1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
Require Export
MathClasses.interfaces.canonical_names MathClasses.misc.util MathClasses.misc.decision MathClasses.misc.propholds MathClasses.misc.workarounds MathClasses.misc.setoid_tactics.
(*
For various structures we omit declaration of substructures. For example, if we
say:
Class Setoid_Morphism :=
{ setoidmor_a :: Setoid A
; setoidmor_b :: Setoid B
; sm_proper :: Proper ((=) ==> (=)) f }.
then each time a Setoid instance is required, Coq will try to prove that a
Setoid_Morphism exists. This obviously results in an enormous blow-up of the
search space. Moreover, one should be careful to declare a Setoid_Morphisms
as a substructure. Consider [f t1 t2], now if we want to perform setoid rewriting
in [t2] Coq will first attempt to prove that [f t1] is Proper, for which it will
attempt to prove [Setoid_Morphism (f t1)]. If many structures declare
Setoid_Morphism as a substructure, setoid rewriting will become horribly slow.
*)
(* An unbundled variant of the former CoRN RSetoid *)
Class Setoid A {Ae : Equiv A} : Prop := setoid_eq :: Equivalence (@equiv A Ae).
(* An unbundled variant of the former CoRN CSetoid. We do not
include a proof that A is a Setoid because it can be derived. *)
Class StrongSetoid A {Ae : Equiv A} `{Aap : Apart A} : Prop :=
{ strong_setoid_irreflexive :: Irreflexive (≶)
; strong_setoid_symmetric :: Symmetric (≶)
; strong_setoid_cotrans :: CoTransitive (≶)
; tight_apart : ∀ x y, ¬x ≶ y ↔ x = y }.
Arguments tight_apart {A Ae Aap StrongSetoid} _ _.
Section setoid_morphisms.
Context {A B} {Ae : Equiv A} {Aap : Apart A} {Be : Equiv B} {Bap : Apart B} (f : A → B).
Class Setoid_Morphism :=
{ setoidmor_a : Setoid A
; setoidmor_b : Setoid B
; sm_proper :: Proper ((=) ==> (=)) f }.
Class StrongSetoid_Morphism :=
{ strong_setoidmor_a : StrongSetoid A
; strong_setoidmor_b : StrongSetoid B
; strong_extensionality : ∀ x y, f x ≶ f y → x ≶ y }.
End setoid_morphisms.
Arguments sm_proper {A B Ae Be f Setoid_Morphism} _ _ _.
#[global]
Hint Extern 4 (?f _ = ?f _) => unshelve eapply (sm_proper (f:=f)).
Section setoid_binary_morphisms.
Context {A B C} {Ae: Equiv A} {Aap: Apart A}
{Be: Equiv B} {Bap : Apart B} {Ce: Equiv C} {Cap : Apart C} (f : A → B → C).
Class StrongSetoid_BinaryMorphism :=
{ strong_binary_setoidmor_a : StrongSetoid A
; strong_binary_setoidmor_b : StrongSetoid B
; strong_binary_setoidmor_c : StrongSetoid C
; strong_binary_extensionality : ∀ x₁ y₁ x₂ y₂, f x₁ y₁ ≶ f x₂ y₂ → x₁ ≶ x₂ ∨ y₁ ≶ y₂ }.
End setoid_binary_morphisms.
(*
Since apartness usually only becomes relevant when considering fields (e.g. the
real numbers), we do not include it in the lower part of the algebraic hierarchy
(as opposed to CoRN).
*)
Section upper_classes.
Context A {Ae : Equiv A}.
Class SemiGroup {Aop: SgOp A} : Prop :=
{ sg_setoid :: Setoid A
; sg_ass :: Associative (&)
; sg_op_proper :: Proper ((=) ==> (=) ==> (=)) (&) }.
Class CommutativeSemiGroup {Aop : SgOp A} : Prop :=
{ comsg_setoid :: @SemiGroup Aop
; comsg_ass :: Commutative (&) }.
Class SemiLattice {Aop : SgOp A} : Prop :=
{ semilattice_sg :: @CommutativeSemiGroup Aop
; semilattice_idempotent :: BinaryIdempotent (&)}.
Class Monoid {Aop : SgOp A} {Aunit : MonUnit A} : Prop :=
{ monoid_semigroup :: SemiGroup
; monoid_left_id :: LeftIdentity (&) mon_unit
; monoid_right_id :: RightIdentity (&) mon_unit }.
Class CommutativeMonoid {Aop Aunit} : Prop :=
{ commonoid_mon :: @Monoid Aop Aunit
; commonoid_commutative :: Commutative (&) }.
Class Group {Aop Aunit} {Anegate : Negate A} : Prop :=
{ group_monoid :: @Monoid Aop Aunit
; negate_proper :: Setoid_Morphism (-)
; negate_l :: LeftInverse (&) (-) mon_unit
; negate_r :: RightInverse (&) (-) mon_unit }.
Class BoundedSemiLattice {Aop Aunit} : Prop :=
{ bounded_semilattice_mon :: @CommutativeMonoid Aop Aunit
; bounded_semilattice_idempotent :: BinaryIdempotent (&)}.
