting (+ (xp2 + xn1))).
setoid_replace (yp1 + yn2 + (xp2 + xn1)) with ((yp1 + xn1) + (xp2 + yn2)) by ring.
rewrite <-E1, E2.
setoid_replace (xp1 + yn1 + (yp2 + xn2)) with ((yp2 + yn1) + (xp1 + xn2)) by ring.
now apply (order_preserving _).
split; repeat intro; eapply E; eauto; symmetry; eauto.
Qed.
Instance: Reflexive SRpair_le.
Proof. intros [? ?]. unfold_le. reflexivity. Qed.
Instance: Transitive SRpair_le.
Proof.
intros [xp xn] [yp yn] [zp zn] E1 E2.
unfold SRpair_le in *. simpl in *.
apply (order_reflecting (+ (yn + yp))).
setoid_replace (xp + zn + (yn + yp)) with ((xp + yn) + (yp + zn)) by ring.
setoid_replace (zp + xn + (yn + yp)) with ((yp + xn) + (zp + yn)) by ring.
now apply plus_le_compat.
Qed.
Instance: AntiSymmetric SRpair_le.
Proof.
intros [xp xn] [yp yn] E1 E2. unfold_le.
now apply (antisymmetry (≤)).
Qed.
Instance: PartialOrder SRpair_le.
Proof. repeat (split; try apply _). Qed.
Global Instance: OrderEmbedding SRpair_inject.
Proof.
repeat (split; try apply _).
intros x y E. unfold_le. simpl. now rewrite 2!rings.plus_0_r.
intros x y E. unfold le, SRpair_le in E. simpl in E. now rewrite 2!rings.plus_0_r in E.
Qed.
Instance: ∀ z : SRpair SR, OrderPreserving ((+) z).
Proof.
repeat (split; try apply _). unfold_le.
destruct z as [zp zn]. intros [xp xn] [yp yn] E. simpl in *.
setoid_replace (zp + xp + (zn + yn)) with ((zp + zn) + (xp + yn)) by ring.
setoid_replace (zp + yp + (zn + xn)) with ((zp + zn) + (yp + xn)) by ring.
now apply (order_preserving _).
Qed.
Instance: ∀ x y : SRpair SR, PropHolds (0 ≤ x) → PropHolds (0 ≤ y) → PropHolds (0 ≤ x * y).
Proof.
intros [xp xn] [yp yn].
unfold PropHolds. unfold_le. intros E1 E2.
ring_simplify in E1. ring_simplify in E2.
destruct (decompose_le E1) as [a [Ea1 Ea2]], (decompose_le E2) as [b [Eb1 Eb2]].
rewrite Ea2, Eb2. ring_simplify.
apply compose_le with (a * b).
now apply nonneg_mult_compat.
ring.
Qed.
Global Instance: SemiRingOrder SRpair_le.
Proof. apply rings.from_ring_order; apply _. Qed.
End with_semiring_order.
Section with_strict_semiring_order.
Context `{!StrictSemiRingOrder SRle}.
Instance: Proper ((=) ==> (=) ==> iff) SRpair_lt.
Proof.
assert (∀ x1 y1 : SRpair SR, x1 = y1 → ∀ x2 y2, x2 = y2 → x1 < x2 → y1 < y2) as E.
unfold_lt. intros [xp1 xn1] [yp1 yn1] E1 [xp2 xn2] [yp2 yn2] E2 F. simpl in *.
apply (strictly_order_reflecting (+ (xp2 + xn1))).
setoid_replace (yp1 + yn2 + (xp2 + xn1)) with ((yp1 + xn1) + (xp2 + yn2)) by ring.
rewrite <-E1, E2.
setoid_replace (xp1 + yn1 + (yp2 + xn2)) with ((yp2 + yn1) + (xp1 + xn2)) by ring.
now apply (strictly_order_preserving _).
split; repeat intro; eapply E; eauto; symmetry; eauto.
Qed.
Instance: Irreflexive SRpair_lt.
Proof. intros [? ?] E. edestruct (irreflexivity (<)); eauto. Qed.
Instance: Transitive SRpair_lt.
Proof.
intros [xp xn] [yp yn] [zp zn] E1 E2.
unfold SRpair_lt in *. simpl in *.
apply (strictly_order_reflecting (+ (yn + yp))).
setoid_replace (xp + zn + (yn + yp)) with ((xp + yn) + (yp + zn)) by ring.
setoid_replace (zp + xn + (yn + yp)) with ((yp + xn) + (zp + yn)) by ring.
now apply plus_lt_compat.
Qed.
Instance: ∀ z : SRpair SR, StrictlyOrderPreserving ((+) z).
