1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
Require
MathClasses.interfaces.naturals MathClasses.theory.naturals MathClasses.implementations.peano_naturals MathClasses.theory.integers.
Require Import
Coq.ZArith.BinInt Coq.setoid_ring.Ring Coq.Arith.Arith Coq.NArith.NArith Coq.ZArith.ZArith Coq.Numbers.Integer.Binary.ZBinary
MathClasses.interfaces.abstract_algebra MathClasses.interfaces.integers
MathClasses.implementations.natpair_integers MathClasses.implementations.stdlib_binary_naturals
MathClasses.interfaces.additional_operations MathClasses.interfaces.orders
MathClasses.implementations.nonneg_integers_naturals.
(* canonical names: *)
#[global]
Instance Z_equiv: Equiv Z := eq.
#[global]
Instance Z_plus: Plus Z := Zplus.
#[global]
Instance Z_0: Zero Z := 0%Z.
#[global]
Instance Z_1: One Z := 1%Z.
#[global]
Instance Z_mult: Mult Z := Zmult.
#[global]
Instance Z_negate: Negate Z := Z.opp.
(* some day we'd like to do this with [Existing Instance] *)
#[global]
Instance: Ring Z.
Proof.
repeat (split; try apply _); repeat intro.
now apply Zplus_assoc.
now apply Zplus_0_r.
now apply Zplus_opp_l.
now apply Zplus_opp_r.
now apply Zplus_comm.
now apply Zmult_assoc.
now apply Zmult_1_l.
now apply Zmult_1_r.
now apply Zmult_comm.
now apply Zmult_plus_distr_r.
Qed.
(* misc: *)
#[global]
Instance: ∀ x y : Z, Decision (x = y) := Z.eq_dec.
Add Ring Z: (rings.stdlib_ring_theory Z).
(* * Embedding N into Z *)
#[global]
Instance inject_N_Z: Cast N Z := Z_of_N.
#[global]
Instance: SemiRing_Morphism Z_of_N.
Proof.
repeat (split; try apply _).
exact Znat.Z_of_N_plus.
exact Znat.Z_of_N_mult.
Qed.
#[global]
Instance: Injective Z_of_N.
Proof.
repeat (split; try apply _).
intros x y E. now apply Znat.Z_of_N_eq_iff.
Qed.
(* SRpair N and Z are isomorphic *)
Definition Npair_to_Z (x : SRpair N) : Z := ('pos x - 'neg x)%mc.
#[global]
Instance: Proper (=) Npair_to_Z.
Proof.
intros [xp xn] [yp yn] E; do 2 red in E; unfold Npair_to_Z; simpl in *.
apply (right_cancellation (+) ('yn + 'xn)); ring_simplify.
now rewrite <-?rings.preserves_plus, E, commutativity.
Qed.
#[global]
Instance: SemiRing_Morphism Npair_to_Z.
Proof.
repeat (split; try apply _).
intros [xp xn] [yp yn].
change ('(xp + yp) - '(xn + yn) = 'xp - 'xn + ('yp - 'yn)).
rewrite ?rings.preserves_plus. ring.
intros [xp xn] [yp yn].
change ('(xp * yp + xn * yn) - '(xp * yn + xn * yp) = ('xp - 'xn) * ('yp - 'yn)).
rewrite ?rings.preserves_plus, ?rings.preserves_mult. ring.
Qed.
#[global]
Instance: Injective Npair_to_Z.
Proof.
split; try apply _.
intros [xp xn] [yp yn] E.
unfold Npair_to_Z in E. do 2 red. simpl in *.
apply (injective (cast N Z)).
rewrite ?rings.preserves_plus.
apply (right_cancellation (+) ('xp - 'xn)). rewrite E at 1. ring.
Qed.
#[global]
Instance Z_to_Npair: Inverse Npair_to_Z := λ x,
match x with
| Z0 => C 0 0
| Zpos p => C (Npos p) 0
| Zneg p => C 0 (Npos p)
end.
#[global]
Instance: Surjective Npair_to_Z.
Proof. split; try apply _. intros [|?|?] ? E; now rewrite <-E. Qed.
#[global]
Instance: Bijective Npair_to_Z := {}.
#[global]
Instance: SemiRing_Morphism Z_to_Npair.
Proof. change (SemiRing_Morphism (Npair_to_Z⁻¹)). split; apply _. Qed.
#[global]
Instance: IntegersToRing Z := integers.retract_is_int_to_ring Npair_to_Z.
#[global]
Instance: Integers Z := integers.retract_is_int Npair_to_Z.
#[global]
Instance Z_le: Le Z := Z.le.
#[global]
Instance Z_lt: Lt Z := Z.lt.
#[global]
Instance: SemiRingOrder Z_le.