Class AbGroup {Aop Aunit Anegate} : Prop :=
{ abgroup_group :: @Group Aop Aunit Anegate
; abgroup_commutative :: Commutative (&) }.
Context {Aplus : Plus A} {Amult : Mult A} {Azero : Zero A} {Aone : One A}.
Class SemiRing : Prop :=
{ semiplus_monoid :: @CommutativeMonoid plus_is_sg_op zero_is_mon_unit
; semimult_monoid :: @CommutativeMonoid mult_is_sg_op one_is_mon_unit
; semiring_distr :: LeftDistribute (.*.) (+)
; semiring_left_absorb :: LeftAbsorb (.*.) 0 }.
Context {Anegate : Negate A}.
Class Ring : Prop :=
{ ring_group :: @AbGroup plus_is_sg_op zero_is_mon_unit _
; ring_monoid :: @CommutativeMonoid mult_is_sg_op one_is_mon_unit
; ring_dist :: LeftDistribute (.*.) (+) }.
(* For now, we follow CoRN/ring_theory's example in having Ring and SemiRing
require commutative multiplication. *)
Class IntegralDomain : Prop :=
{ intdom_ring : Ring
; intdom_nontrivial : PropHolds (1 ≠ 0)
; intdom_nozeroes :: NoZeroDivisors A }.
(* We do not include strong extensionality for (-) and (/) because it can de derived *)
Class Field {Aap: Apart A} {Arecip: Recip A} : Prop :=
{ field_ring :: Ring
; field_strongsetoid :: StrongSetoid A
; field_plus_ext :: StrongSetoid_BinaryMorphism (+)
; field_mult_ext :: StrongSetoid_BinaryMorphism (.*.)
; field_nontrivial : PropHolds (1 ≶ 0)
; recip_proper :: Setoid_Morphism (//)
; recip_inverse : ∀ x, `x // x = 1 }.
(* We let /0 = 0 so properties as Injective (/), f (/x) = / (f x), / /x = x, /x * /y = /(x * y)
hold without any additional assumptions *)
Class DecField {Adec_recip : DecRecip A} : Prop :=
{ decfield_ring :: Ring
; decfield_nontrivial : PropHolds (1 ≠ 0)
; dec_recip_proper :: Setoid_Morphism (/)
; dec_recip_0 : /0 = 0
; dec_recip_inverse : ∀ x, x ≠ 0 → x / x = 1 }.
End upper_classes.
(* Due to bug #2528 *)
#[global]
Hint Extern 4 (PropHolds (1 ≠ 0)) => eapply @intdom_nontrivial : typeclass_instances.
#[global]
Hint Extern 5 (PropHolds (1 ≶ 0)) => eapply @field_nontrivial : typeclass_instances.
#[global]
Hint Extern 5 (PropHolds (1 ≠ 0)) => eapply @decfield_nontrivial : typeclass_instances.
(*
For a strange reason Ring instances of Integers are sometimes obtained by
Integers -> IntegralDomain -> Ring and sometimes directly. Making this an
instance with a low priority instead of using intdom_ring:: Ring forces Coq to
take the right way
*)
#[global]
Hint Extern 10 (Ring _) => apply @intdom_ring : typeclass_instances.
Arguments recip_inverse {A Ae Aplus Amult Azero Aone Anegate Aap Arecip Field} _.
Arguments dec_recip_inverse {A Ae Aplus Amult Azero Aone Anegate Adec_recip DecField} _ _.
Arguments dec_recip_0 {A Ae Aplus Amult Azero Aone Anegate Adec_recip DecField}.
Arguments sg_op_proper {A Ae Aop SemiGroup} _ _ _ _ _ _.
Section lattice.
Context A `{Ae: Equiv A} {Ajoin: Join A} {Ameet: Meet A} `{Abottom : Bottom A}.
Class JoinSemiLattice : Prop :=
join_semilattice :: @SemiLattice A Ae join_is_sg_op.
Class BoundedJoinSemiLattice : Prop :=
bounded_join_semilattice :: @BoundedSemiLattice A Ae join_is_sg_op bottom_is_mon_unit.
Class MeetSemiLattice : Prop :=
meet_semilattice :: @SemiLattice A Ae meet_is_sg_op.
Class Lattice : Prop :=
{ lattice_join :: JoinSemiLattice
; lattice_meet :: MeetSemiLattice
; join_meet_absorption :: Absorption (⊔) (⊓)
; meet_join_absorption :: Absorption (⊓) (⊔)}.
Class DistributiveLattice : Prop :=
{ distr_lattice_lattice :: Lattice
; join_meet_distr_l :: LeftDistribute (⊔) (⊓) }.
End lattice.