Proof.
repeat (split; try apply _). unfold_lt.
destruct z as [zp zn]. intros [xp xn] [yp yn] E. simpl in *.
setoid_replace (zp + xp + (zn + yn)) with ((zp + zn) + (xp + yn)) by ring.
setoid_replace (zp + yp + (zn + xn)) with ((zp + zn) + (yp + xn)) by ring.
now apply (strictly_order_preserving _).
Qed.
Instance: StrictSetoidOrder SRpair_lt.
Proof. repeat (split; try apply _). Qed.
Instance: ∀ x y : SRpair SR, PropHolds (0 < x) → PropHolds (0 < y) → PropHolds (0 < x * y).
Proof.
intros [xp xn] [yp yn].
unfold PropHolds. unfold_lt. intros E1 E2.
ring_simplify in E1. ring_simplify in E2.
destruct (decompose_lt E1) as [a [Ea1 Ea2]], (decompose_lt E2) as [b [Eb1 Eb2]].
rewrite Ea2, Eb2. ring_simplify.
apply compose_lt with (a * b).
now apply pos_mult_compat.
ring.
Qed.
Global Instance: StrictSemiRingOrder SRpair_lt.
Proof. apply from_strict_ring_order; apply _. Qed.
End with_strict_semiring_order.
Section with_full_pseudo_semiring_order.
Context `{!FullPseudoSemiRingOrder SRle SRlt}.
Instance: StrongSetoid SR := pseudo_order_setoid.
Instance: StrongSetoid (SRpair SR).
Proof.
split.
intros [??] E. now eapply (irreflexivity (≶)); eauto.
intros [??] [??] E. unfold apart, SRpair_apart. now symmetry.
intros [xp xn] [yp yn] E [zp zn]. unfold apart, SRpair_apart in *. simpl in *.
apply (strong_left_cancellation (+) zn) in E.
edestruct (cotransitive E).
left. apply (strong_extensionality (+ yn)).
setoid_replace (xp + zn + yn) with (zn + (xp + yn)) by ring. eassumption.
right. apply (strong_extensionality (+ xn)).
setoid_replace (zp + yn + xn) with (zp + xn + yn) by ring.
setoid_replace (yp + zn + xn) with (zn + (yp + xn)) by ring.
eassumption.
intros [??] [??]. now Tactics.rapply tight_apart.
Qed.
Instance: FullPseudoOrder SRpair_le SRpair_lt.
Proof.
split.
split; try apply _.
intros [??] [??]. unfold_lt. now apply pseudo_order_antisym.
intros [xp xn] [yp yn] E [zp zn]. unfold lt, SRpair_lt in *. simpl in *.
apply (strictly_order_preserving (zn +)) in E.
edestruct (cotransitive E).
left. apply (strictly_order_reflecting (+ yn)).
setoid_replace (xp + zn + yn) with (zn + (xp + yn)) by ring. eassumption.
right. apply (strictly_order_reflecting (+ xn)).
setoid_replace (zp + yn + xn) with (zp + xn + yn) by ring.
setoid_replace (yp + zn + xn) with (zn + (yp + xn)) by ring.
eassumption.
intros [??] [??]. now Tactics.rapply apart_iff_total_lt.
intros [??] [??]. now Tactics.rapply le_iff_not_lt_flip.
Qed.
Instance: ∀ z : SRpair SR, StrongSetoid_Morphism (z *.).
Proof.
intros [zp zn]. split; try apply _. intros [xp xn] [yp yn] E1.
unfold apart, SRpair_apart in *. simpl in *.
destruct (strong_binary_extensionality (+)
(zp * (xp + yn)) (zn * (yp + xn)) (zp * (yp + xn)) (zn * (xp + yn))).
eapply strong_setoids.apart_proper; eauto; ring.
now apply (strong_extensionality (zp *.)).
symmetry. now apply (strong_extensionality (zn *.)).
Qed.
Global Instance: FullPseudoSemiRingOrder SRpair_le SRpair_lt.
Proof.
apply from_full_pseudo_ring_order; try apply _.
now apply strong_setoids.strong_binary_setoid_morphism_commutative.
Qed.
End with_full_pseudo_semiring_order.
Global Instance SRpair_dec `{∀ x y : SR, Decision (x = y)} : ∀ x y : SRpair SR, Decision (x = y)
:= λ x y, decide_rel (=) (pos x + neg y) (pos y + neg x).
Global Program Instance SRpair_le_dec `{Le SR} `{∀ x y: SR, Decision (x ≤ y)} : ∀ x y : SRpair SR, Decision (x ≤ y) := λ x y,
match decide_rel (≤) (pos x + neg y) (pos y + neg x) with
| left E => left _
| right E => right _
end.
End semiring_pairs.
Set Warnings "-unsupported-attributes". (* FIXME: remove when minimal Coq version is enough *)
#[global]
Typeclasses Opaque SRpair_equiv.
#[global]
Typeclasses Opaque SRpair_le.
|