Proof.
assert (PartialOrder Z_le).
repeat (split; try apply _).
exact Zorder.Zle_antisym.
rapply rings.from_ring_order.
repeat (split; try apply _).
intros x y E. now apply Zorder.Zplus_le_compat_l.
intros x E y F. now apply Zorder.Zmult_le_0_compat.
Qed.
#[global]
Instance: TotalRelation Z_le.
Proof.
intros x y.
destruct (Zorder.Zle_or_lt x y); intuition.
right. now apply Zorder.Zlt_le_weak.
Qed.
#[global]
Instance: FullPseudoSemiRingOrder Z_le Z_lt.
Proof.
rapply semirings.dec_full_pseudo_srorder.
split.
intro. split. now apply Zorder.Zlt_le_weak. now apply Zorder.Zlt_not_eq.
intros [E1 E2]. destruct (Zorder.Zle_lt_or_eq _ _ E1). easy. now destruct E2.
Qed.
(* * Embedding of the Peano naturals into [Z] *)
#[global]
Instance inject_nat_Z: Cast nat Z := Z_of_nat.
#[global]
Instance: SemiRing_Morphism Z_of_nat.
Proof.
repeat (split; try apply _).
exact Znat.inj_plus.
exact Znat.inj_mult.
Qed.
(* absolute value *)
#[global]
Program Instance Z_abs_nat: IntAbs Z nat := λ x,
match x with
| Z0 => inl (0:nat)
| Zpos p => inl (nat_of_P p)
| Zneg p => inr (nat_of_P p)
end.
Next Obligation. reflexivity. Qed.
Next Obligation. now rewrite <-(naturals.to_semiring_unique Z_of_nat), Znat.Z_of_nat_of_P. Qed.
Next Obligation. now rewrite <-(naturals.to_semiring_unique Z_of_nat), Znat.Z_of_nat_of_P. Qed.
#[global]
Program Instance Z_abs_N: IntAbs Z N := λ x,
match x with
| Z0 => inl (0:N)
| Zpos p => inl (Npos p)
| Zneg p => inr (Npos p)
end.
Next Obligation. reflexivity. Qed.
Next Obligation. now rewrite <-(naturals.to_semiring_unique Z_of_N). Qed.
Next Obligation. now rewrite <-(naturals.to_semiring_unique Z_of_N). Qed.
(* Efficient nat_pow *)
#[global]
Program Instance Z_pow: Pow Z (Z⁺) := Z.pow.
#[global]
Instance: NatPowSpec Z (Z⁺) Z_pow.
Proof.
split; unfold pow, Z_pow.
intros x1 y1 E1 [x2 Ex2] [y2 Ey2] E2.
unfold equiv, sig_equiv in E2.
simpl in *. now rewrite E1, E2.
intros. now apply Z.pow_0_r.
intros x n.
rewrite rings.preserves_plus, rings.preserves_1.
rewrite <-(Z.pow_1_r x) at 2. apply Z.pow_add_r.
auto with zarith.
now destruct n.
Qed.
#[global]
Instance Z_Npow: Pow Z N := λ x n, Z.pow x ('n).
#[global]
Instance: NatPowSpec Z N Z_Npow.
Proof.
split; unfold pow, Z_Npow.
solve_proper.
intros. now apply Z.pow_0_r.
intros x n.
rewrite rings.preserves_plus, rings.preserves_1.
rewrite <-(Z.pow_1_r x) at 2. apply Z.pow_add_r.
auto with zarith.
now destruct n.
Qed.
(* Efficient shiftl *)
#[global]
Program Instance Z_shiftl: ShiftL Z (Z⁺) := Z.shiftl.
#[global]
Instance: ShiftLSpec Z (Z⁺) Z_shiftl.
Proof.
apply shiftl_spec_from_nat_pow.
intros x [n En].
apply Z.shiftl_mul_pow2.
now apply En.
Qed.
#[global]
Instance Z_Nshiftl: ShiftL Z N := λ x n, Z.shiftl x ('n).
#[global]
Instance: ShiftLSpec Z N Z_Nshiftl.
Proof.
apply shiftl_spec_from_nat_pow.
intros x n.
apply Z.shiftl_mul_pow2.
now destruct n.
Qed.
#[global]
Program Instance Z_abs: Abs Z := Z.abs.
Next Obligation.
split; intros E.
now apply Z.abs_eq.
now apply Z.abs_neq.
Qed.
#[global]
Instance Z_div: DivEuclid Z := Z.div.
#[global]
Instance Z_mod: ModEuclid Z := Zmod.
#[global]
Instance: EuclidSpec Z _ _.
Proof.
split; try apply _.
exact Z.div_mod.
intros x y Ey. destruct (Z_mod_remainder x y); intuition.
now intros [].
now intros [].
Qed.
|