Class Category O `{!Arrows O} `{∀ x y: O, Equiv (x ⟶ y)} `{!CatId O} `{!CatComp O}: Prop :=
{ arrow_equiv :: ∀ x y, Setoid (x ⟶ y)
; comp_proper :: ∀ x y z, Proper ((=) ==> (=) ==> (=)) (comp x y z)
; comp_assoc :: ArrowsAssociative O
; id_l :: ∀ x y, LeftIdentity (comp x y y) cat_id
; id_r :: ∀ x y, RightIdentity (comp x x y) cat_id }.
(* note: no equality on objects. *)
(* todo: use my comp everywhere *)
Arguments comp_assoc {O arrows eq CatId CatComp Category w x y z} _ _ _ : rename.
Section morphism_classes.
Context {A B} {Ae : Equiv A} {Be : Equiv B}.
Class SemiGroup_Morphism {Aop Bop} (f : A → B) :=
{ sgmor_a : @SemiGroup A Ae Aop
; sgmor_b : @SemiGroup B Be Bop
; sgmor_setmor :: Setoid_Morphism f
; preserves_sg_op : ∀ x y, f (x & y) = f x & f y }.
Class JoinSemiLattice_Morphism {Ajoin Bjoin} (f : A → B) :=
{ join_slmor_a : @JoinSemiLattice A Ae Ajoin
; join_slmor_b : @JoinSemiLattice B Be Bjoin
; join_slmor_sgmor :: @SemiGroup_Morphism join_is_sg_op join_is_sg_op f }.
Class MeetSemiLattice_Morphism {Ameet Bmeet} (f : A → B) :=
{ meet_slmor_a : @MeetSemiLattice A Ae Ameet
; meet_slmor_b : @MeetSemiLattice B Be Bmeet
; meet_slmor_sgmor :: @SemiGroup_Morphism meet_is_sg_op meet_is_sg_op f }.
Class Monoid_Morphism {Aunit Bunit Aop Bop} (f : A → B) :=
{ monmor_a : @Monoid A Ae Aop Aunit
; monmor_b : @Monoid B Be Bop Bunit
; monmor_sgmor :: SemiGroup_Morphism f
; preserves_mon_unit : f mon_unit = mon_unit }.
Class BoundedJoinSemiLattice_Morphism {Abottom Bbottom Ajoin Bjoin} (f : A → B) :=
{ bounded_join_slmor_a : @BoundedJoinSemiLattice A Ae Ajoin Abottom
; bounded_join_slmor_b : @BoundedJoinSemiLattice B Be Bjoin Bbottom
; bounded_join_slmor_monmor :: @Monoid_Morphism bottom_is_mon_unit bottom_is_mon_unit join_is_sg_op join_is_sg_op f }.
Class SemiRing_Morphism {Aplus Amult Azero Aone Bplus Bmult Bzero Bone} (f : A → B) :=
{ semiringmor_a : @SemiRing A Ae Aplus Amult Azero Aone
; semiringmor_b : @SemiRing B Be Bplus Bmult Bzero Bone
; semiringmor_plus_mor :: @Monoid_Morphism zero_is_mon_unit zero_is_mon_unit plus_is_sg_op plus_is_sg_op f
; semiringmor_mult_mor :: @Monoid_Morphism one_is_mon_unit one_is_mon_unit mult_is_sg_op mult_is_sg_op f }.
Class Lattice_Morphism {Ajoin Ameet Bjoin Bmeet} (f : A → B) :=
{ latticemor_a : @Lattice A Ae Ajoin Ameet
; latticemor_b : @Lattice B Be Bjoin Bmeet
; latticemor_join_mor :: JoinSemiLattice_Morphism f
; latticemor_meet_mor :: MeetSemiLattice_Morphism f }.
Context {Aap : Apart A} {Bap : Apart B}.
Class StrongSemiRing_Morphism {Aplus Amult Azero Aone Bplus Bmult Bzero Bone} (f : A → B) :=
{ strong_semiringmor_sr_mor :: @SemiRing_Morphism Aplus Amult Azero Aone Bplus Bmult Bzero Bone f
; strong_semiringmor_strong_mor :: StrongSetoid_Morphism f }.
End morphism_classes.
Section jections.
Context {A B} {Ae : Equiv A} {Aap : Apart A}
{Be : Equiv B} {Bap : Apart B} (f : A → B) `{inv : !Inverse f}.
Class StrongInjective : Prop :=
{ strong_injective : ∀ x y, x ≶ y → f x ≶ f y
; strong_injective_mor : StrongSetoid_Morphism f }.
Class Injective : Prop :=
{ injective : ∀ x y, f x = f y → x = y
; injective_mor : Setoid_Morphism f }.
Class Surjective : Prop :=
{ surjective : f ∘ (f ⁻¹) = id (* a.k.a. "split-epi" *)
; surjective_mor : Setoid_Morphism f }.
Class Bijective : Prop :=
{ bijective_injective :: Injective
; bijective_surjective :: Surjective }.
End jections.
#[global]
Instance: Params (@StrongInjective) 4 := {}.
#[global]
Instance: Params (@Injective) 4 := {}.
#[global]
Instance: Params (@Surjective) 4 := {}.
#[global]
Instance: Params (@Bijective) 4 := {}.
|